
An FPGA-Based Pentium r© in a Complete Desktop System

Shih-Lien L. Lu
Intel Corp.

shih-lien.l.lu@intel.com

Peter Yiannacouras∗

The Edward S. Rogers Sr.
Department of Electrical and

Computer Engineering
University of Toronto

∗While interning at Intel.

yiannac@eecg.utoronto.ca

Rolf Kassa,
Michael Konow

Intel Corp.

michael.konow@intel.com

Taeweon Suh∗

Department of Electrical and
Computer Engineering

Georgia Institute of
Technology

∗While interning at Intel.

suhtw@ece.gatech.edu

ABSTRACT
Software simulation has been the predominant method for
architects to evaluate microprocessor research proposals.
There are three tenets in modeling new designs with software
models: simulation speed, model accuracy and model
completeness. The increasing complexity of the processor
and accelerated trend to have multiple processors on a chip
are putting burden on simulators to achieve all tenets men-
tioned, including accurately capturing OS effects. In this
work we perform preliminary experimentation/prototyping
with an emulation system which overcomes the tension to
satisfy all three requirements. The system is an origi-
nal Socket-7 based desktop processor system with typical
hardware peripherals running modern operating systems
such as Fedora Core 4 and Windows XP; however we have
inserted a Xilinx Virtex-4 in place of the processor that
should sit in the motherboard and have used the Virtex-4 to
host a complete version of the Pentium r©1 microprocessor
(which consumes less than half its resources). We can
therefore apply architectural changes to the processor and
evaluate their effects on the complete desktop system.
We use this FPGA-based emulation system to conduct
preliminary architectural experiments including growing the
branch target buffer and the level 1 caches. In addition, we
experimented with interfacing hardware accelerators such as
DES and AES engines which resulted in 27x speedups.

1Pentium r© is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other countries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’07, February 18–20, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-600-4/07/0002 ...$5.00.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures

General Terms
Measurement, Performance, Design

Keywords
Pentium r©, processor, emulator, FPGA, accelerator

1. INTRODUCTION
Research in computer architecture has traditionally used

software simulation of a uni-processor executing a single
binary, as in SimpleScalar [5]. While improvements to
processor pipelines and memory hierarchies were historically
very fruitful in this context, more recent demands for
increased efficiency requires optimization across the entire
system stack (processor architecture, instruction-set, device
drivers, operating system, and applications) with multiple
processors. However system-level research is stifled by the
slow simulation speeds/lack of detailed modelling inherent
in the software simulators traditionally used to innovate in
microprocessor systems.

Field Programmable Gate Arrays (FPGAs) are seen as
the solution to this problem and are being targetted in
the development of a new research infrastructure which not
only simulates a complete system, but a multi-processor
one [9]. The flexibility, speed (of both development time
and simulation time), and enormous capacity of FPGAs
qualifies them for the emulation of microprocessor systems.
However, one of the toughest issues facing the development
of such an emulation system is compatibility for existing
operating systems. FPGA vendors have designed processor
cores which are very small and simple, but have limited
support for even barebone embedded operating systems. In
addition, the desire to run existing OS binaries including
closed-source ones such as Windows has researchers looking
at binary translation as a solution [10].

53

In this work we emulate a version of a commercial
x86 desktop processor on an FPGA to run real operating
systems on stock hardware. To be precise, we’ve replaced
a Pentium r© microprocessor from its standard socket on
a stock motherboard, with a single Xilinx Vritex4 LX200
FPGA which implements the Pentium r© core. The stock
motherboard with a standard socket is underclocked at
25 MHz and all system components such as memory,
graphics card, CDROM, hard disk, USB devices, mouse and
keyboard can be operated at the same relative speeds as
in an original system. Most importantly, our FPGA-based
Pentium r© emulation system provides us the ability to run
real operating systems, such as Fedora Core 4, Red Hat 9,
and Windows XP on the FPGA while interacting with real
hardware components.

The FPGA-based Pentium r© desktop system provides a
powerful tool for the exploration and customization of future
microprocessors. Although the system being emulated
does not contain a state-of-the art microprocessor, its
applicability to modern architectural research has recently
spiked due to the successful arrival of chip multi-processors
(CMPs). As the number of cores in a CMP increases, system
level architectural decisions are becoming more important.
Our emulation system has already been expanded to a
multiprocessor system by using available dual processor
motherboards, though that work is still in progress.

In this work we make the following contributions: (i) we
analyze the Pentium r© core implementation on the Virtex-
4 FPGA and crudely contrast it to its implementation
using the silicon technology of its commercial debut, (ii)
we perform preliminary architectural enhancements which
demonstrate the emulator’s ability to measure the effect of
microarchitectural changes on the complete system using
the SPEC2000 integer benchmarks—specifically we param-
eterize the branch target buffer and the L1 cache; and (iv)
we experimented with adding hardware accelerators such as
AES and DES.

The ability to place desktop microprocessors on an FPGA
device and have it execute consumer applications has sig-
nificant ramifications for the FPGA community. It may
not be feasible for desktop processors to be hosted on
FPGAs commercially, but with academia and industry
embracing the concept as a research vehicle, at the very
least, researchers will discover innovative ways to use the
programmable FPGA fabric (for example by adding custom
instructions or parameterizing parts of the architecture),
which may then pave the way for FPGA fabric to be tightly
integrated into ordinary desktop processor devices. Also, it
provides an interesting point of comparison allowing us to
benchmark modern FPGA technology against twelve year
old transistor-based silicon technology.

The remaining sections of this document will summarize
related work and relevant background in Section 2, describe
the Pentium r© emulation system in more detail in Section 3,
outline the implementation of our architectural enhance-
ments made in Section 4, discuss the area/speed effects of
the architectural implementations in Section 5, and then
conclude in Section 6.

2. BACKGROUND
The concept of using FPGAs to more quickly and more

accurately explore the microprocessor design space has
recently gained traction causing publications on the topic

to multiply [14]. Some of this work focusses on accelerating
simulation times by offloading highly detailed resource
modelling into the FPGA while a software simulator remains
the core of the emulation environment [7]. Other research
often focusses on a single architectural novelty (for example
transactional parallel systems [17], caching [19], vector-
thread processors [16]) and build FPGA-based models of
the relevant hardware. Contrary to both these approaches,
we implement the complete microprocessor on an FPGA
making the entire processor architecture flexible.

Complete RTL models of microprocessors have already
become available for the SPARC V8 [1], Niagara [3], and
PowerPC [4]. These cores are can be synthesized to FPGA
and are designed to facilitate design space exploration as
seen by Jones et al [15]. However, to the best of our
knowledge, we are the first to employ such a core in a real
desktop system with real hardware peripherals capable of
hosting real and modern operating systems. Our emulation
platform also provides several orders of magnitude of simula-
tion time speedup over software emulators such as Simics [8]
and SimOS [20].

An abundance of research already exists in the embedded
domain which applies customization to an FPGA-based
core. The fruitfulness of application-specific microarchitec-
tural variation was seen in [22] and its automatic navigation
in [21]. In addition, the effect of including custom instruc-
tions into such cores was explored [6]. While our work is
similar in spirit to these works we differentiate ourselves by
focussing on the desktop domain and emphasizing peripheral
and operating system interaction.

3. THE FPGA-BASED PENTIUM r©

EMULATION SYSTEM
The complete emulation environment consists of four main

components: (i) the FPGA which hosts the Pentium r©
processor; (ii) the hardware including motherboard and
peripherals; (iii) the software/operating system; and (iv)
the necessary FPGA CAD software required to implement
the FPGA design. We discuss each of these four items in
further detail.

3.1 The Processor
The processor used in our emulation system is the original

Pentium r© which is the desktop processor released after
the 486 and before the Pentium Pro r©. The 3.3 million
transistor processor was released in 1994 in a 0.6 micron
technology and was originally clocked at 75 MHz [13]. It is
a 32-bit in-order 5-stage dual-pipeline processor supporting
the IA32 instruction set including floating point instructions
using an on-chip pipelined floating-point module. It is
equipped with two on-chip separate 8 KB 2-way set associa-
tive level 1 caches for data and instructions and implements
the MESI protocol for use in multiprocessor environments.
It also includes dynamic branch prediction using a 256 entry
predictor table and branch target buffer.

A 3-level stacked board houses the FPGA and necessary
circuitry. The first level contains the pin/power conversion
between the motherboard and FPGA allowing it to be
plugged directly into the motherboard. The second level
contains the FPGA itself, and the top level contains the
programming circuitry for the FPGA. The FGPA used
to host the Pentium r© is a Xilinx Virtex-4 LX200 90

54

Figure 1: Image of the FPGA-based processor

emulator system equipped with standard hardware

peripherals, a Xilinx Virtex-4 device in place of a

microprocessor chip, all running Windows XP

Figure 2: Image of the 3-level stacked board which

houses the Xilinx Virtex-4 and converts it for use

on the processor motherboard.

nanometer device, which gets less than half consumed by the
Pentium r©. More detailed analysis of the Virtex-4 resources
utilized by the Pentium r© will follow in Section 5.

3.2 The Computer Hardware
Everything other than the actual Pentium r© chip is

original hardware that would typically be used in a Pentium
system. The motherboard is an original ASUS Socket7
motherboard with 196 MB of SDRAM, and original chipset
and BIOS. The only modification is that the board’s clock
is underclocked to approximately 25 MHz—one third of
the speed the system was designed for. Note that the
underclocking of the board affects the processor, RAM,
cache, chipset, and bus speeds and hence preserves the
relative speeds of the original system. Other peripherals
attached to the board include graphics card, USB connector,
hard disk, CDROM, keyboard, mouse, and monitor.

3.3 The Operating Systems
The most powerful ability of our FPGA-based system is

its ability to boot real operating systems. We successfully
installed unmodified versions of Fedora Core 4, Red Hat
9, and Windows XP on the Pentium r©; the installation
procedure was no different than on any typical desktop
system. In terms of performance and usability, it takes
approximately 10 minutes to boot Fedora Core 4 without a
GUI. Command shells, and text editors such as vim operate
just as expected on a modern computer system, and GCC
can compile small programs in seconds. Typing is certainly
done at full speed, searches through normal sized text files
succeed with unnoticeable latency. In summary, the system
is perfectly usable as a desktop computer for very simple
non-graphical applications.

3.4 FPGA Development
To synthesize the Pentium r© we use Synplify Pro 8.5.1 for

high-level synthesis of the VHDL and then use Xilinx ISE
8.1i for placement and routing onto the Virtex-4 device. The
entire process takes between 10 and 20 hours to synthesize,
map, place, route and generate a bitstream, followed by
an additional 20 seconds to download the bitstream to the
device. This turnaround time is orders of magnitude quicker
than the fabrication time for a silicon implementation
of the processor which could be inserted directly on the
motherboard. In terms of debugging, Modelsim 6.1 is used
to simulate the VHDL in lockstep with a software simulator
which models the original behaviour of the processor. A
suite of regression tests are used to ensure the processor is
still a functional x86 machine. The regression tests are a
subset of those used to verify the original Pentium r©.

4. MODIFYING THE PENTIUM r© CORE
In this section we discuss our design and implemen-

tations of the three different enhancements we made to
the Pentium r©. Below we discuss the expansions made
to the branch prediction capabilities and the L1 cache of
the core, and we detail our integration of the hardware
acceleration for encryption/decryption through our AES
and DES crypto-engine.

4.1 Expanding the Branch Target Buffer
The Pentium r© is equipped with dynamic branch predic-

tion which consists not only of a predictor table to speculate
on conditional branches, but also a branch target buffer
(BTB) to speculate on indirect branches—when the target of
a branch can not be deduced by the current program counter
and the instruction word alone (ie. the branch target cannot
be resolved early enough in the pipeline), the Pentium r©
uses the BTB to guess where the branch will jump to. The
branch target buffer originally held 256 entries allowing it to
speculate “correctly” for up to the last 256 indirect branches.
The size of the BTB was doubled to 512 entries and no
other changes were required to the rest of the system to
accommodate this growth.

4.2 Expanding the L1 Caches
The Pentium r© 8 KB L1 caches are very small by today’s

standards. There are two such caches, one for data memory,
the other for instruction memory, each of which are 8 KB
and 2-way set associative with 32 bytes per cache line. The
caches were increased internally by 4x way-wise to become

55

32 KB 8-way set associative caches. The LRU replacement
policy which determines which line gets evicted within a
full set was also expanded to handle the sets of 8 cache
lines. Both instruction and data caches can be individually
configured to either the 8KB or 32KB versions, but in this
work we always keep them the same size.

4.3 Integrating AES and DES Crypto Engine
We integrated two crypto-engines into the Pentium r©:

Advanced encryption standard (AES) and data encryption
standard (DES). Security has more recently become a crit-
ical requirement in many computing areas such as network
security and digital rights management. To support such
security requirements and maximize system performance,
security-enhanced processors are preferred and becoming
available in the market [12]. In our approach we integrate
custom instructions for accelerating encryption and decryp-
tion directly into the processor.

We retrieved AES and DES intellectual property (IP)
cores from Opencores [2]. The AES core implemented
the Rijndael’s algorithm and takes a 128-bit key and a
128-bit plaintext/cyphertext for encryption and decryption,
respectively. The DES core takes a 56-bit key and 64-
bit plaintext/cyphertext for encryption and decryption,
respectively. In our implementation, we extended the x86
ISA to integrate AES and DES engines by creating new
Model-Specific Registers (MSRs)—a set of hidden registers
usually used to capture debug/performance information
which are accessible only by two privileged instructions
called rdmsr and wrmsr respectively for reading and writing.
We can use the MSRs to provide communication with
the crypto-engines. That is, the encryption/decryption is
executed by sending data to the appropriate crypto-engine
by “writing” to our newly created MSR(s) via the wrmsr

instruction, then the corresponding cyphertext or plaintext
result can be “read” from the crypto-engine via the rdmsr

instruction. Similarly, control information is sent to the
crypto-engines using another MSR. For example, users can
choose the configuration such as AES or DES, encryption or
decryption, and key or input data. This approach reduces
the access latency by avoiding comparably expensive bus
accesses had the engine been a co-processor connect through
the bus.

Implementing the new MSRs involved several changes.
First the actual MSRs and necessary logic to access them
was inserted into the VHDL design. Second the privilege
protections checks were removed from rdmsr and wrmsr

allowing us to access the crypto-engines from user space
rather than through the operating system. Finally, many
optimizations were required to improve the execution speed
of these instructions since generally rdmsr and wrmsr are
very slow instructions. With all these modifications we
achieved a communication overhead of only 6 cycles between
the processor and the crypto-engines (the engines were
clocked at the same CPU frequency though capable of much
higher clock rates). The entire design time was less than
two weeks for this change and involved modifications to the
microcode in addition to VHDL changes to only one isolated
component.

Table 1: Virtex-4 resource utilization by the

unmodified Pentium r©.

Resource Number used Percent Used
4-LUTs 65615 37%
Registers 26859 15%
Slices 41438 46%
DSP48s 29 30%
BRAMs 118 35%

5. EXPERIMENTING WITH THE
PENTIUM r© SYSTEM

In this section we analyze and benchmark the FPGA-
based Pentium r© system to extract the following results:
(i) an area breakdown of the Pentium r© as reported by the
CAD flow; (ii) a comparison between the original branch
target buffer and our expanded version; (iii) a comparison
between the original 8KB L1 cache and our expanded 32KB
L1 cache; (iv) an analysis of the crypto-engine hardware
accelerator. We examine each of these in more detail. Note
that we report on area in terms of Virtex-4 resources but
are cognizant that these results may not predictably map to
a real silicon implementation. Nonetheless the area analysis
can be used for first-order approximations.

5.1 Area Breakdown of the Pentiumr©

We synthesized the Pentium r© VHDL to the Virtex-4
LX200 and noticed that less than half of the device resources
were used; the corresponding data is shown in Table 1
taken after high-level synthesis and technology mapping was
completed. Only 37% of the LUTs were used to store all
the logic for the Pentium r©, however they were distributed
through 46% of the slices. Also, 35% of the block RAMs were
utilized (distributed RAMs are counted as 4-LUTs). With
more than half of the resources still available, there exists
sufficient space on the device for expanding and augmenting
the Pentium r©.

Figure 3 shows the breakdown of each Virtex-4 resource
used by different units in the processor; the data was
collected from the synthesis results reported by Synplify Pro.
All of the DSP48 (multipliers) were used by the floating
point unit, and nearly all of the block RAMs were divided
amongst the instruction cache, data cache, and microcode
units. The Virtex-4 LUTs were used mostly by the FPU,
ALU, address generation, and caches. The entire memory
hierarchy (including the caches and bus interface) claimed
approximately 45% of the LUTs used, suggesting that even
when considering only logic, almost half of the chip is
devoted to communication leaving the other half for control
and actual computation.

Although synthesizable, the Pentium r© VHDL was not
designed for mapping to an FPGA. Recent work [10]
suggested that a processor designed specifically for synthesis
to an FPGA can be more than an order of magnitude smaller
than a generically written mostly-behavioural VHDL pro-
cessor. While our processor has had some manual tweaking
to guide its mapping to some FPGA resources, we too also
believe that the resource usage of the Pentium r© can be
significantly reduced by more carefully mapping structures
to the resources in the FPGA. Of particular note is the
mapping to block RAMs. The interconnection between large

56

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
E

G
IS

T
E

R
S

LU
T

S

D
S

P
48

R
A

M
S

Floating-point
Address Generation
ALU
Pipeline Control
Microcode
Decode
Bus unit
I-Cache
D-Cache

Figure 3: Breakdown of FPGA resources used by

different parts of the Pentium r© archtiecture.

numbers of under-utilized BRAMS is a major contributor
to both the speed and area overhead. Multiple BRAMs are
often required due to limitations on the number of ports
or the width of the ports. Re-architecting the processor to
better utilize the block RAMs may be of great benefit to the
FPGA design.

In spite of the core’s ill-suitedness for FPGA design, it
still provides an interesting point of comparison for FPGAs
as a platform. Recent work [18] has measured FPGAs to
be 3x slower in speed and 35x larger in area compared to a
standard cell ASIC flow with both using 90nm technology.
With some simple and crude calculations we can attempt
to do the same with the 12 year old Pentium r©. The
FPGA-based core is clocked at 25 MHz compared to the
75 MHz it originally ran at 12 years ago, meaning the
90nm FPGA is already 3x slower than the older 600nm
silicon technology. Accounting for the generation gap can
only be crudely estimated: Assuming modern 90nm desktop
processors run up to 3.8GHz and have 5x the number of
pipeline stages (and hence 5x the clock rate) we extrapolate
and say that our Pentium r© core would be clocked at 760
MHz in a 90nm process—approximately 30x faster than
its 90nm FPGA counterpart. Although crude, the above
analysis suggests that highly optimized transistor designs
can perform multitudes faster than the expected 3x of a
push-button FPGA flow.

With respect to area, we estimate that the number of
transistors on the Virtex-4 LX200 is greater than 500 mil-
lion. Since the 3.3 million transistor Pentium r© used about
35% of these (we assume the number of transistors used
is proportional to the LUT and BRAM usage in Table 1),
that means the FPGA required 53x more transistors than
the actual processor. Although this is also very crude and
even coupled with the fact that transistor count is not an
accurate measurement of area, the outcome agrees with our
expectation of seeing higher overheads since the previously
published results used a synthesis-based standard cell flow
without manual optimization.

5.2 Comparing Branch Target Buffer Sizes
Doubling the branch target buffer should give the proces-

sor twice the accuracy in predicting taken indirect jumps.
This modification was a simple warm-up exercise requiring

5.35%

-2%

0%

2%

4%

6%

8%

10%

12%

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

O
V

E
R

A
LL

%
 S

pe
ed

 Im
pr

ov
em

en
t

Figure 4: Performance increase of the doubled

branch target buffer on SPEC2000 integer bench-

marks.

only an extra block RAM and a small amount of logic most
likely a side-effect of the randomness in the CAD algorithms.
The performance of the expanded BTB was measured across
all SPEC2000 integer benchmarks. Since the system is in
fact real, the time to complete a single benchmark run is
non-deterministic and takes almost a day making it difficult
to average out the non-determinism. As such, some of the
real speed improvements remain hidden in the noise inherent
in the real system.

Figure 4 shows significant speed improvements up to 11%
by parser. vpr and perlbmk also benefit largely from
the increased predictor accuracy. On average the expanded
BTB provides a 5.35% speed improvement, which is quite
significant for such a small change.

5.3 Comparing Level 1 Cache Size
Figure 5 shows the additional FPGA resources consumed

from growing the L1 caches from 8KB (2-way) to 32KB
(8-way). Almost 25% more logic was necessary for the
expansion as well as more than 50% more block RAMs
making this growth in L1 cache very expensive with respect
to area. In addition to the area cost, the place and route
time is more than doubled. Nonetheless the performance
benefit is quite substantial.

Figure 6 plots the performance improvement of the ex-
panded L1 cache for each SPEC2000 integer benchmark.
An average of 16% performance improvement is achieved
with benchmarks such as crafty reaching as high as 40%.
Although there are a myriad of cache studies, we believe
this work is unique in capturing operating system effects
such as cache flushes and preemption while sustaining high
simulation speeds..

5.4 Evaluating the Crypto-Engine
The AES takes only 12 CPU cycles to finish its com-

putation for encryption/decryption, and the DES takes
16 CPU cycles, both significantly faster than a software
implementation. The best known software implementation
for AES written specifically for the same Pentium r© executes
in 320 cycles [11]. This results in an execution speedup of
27x for our custom crypto-engine versus the best software
implementation. Table 2 summarizes the resource utiliza-
tion of the AES and DES engines on the Virtex-4 FPGA

57

19.78%
24.20%

30.81%

50.85%

0%

10%

20%

30%

40%

50%

60%

Flip Flops 4-LUTs Slices RAM Blocks

A
re

a
In

cr
ea

se

Figure 5: Area increase of the 32KB 8-way L1 caches

versus the 8KB 2-way L1 caches.

15.75%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

O
ve

ra
ll

%
 S

pe
ed

 Im
pr

ov
em

en
t

Figure 6: Performance increase of the 32KB 8-way

L1 caches versus the 8KB 2-way L1 caches.

and shows that the logic requirement is very small but a
substantial number of BRAMs were required. Nonetheless,
for secure environments the extra resources would be well
worth the performance improvement.

6. CONCLUSION
The FPGA-based Pentium r© emulator is a powerful

tool for researching desktop processor architectural en-
hancements. Its ability to quickly prototype architectural
changes and measure their effects at the application-level
in the presence of a real operating system provides a more
realistic research tool without the expensive costs and long
design times associated with actually creating a silicon

Table 2: Virtex-4 resource utilization of the AES

and DES IP cores.

Resource Number used
4-LUTs 2347
Registers 1319
DSP48s 0
BRAMs 72

implementation. Such a system can be used to achieve newer
heights of efficiency by optimizing across the entire system
stack: architecture, instruction-set device drivers, operating
systems, and applications without the inhibitive simulation
times of a software simulator.

Although the Pentium r© processor requires a large num-
ber of FPGA resources, modern FPGA devices have ample
capacity for hosting desktop uniprocessors. The Pentium r©
processor consumed less than half of the Virtex-4 LX200
providing significant space for growth of the design. We
expect that more careful mapping of the design to FPGA
resources will result in large-scale reductions in size.

The Pentium r© emulator was used to explore expansion
of both the branch target buffer and L1 cache. Doubling
the size of the branch target buffer required a negligibly
small amount of resources and provided significant speed
improvements on the SPEC2000 integer benchmarks. The
L1 caches were quadrupled from 8KB 2-way to 32KB 8-
way caches and required significantly more FPGA resources
and synthesis time, but also provided large speedups for the
SPEC2000 benchmarks.

Finally we integrated custom instructions to interface
with AES and DES crypto engines to accelerate encryp-
tion and decryption operations. The tight integration of
these engines into the core provided instructions which
can encrypt/decrypt in 12-16 CPU cycles providing a 27x
speedup over the best known software implementation. The
added area was relatively small for the engines except for a
significant need for block RAMs.

7. REFERENCES
[1] LEON SPARC. http://www.gaisler.com.

[2] Opencores.org. http://www.opencores.org.

[3] OpenSPARC. http://opensparc.sunsource.net/.

[4] PowerPC. http://www.power.org.

[5] T. Austin and D. Burger. The SimpleScalar Tool Set
Version 3.0, 1998.

[6] P. Biswas, S. Banerjee, N. Dutt, P. Ienne, and
L. Pozzi. Performance and Energy Benefits of
Instruction Set Extensions in an FPGA Soft Core. In
IEEE International Conference on VLSI Design
(VLSID). IEEE, 2006.

[7] D. Chiou, H. Sunjeliwala, D. Sunwoo, J. Xu, and
N. Patil. FPGA-based Fast, Cycle-Accurate,
Full-System Simulators. In Workshop on Architecture
Research using FPGA Platforms in the 12th
International Symposium on High-Performance
Computer Architecture, 2006.

[8] P. S. M. et al. Simics: A Full System Simulation
Platform. IEEE Computer, 35(2):50–58, 2002.

[9] G. Gibeling, A. Schultz, and K. Asanovic. RAMP:
The RAMP Architecture and Description Language.
Technical Report, 2006.

[10] G. Gibeling and J. Wawrzynek. A Universal Processor
for RAMP. Technical Report, 2006.

[11] L. Granboulan. AES Timings of the Best Known
Implementations.
http://www.di.ens.fr/ granboul/recherche/AES/timings.html,
2000.

[12] Hifn. 4450 HIPP III Storage Security Processor, 2006.

[13] Intel. The Pentium Datasheet, 1997.

58

[14] International Symposium on High-Performance
Computer Architecture. Workshop on Architecture
Research using FPGA Platforms, San Francisco,
California, 2005.

[15] P. Jones, S. Padmanabhan, D. Rymarz,
J. Maschmeyer, D. V. Schuehler, J. W. Lockwood, and
R. K. Cytron. Liquid Architecture. In International
Parallel and Distributed Processing Symposium:
Workshop on Next Generation Software, 2004.

[16] J. Kasper, R. Krashinksy, C. Batten, and
K. Asanovic. A Parameterizable FPGA Prototype of a
Vector-Thread Processor. In Workshop on
Architecture Research using FPGA Platforms in the
11th International Symposium on High-Performance
Computer Architecture, 2005.

[17] C. Kozyrakis and K. Olukotun. ATLAS: A Scalable
Emulator for Transactional Parallel Systems. In
Workshop on Architecture Research using FPGA
Platforms in the 11th International Symposium on
High-Performance Computer Architecture, 2005.

[18] I. Kuon and J. Rose. Measuring the Gap Between
FPGAs and ASICs. In FPGA ’06: Proceedings of the
2006 international symposium on Field-programmable
gate arrays. ACM Press, 2006.

[19] S.-L. Lu, E. Nurvitadhi, J. Hong, and S. Larsen.
Memory Subsystem Performance Evaluation with
FPGA based Emulators. In Workshop on Architecture
Research using FPGA Platforms in the 11th
International Symposium on High-Performance
Computer Architecture, 2005.

[20] M. Rosenblum, S. A. Herrod, E. Witchel, and
A. Gupta. Complete Computer System Simulation:
The SimOS Approach. IEEE parallel and distributed
technology: systems and applications, 3(4):34–43,
Winter 1995.

[21] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, and
D. Tullsen. Application-Specific Customization of
Parameterized FPGA Soft-Core Processors. In
IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). ACM Press, 2006.

[22] P. Yiannacouras, J. G. Steffan, and J. Rose.
Application-Specific Customization of Soft Processor
Microarchitecture. In FPGA ’06: Proceedings of the
2006 international symposium on Field-programmable
gate arrays. ACM Press, 2006.

59

