
DATA PARALLEL FPGA WORKLOADS: SOFTWARE VERSUS HARDWARE

Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose

Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto

10 King’s College Road, Toronto, ON
email: yiannac,steffan,jayar@eecg.utoronto.ca

ABSTRACT

Commercial soft processors are unable to effectively
exploit the data parallelism present in many embedded
systems workloads, requiring FPGA designers to exploit
it (laboriously) with manual hardware design. Recent
research [1, 2] has demonstrated that soft processors aug-
mented with support for vector instructions provide signifi-
cant improvements in performance and scalability for data-
parallel workloads. These soft vector processors provide
a software environment for quickly encoding data parallel
computation, but their competitiveness with manual hard-
ware design in terms of area and performance remains
unknown. In this work, using an FPGA platform equipped
with DDR memory executing data-parallel EEMBC embed-
ded benchmarks, we measure the area/performance gaps
between (i) a scalar soft processor, (ii) our improved soft
vector processor, and (iii) custom FPGA hardware.

We demonstrate that the 432x wall clock performance
gap between scalar executed C and custom hardware can
be reduced significantly to 17x using our improved soft
vector processor, while silicon-efficiency is improved by 3x
in terms of area-delay product. We modified the architecture
to mitigate three key advantages we observed in custom
hardware: loop overhead, data delivery, and exact resource
usage. Combined these improvements increase performance
by 3x and reduce area by almost half, significantly reducing
the need for designers to resort to more challenging custom
hardware implementations.

1. INTRODUCTION

The designer of an FPGA-based embedded system often has
the difficult choice between designing custom hardware by
hand using a hardware-description language (HDL) that is
mapped directly to the FPGA fabric, or writing software in a
high-level language such as C that targets a soft processor—
a processor implemented using the programmable FPGA
fabric and programmed using traditional sequential pro-
gramming languages and software compilers. The perfor-
mance of a soft processor is often sufficient for parts of

the design allowing embedded systems designers to use
them to reduce their time to market and exploit single-chip
advantages without requiring specialized FPGAs with hard
processors; however, the performance and area of current
commercial soft processors is still significantly inferior to
that of a custom hardware solution, meaning designers need
to spend more time implementing hardware to meet their
design constraints. As a result, we are motivated to improve
soft processors to reduce FPGA design time.

Recent advancements [3–5] has indeed expanded the
applicability of soft processors by improving them over
current commercial soft processors. In particular, recent
work has proposed extending soft processors with vector
processing capabilities [1, 2] as a means of scaling perfor-
mance for data-parallel workloads. Vector processing allows
a single instruction to command multiple datapaths called
vector lanes. On an FPGA the number of vector lanes can
be configured by the designer, allowing them to use more
FPGA resources to scale-up performance. However, the
impact of soft vector processors depends on their ability
to lure FPGA designers into software design by providing
good enough performance/area to reduce needed manual
hardware design. Thus, it is crucial to understand the
perfomance and area gap between soft vector processors and
custom hardware.

1.1. Measuring, Understanding, and Reducing the Gap

We measure the area and performance gap using several
data-parallel benchmarks (primarily from the EEMBC [6]
industry-standard embedded benchmark suites) of three plat-
forms executing: (i) “out-of-the-box” C on a scalar soft
processor; (ii) hand-vectorized-assembly on many config-
urations of the soft vector processor called VESPA (Vector
Extended Soft Processor Architecture) [1]; and (iii) custom
hardware hand-designed in Verilog. Our goal in this work
is to use this measurement to quantify the competitiveness
of recent soft vector processors and further improve them
by leveraging our insights into the causes of the perfor-
mance/area gap as well as the circuit structures used to



implement the benchmarks in hardware. Specifically we
identify the following key advantages of custom hardware
over VESPA, and we improve VESPA reducing the impact
of each advantage.

Loop Overhead Loop control in custom hardware is
generally implemented using a finite state machine (FSM)
that executes in parallel with the loop computation, while in
VESPA the control datapath must complete an instruction
before the vector lanes can issue the following instruction,
and vice versa. We reduce this advantage and improve
VESPA by decoupling the control datapath from the vector
lanes and exploiting instruction-level parallelism.

Data Delivery High performance custom hardware can
often achieve near perfect delivery of data to functional
units with no cycles wasted. In contrast, for soft processors
including VESPA, data flows from memory through caches
to registers and eventually to functional units. We improve
data delivery in VESPA in two ways: (i) by tuning cache
design, and (ii) by supporting prefetching.

Exact Resource Usage A custom hardware implemen-
tation contains exactly the resources required to support
the application: functional units support only the required
operations, and datapath bit-widths exactly match those
required. In contrast, soft processors such as VESPA are
general-purpose and hence support a full instruction set
(ISA) and the corresponding maximum bit-widths. We im-
prove VESPA via support for subsetting the instruction set
and reducing datapath bit-widths to match the application.

In this work we demonstrate that these improvements
when combined provide 3x improved performance over the
original VESPA and significantly broaden its design space.
We also show that the performance gap between a scalar
soft processor and custom hardware is 432x, and that our
fastest VESPA implementation reduces this gap to 17x,
while providing a performance-per-unit-area that is up to 3x
that of the scalar processor. While the remaining gap is still
large, these improvements allow soft vector processors to
better compete with custom hardware, allowing designers
to more often implement a software-programmable solution
rather than having to design custom hardware.

1.2. Related Work

The most closely related work is by Yu et. al. [2], who
demonstrate the potential for vector processing as a simple-
to-use and scalable accelerator for soft processors, po-
tentially scaling better than Altera’s C2H [5] behavioral
synthesis tool for three benchmarks. However, that work
models a vector processor optimistically including using an
on-chip one-cycle (latency) memory system. We compare a
real vector processor to manual hardware design.

Hardt and Camposano [7] compare hardware circuits
synthesized to 2µ CMOS to software on a SPARC processor
with cycle performance estimated from static code analy-

Scalar
MIPS

Vector
Coproc

Lane 1
Lane 2

Lane L
…

Memory
Crossbar

Dcache

…

Icache

Prefetch

Arbiter

DDR

Fig. 1. VESPA processor block diagram.

sis. They find that hardware outperforms the processor by
factors ranging between 24x and 44x for scalar workloads.
Our work performs a similar comparison but between FPGA
hardware and soft vector processors, while including the
effects of clock frequency and latent memory. More recent
work [8] has compared FPGAs to hard microprocessors but
do not compare against soft vector processors.

1.3. Contributions

In this paper we make the following contributions: (i)
using an FPGA platform with DDR memory we quantify
and analyze the area/performance gaps for industry-standard
benchmarks between a scalar soft processor, a parame-
terized vector soft processor, and hand-designed hardware
implementations; (ii) we improve VESPA by targetting key
advantages of hardware implementations—specifically by
reducing loop overhead, tuning cache design, supporting
data prefetching, and eliminating unused hardware; (iii) we
show that our improved VESPA provides a powerful design
space, spanning 5x in area and 11x in performance, with
the fastest VESPA reducing the 432x scalar soft processor
performance gap to 17x while improving performance per
area by up to 3x.

2. VESPA

In our previous work on VESPA (Vector Extended Soft
Processor Architecture) we implemented a parameterized
vector processor in Verilog and explored its potential for
scalability and customization. The following summarizes
the VESPA architecture and parameters (old and new),
further details can be found in [1].

Figure 1 shows a block diagram of the VESPA processor
that consists of a scalar MIPS-based processor automatically
generated using the SPREE system [3], coupled with a
parameterized vector coprocessor based on the VIRAM [9]
vector instruction set. The scalar SPREE processor is a 3-
stage pipeline with full forwarding and a 1-bit branch history



Table 1. Configurable parameters for VESPA.

Parameter Symbol Values

Vector Lanes L 1,2,4,8,16,. . .
Vector Lane Bit-Width W 1,2,3,4,. . . , 32
Maximum Vector Length MVL 2,4,8,16,. . .
Memory Crossbar Lanes M 1,2,4,8,. . . L
Each Vector Instruction - on/off
DCache Depth (KB) DD 4KB,8KB,. . .
DCache Line Size (B) DW 16,32,64,. . .
DCache Miss Prefetch DPK 1,2,3,. . .
Vector Miss Prefetch DPV 1,2,3,. . .

table. The parameters of the VESPA system are listed
in Table 1. The vector coprocessor consists of L parallel
vector lanes where each lane can perform operations on a
single element in a pipelined fashion. The width W of each
vector lane datapath is 32 bits by default, but can be reduced
for applications that require less than the full 32 bit-width.
MVL determines the maximum vector length supported in
hardware and is set to 64 for this study.

The scalar processor and vector coprocessor share a
single instruction stream fed by an instruction cache. The
scalar processor and vector coprocessor are both in-order
pipelines, but can execute out-of-order with respect to each
other except for memory operations which are serialized
to maintain sequential consistency. Both share a direct-
mapped data cache with parameterized depth DD and cache
line size DW. A crossbar routes each byte in a cache line
to/from M of the L vector lanes in a given cycle. A full
crossbar (M=L) can significantly reduce the clock frequency
of the design when L is large; in such cases M can be
reduced to restore the clock rate and save area, but more
cycles will be spent moving data between the cache lines
and vector lanes. The data cache is equipped with a
hardware prefetcher configured with parameters DPK and
DPV described in a later section.

Beyond our previous work, we compare the VESPA
configurations to hardware for the first time, we added
configurable caches and data prefetching, we explore the
complete design space with our new robust design rather
than individually for each parameter, and finally we make
other architectural improvements (see Section 5.2).

3. MEASUREMENT METHODOLOGY

Our goal is to measure the area/performance gap between
scalar soft processors, soft vector processors, and hardware,
as well as to investigate techniques to reduce the gap. In this
section we describe the components of our infrastructure
necessary to execute, verify, and evaluate the FPGA designs.
We describe our hardware platform, verification process,

CAD tool measurement methodology, benchmarks, and
compiler. We also discuss how hardware implementations
of our benchmarks were created.

Soft Processor Platform We use the Transmogrifier 4
(TM4) [10] to host the complete soft processor systems.
The platform has four Altera Stratix EP1S80F1508C6 de-
vices each with access to two 1GB PC3200 CL3 DDR
SDRAM DIMMs clocked at 133 MHz (266 MHz DDR).
We synthesize our processor systems onto one of the four
Stratix I FPGAs connected to one of the DIMMs and clock
the processor at 50 MHz. All instances of VESPA are
fully tested in hardware using the built-in checksum values
encoded into each benchmark. Debugging is guided by
comparing traces of all writes to the scalar and vector
register files. Note that because the Stratix I FPGAs on the
TM4 are dated, we use this platform only for measuring
benchmark cycle counts. For area and clock frequency
measurements we use the CAD flow described below to
target a faster Stratix III FPGA (which was unavailable to
us) and achieves a clock speed of 130 MHz. While this faster
clock speed would increase the memory latency observed by
the processor, we believe that this would not significantly
impact our results: the memory latency in our current system
is already exaggerated by the fact that our DDR controller
is hand-made and suffers many inefficiencies, including the
use of a closed-page policy.

FPGA CAD Tools A key benefit of FPGA-based systems
research is that we can obtain high quality measurements,
including the area and clock frequency measurements pro-
vided by FPGA CAD tools. We use Altera’s Quartus II
8.0 CAD software with register retiming and duplication
enabled and with aggressive timing constraints. Through
experimentation we found that these settings provided the
best area, delay, and runtime trade-off. We perform eight
such runs for each hardware design to average-out the non-
determinism in the CAD algorithms. We approximate the
relative silicon area of each Stratix III tile by adjusting
the values supplied to us by Altera [11] for the Stratix
II. We report the silicon area consumed by a design in
units of equivalent ALMs—the silicon area of a single
ALM (Adaptive Logic Module—the basic programmable
logic unit in the Stratix III) including its routing. For soft
processors the areas we report include everything except the
memory controller and host communication hardware.

Benchmarks The six benchmarks that we measure are
listed in Table 2: five are from the industry-standard EEMBC
collection [6], and one (IMGBLEND) was hand-made. All
except IP CHECKSUM were hand-vectorized and provided
by Kozyrakis and the Berkeley VIRAM project [9]. For the
top four benchmarks we execute the largest dataset with the
EEMBC test harness uncompromised. We also manually
extracted and vectorized the IP CHECKSUM kernel from the



Table 2. Benchmark applications.
EEMBC EEMBC Input Output Largest Vector % VIRAM

Benchmark Description Source Suite Dataset# size (B) size (B) Element ISA Used

AUTCOR auto correlation EEMBC/VIRAM Telecom 2 1024 64 32 bits 9.6%
CONVEN convolution encoder EEMBC/VIRAM Telecom 1 517 1024 1 bit 5.9%

RGBCMYK rgb filter EEMBC/VIRAM Digital Ent. 5 1628973 2171964 8 bits 5.9%
RGBYIQ rgb filter EEMBC/VIRAM Digital Ent. 6 1156800 1156800 16 bits 8.1%

IP CHECKSUM checksum EEMBC Networking - 40960 40 32 bits 8.1%
IMGBLEND combine two images VIRAM - - 153600 76800 16 bits 7.4%

Networking suite of EEMBC, and execute it on 10 4KB
input packets. Note that cycle counts are collected from a
complete execution on our hardware platform as described
above, and the vectorized code is never modified to support
any specific vector configuration.

Compilation Framework Benchmarks are built using a
MIPS port of GNU gcc 4.2.0 with the -O3 optimization
level. Initial experiments with this version of gcc’s auto-
vectorization capability showed that it failed to vectorize key
loops in our benchmarks, preventing us from automatically
generating vectorized code. Instead we ported the GNU
assembler to support VIRAM vector instructions allowing
us to manually vectorize in assembly.

Area-Delay Product A system designer may care more
about area than performance, or vice-versa, depending on
the constraints of the design at hand. However, it is impor-
tant to have an understanding of the overall performance-
per-area of candidate designs motivating us to measure area-
delay product as is traditionally done for digital circuits.
We use the aforementioned equivalent ALMs for area and
the wall-clock-time of benchmark execution as the delay
(combining the cycle counts reported by real hardware with
the maximum clock frequency reported by CAD tools).

3.1. Designing Custom Hardware Circuits

We model the performance of our hardware circuits opti-
mistically while using area and clock frequencies from a real
FPGA hardware design, achieved by manually converting
each benchmark into a Verilog hardware circuit. While
there are infinite variations of such hardware designs, we
attempted to implement designs that maximize performance
while simplifying this process with the following assump-
tions: All input/output data starts/ends in memory and
is transfered uninterrupted at the full rate of our DRAM
device. We also idealize the control logic assuming it can
make decisions in a single clock and accounts for negligible
area. Finally we don’t allow any value or value-range
specific optimization in either the software or hardware.
To summarize, we build only the datapath of the circuit
under optimistic assumptions about the control logic and
transfer of data. The resulting hardware circuits are tested in

Table 3. Hardware circuit area and performance.
Clock

Benchmark ALMs DSPs M9Ks (MHz) Cycles

AUTCOR 592 32 1 323 1057
CONVEN 46 0 0 476 226

RGBCMYK 527 0 0 447 237784
RGBYIQ 706 108 0 274 144741

IP CHECKSUM 158 0 0 457 2567
IMGBLEND 302 32 0 443 14414

AUTCOR-unroll 3699 256 0 244 143
CONVEN-unroll 67 0 0 476 98

simulation using test vectors, and area and clock frequency
are measured using the previously-described CAD flow. For
each hardware circuit we compute the total number of cycles
for execution as the sum of the pipeline latency plus cycles
spent transferring data since the circuit computation is done
in parallel with this transfer time. Overall we believe the
hardware circuits are optimistic and certainly overcome the
manual vectorization advantage in software.

As a result of forbidding value and value-range op-
timizations, we do not perform loop unrolling of non-
vectorized loops, nor the equivalent in hardware. For
example, benchmarks such as AUTCOR operate repeatedly
on the same data set with the actual computation dependent
on a parameter input which varies from 0 to 15. In hard-
ware we can unroll that loop performing all 16 operations
simultaneously. The benefit of unrolling a loop would be
relatively small for VESPA which is an in-order single-
issue processor, while hardware could readily exploit the
exposed instruction level parallelism (ILP). The last two
rows in Table 3 show the impact of unrolling in hardware
for AUTCOR and CONVEN—the only two benchmarks where
unrolling is useful in hardware. The unrolled circuits are not
used in our results, but the performance impact can be large:
in the case of AUTCOR execution completes in 7.4x fewer
cycles, although clock frequency is reduced and circuit area
increases substantially.

4. COMPARING TO HARDWARE

In this section we compare the area and performance of the
following three implementations of our benchmarks created



0
20
40
60
80

100
120
140
160
180
200

0 20 40 60 80H
W

 S
p

ee
d

 A
d

va
n

ta
g

e

HW Area Advantage

1 Lane

2 Lanes

4 Lanes

8 Lanes

16 Lanes

Fig. 2. Area-performance design space of VESPA proces-
sors normalized against hardware.

via different design entry methods: (i) out-of-the-box C
code executed on the MIPS-based SPREE scalar processor;
(ii) hand-vectorized assembly language executed on many
variations of our VESPA soft vector processor; and (iii)
hardware designed in Verilog at the register transfer level
as described in Section 3.1.

Table 4 shows the area advantage and speedup of the
hardware implementation versus the scalar SPREE proces-
sor in the first row and the slowest, the least area-delay,
and the fastest configurations of VESPA in the remaining
three rows. The limited number of multipliers in the Stratix
1S80 on the TM4 prevent us from evaluating soft vector
processors with more than 16 lanes, but we expect further
performance scaling on larger Stratix III based hardware
platforms [1]. Focusing on the first row of the table, we
observe that the scalar processor executing out-of-the-box
C code is on average 6.7x larger than the hardware circuits
and performs 432x slower. Not exploiting the available data
parallelism is the primary cause of the under-performance.
The area of the scalar processor is larger than each of the
hardware implementations, suggesting that despite the time-
multiplexed resources, the general purpose overheads cause
the processor to be still larger than the spatially executed
hardware. In an extreme case, CONVEN with its 1-bit
datapath is 64x smaller than the scalar processor.

With respect to the hardware circuits VESPA is 13x to
64x larger and 192x to 17x slower. A more quantitative
analysis follows in a subsequent section but it is clear
that vector processing extensions to soft processors are
motivated since the 432x scalar processor performance gap
can be reduced down to 17x. Such a massive performance
boost could help convert many components of an FPGA
system into software executing on a soft vector processor
rather than laboriously-designed custom hardware.

Figure 2 shows the area-performance design space of
many near-pareto-optimal VESPA processors normalized
against hardware. We observe that the VESPA design space
is quite large, spanning 5x in area and 11x in performance
with the 16 lane VESPAs providing the best performance
at the cost of additional area. The figure identifies the
number of lanes in each configuration which is the most

dominant parameter in determining area and performance,
but also being varied is the memory crossbar size M, the
data cache depth DD, the data cache line size DW, and the
data prefetcher DPV. These parameters will be discussed
in a subsequent section, here they are used to show the
fine-grained tradeoffs within VESPA. The tradeoffs are
significant because VESPA could be a potentially large
component in an FPGA system.

4.1. VESPA vs Scalar

Looking at the first two rows of Table 4, we can compare
the scalar processor with a VESPA processor that has only
a single lane and identical cache organization. The VESPA
processors are at least 2x larger than the scalar since they are
comprised of both a scalar processor and vector coprocessor.
The hand-vectorized assembly executed on VESPA gains
more than 2x average performance over the scalar out-of-
the-box C code on scalar SPREE, even though there is
no data parallel execution on the single-lane version of
VESPA. This is partly due to a number of advantages in
VESPA: (a) More efficient pipeline execution with few
dependencies. (b) The large vector register file can store
and manipulate arrays without having to access the cache
or memory. (c) Amortization of loop control instructions.
(d) Direct support for fixed-point operations, predication,
and built-in min/max/absolute instructions in the VIRAM
instruction set. (e) Simultaneous execution in the scalar
processor and vector co-processor. (f) Manual vectorization
in assembly versus the C-compiled scalar output from GCC.

Determining the exact contribution of each advantage
is beyond the scope of this work, we instead perform
some qualitative analysis. Closer inspection of CONVEN

revealed the cause of the 9x performance boost seen on the
single lane VESPA to be the repeated operations performed
on a single array. In VESPA the large vector register
file can store large array chunks and manipulate them
without storing and re-reading them from cache as the
scalar processor must. The other benchmarks are less
impacted because of their streaming and low-reuse nature.
The loop overhead amortization gained by performing 64
loop iterations (MVL=64) at once benefits all benchmarks.
The more powerful VIRAM instruction set with fixed-point
support further reduced the loop bodies of AUTCOR and
RGBCMYK. Finally, the scalar disassembled GCC output
did not appear significantly less efficient than the vectorized
assembly for any of the benchmarks, leading us to infer that
manual assembly optimization was not a disproportionally
significant advantage for VESPA.

4.2. VESPA vs HW

By focussing only on loops we can decompose the per-
formance difference between VESPA and hardware into



Table 4. Area and performance advantage for hardware over various processors
Processor Clock Area (Aprocessor/Ahw) Wall Clock Time (Tprocessor/Thw)

L M DD DW DPV AUTCOR CONVEN RGB- RGB- IP CH- IMG- GEO AUTCOR CONVEN RGB- RGB- IP CH- IMG- GEO
(KB) (B) (MHz) CMYK YIQ ECKSUM BLEND MEAN CMYK YIQ ECKSUM BLEND MEAN

Scalar 4 16 0 159 2.7 63.8 5.6 1.3 18.6 3.9 6.7 440.8 1899.6 267.7 549.1 163.9 322.5 432.1

1 1 4 16 0 141 5.3 125.3 10.9 2.6 36.5 7.7 13.2 224.8 211.7 204.9 205.9 114.3 214.7 191.5
8 8 16 64 8VL 139 14.6 344.2 30.0 7.1 100.2 21.1 36.3 32.8 30.1 27.2 25.7 12.4 25.8 24.6
16 16 16 64 8VL 122 25.9 610.0 53.2 12.7 177.6 37.4 64.3 23.8 24.4 18.5 16.4 8.8 16.0 17.1

Table 5. Hardware advantages over fastest VESPA.
Iteration Cycles per

Benchmark Clock Parallelism Iteration

autcor 2.6x 1x 9.1x
conven 3.9x 1x 6.1x

rgbcmyk 3.7x 0.375x 13.8x
rgbyiq 2.2x 0.375x 19.0x

ip checksum 3.7x 0.5x 4.8x
imgblend 3.6x 1x 4.4x

GEOMEAN 3.2x 0.64x 8.2x

the following categories: (i) the clock frequency; (ii) the
number of loop iterations executed concurrently called it-
eration level parallelism; and (iii) the number of cycles
required to execute a single loop iteration. For each of
these components, the hardware advantage over the fastest
VESPA configuration (see last row of Table 4) is shown in
Table 5. The second column shows the hardware circuits
have clock speeds between 2.2x and 4x faster than the best
performing VESPA. This 3.2x average clock advantage can
be improved through further circuit design effort in VESPA.

The third column of Table 5 shows that the iteration level
parallelism exploited by the hardware is less than or equal to
that exploited by VESPA which is 16 for all benchmarks
since there are 16 lanes. But in the hardware circuits
we matched the parallelism to the memory bandwidth,
for example, the IP CHECKSUM benchmark operates on a
stream of 16-bit elements meaning in a given DRAM access
only 8 elements can be retrieved from memory. The circuit
is hence designed to have only 8-way parallelism while
VESPA wastes cycles gathering data for its 16 lanes.

The last column shows the speedup of a single it-
eration in hardware over VESPA and is calculated from
the measured overall speedups in the last row of Table 4
divided by the aformentioned clock and iteration parallelism
advantages. This component represents the inefficiencies
inherent in our VESPA design as well as in any processor-
style architecture. VESPA currently can sustain only one
vector instruction in flight while known techniques such as
vector chaining can be used to overlap execution of multiple
instructions through a multi-ported vector register file and
multiple functional units. The hardware circuit has the
benefit of creating as many functional units as necessary
and can feed them data without the scaling limitations of
a centralized register file.

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80

H
W

 A
re

a-
D

el
ay

 
A

d
va

n
ta

g
e

HW Area Advantage

Scalar

1 Lane

2 Lanes

4 Lanes

8 Lanes

16 Lanes

Fig. 3. Area-delay product versus area of VESPA processors
normalized against hardware.

Further improvements to VESPA’s cycles per iteration
are motivated since it remains the largest component and
will further expose fundamental limitations in processor
architectures. VESPA’s vector extensions reduced the itera-
tion parallelism hardware advantage from 10.3x for a scalar
soft processor to 0.64x, proving that VESPA has greatly
increased iteration parallelism leaving cycles per iteration
as a key target for further reducing the performance gap.

4.3. Area-Delay Product Gap

Figure 3 shows the area-delay of the scalar and VESPA
processors relative to that of hardware, averaged across our
benchmark set, and plotted against area. The figure demon-
strates that VESPA can provide up to a 3.25x decrease
in area-delay versus the scalar SPREE processor. Note
that VESPA includes the same scalar SPREE processor,
thus, adding the vector extensions significantly increase
the performance-per-area of this processor. The VESPA
processor with the least area-delay product is still 892x
worse than the hardware but is surprisingly not the VESPA
design with the highest performance, instead it is the 8-lane,
full memory crossbar vector processor with a 16KB cache,
64B line size, and data prefetching listed in the second last
row of Table 4. While this area-delay gap is enormous, a
significant part of it is due to area which in many cases may
be well worth the general-purpose computing provided by
the processor. Specifically, the processor can be used to
time multiplex different computations versus instantiating a
circuit for each computation.



0

1

2

3

4

5

6

7

C
y
c
le
 S
p
e
e
d
u
p

16B Dcache line

64B Dcache line

64B+Decoupled

64B+Decpl+Prefetching

Fig. 4. Performance gained with improved VESPA architec-
ture.

5. REDUCING THE PERFORMANCE GAP

In this section we examine the performance advantages
that hardware circuits have over VESPA and describe the
architectural modifications that we use to mitigate the effects
of those advantages: we examine different cache designs,
the decoupling of certain pipelines within VESPA, and data
prefetching These techniques directly tackled the cycles per
iteration highlighted in our earlier results which included
these improvements. Figure 4 shows the accumulated per-
formance gains from these three improvements measured in
cycle speedup since clock frequency did not change signif-
icantly. On average the cache, decoupling, and prefetching
can be combined to increase performance by 3x over the
previous VESPA, causing its 50x performance gap with
hardware to be reduced to the 17x reported in Table 5.

5.1. Cache Design

Hardware circuits typically benefit from near-perfect de-
livery of data from the DRAM to the pipelined functional
units, while for most processors data passes through levels
of caches, then the register file, and finally to the functional
units. Although we maintained this framework, we accomo-
dated VESPA by tuning the cache, specifically the cache line
so that ideally all vector lanes can be satisfied with a single
cache line request. The data cache line was parameterized
and expanded from 16 bytes to 64 bytes, and accompanied
with a corresponding growth in capacity to keep the FPGA
block RAMs fully utilized. Our experiments show that this
improved cache design results in 2x average performance
gain as seen in Figure 4, due almost entirely to the expanded
cache line rather than the capacity [12]. This performance
gain comes with a 2x growth in VESPA area due primarily
to the larger vector memory crossbar seen in Figure 1 which
grows with the cache line size. The crossbar is necessary
even without a cache, and since the cache storage is less
than 6% of the area and is shared with the scalar processor,
we are not motivated to investigate a no-cache solution.

5.2. Zero Overhead Loops

When comparing the hardware circuits to the vectorized
loops, one glaring difference is the absence of the many
control instructions required to manage a loop: in hardware
a finite state machine (FSM) manages the loop in parallel
with the computation. We modified VESPA by decoupling
the three pipelines allowing vector, vector control, and
scalar instructions to execute simultaneously and out-of-
order with respect to each other. As long as the number of
cycles needed to compute the vector operations is greater
than the cycles needed for the vector control and scalar
operations, the loop will have no overhead. While our
previous work already decoupled the scalar pipeline, in this
work we decouple the execution of the vector and vector
control pipelines. The impact on performance for a 16-lane
VESPA with 16KB data cache and 64B line size is shown
in Figure 4. The technique improves performance by up to
15% and 7% on average, while the area cost is negligible.

5.3. Data Prefetching

Another advantage of custom hardware is that it can overlap
computation with memory accesses. We can do the same
in VESPA by supporting hardware data prefetching where
a cache miss translates into a request for the missing cache
line as well as additional cache lines that are predicted to
soon be accessed. Due to the predictable memory access
patterns in our benchmarks simple sequential prefetching
that loads the next DPK cache lines is effective, reducing
the time spent servicing misses to just 4% of execution
time [12]. Using the DPV parameter instructs VESPA
to prefetch only for vector memory instructions with low
strides and to prefetch either a constant or a multiple of the
current vector length elements into the cache. All of these
methods yield very similar results.

Figure 4 shows the 42% performance boost of our best
overall prefetching configuration which loads 8 times the
current vector length elements into the cache. By using
the vector length to determine the number of cache lines to
prefetch, we guarantee no more than one miss per vector
instruction regardless of the length of the vector. The cost
of the prefetcher is less than 2% of the area due primarily to
buffering dirty cache lines evicted by prefetched lines.

6. REDUCING THE AREA GAP

In hardware, we implement only the functional units re-
quired by the application and match them to the bit-width
of the data operands. VESPA is equipped with param-
eters that allow it to perform similar application-specific
customizations. The vector lane width W can be used to
reduce the datapath for benchmarks which do not require 32-
bit processing. For example, CONVEN requires only a 1-bit



0

50

100

150

200

0 10 20 30 40 50 60 70H
W

 S
p

ee
d

 A
d

va
n

ta
g

e

HW Area Advantage

Full

Subsetted

Subsetted+Width Reduced

Fig. 5. Effect of instruction set subsetting and width
reduction on the area and speed gap of VESPA processors
versus hardware.

datapath (see Table 2) and its implementation in hardware
gains a large area advantage over VESPA because of it.
Using the W parameter we can reduce the lane width to 1-
bit and reduce VESPA’s area by half—vector state, control
logic, the 32-bit address space, and the scalar processor
limit further reduction. Note our previous work [1] limited
the lane width to multiples of 8. VESPA also supports the
individual disabling of each vector instruction which auto-
matically eliminates hardware support for that instruction.
This feature allows us to subset the instruction set to that
used by the application shown in Table 2.

Figure 5 shows the effect of instruction set subsetting
as well as the combined effect of subsetting and width
reduction on the set of pareto optimal points in our VESPA
design space. We see that compared to the full VESPA
processor the area is significantly reduced, in the best case
by 45%, and some performance is even gained from the
higher clock speeds which reach as high as 153 MHz on
the smaller customized VESPA processors. The points
move closer to the origin as VESPA sheds general purpose
overheads and begins to resemble a dedicated hardware part.
It is interesting to note that after trimming this area, the 16
lane VESPA with full memory crossbar, prefetching, and
64B line size has the smallest area-delay product which is
561x worse than hardware; a substantial improvement over
the 892x for the full-size 8 lane VESPA discussed earlier,
and 5.15x better than the scalar soft processor.

7. CONCLUSIONS

Our comparisons have demonstrated that C code executing
on a scalar soft processor performs on average 432x slower
and is 6.7x larger in area than custom FPGA hardware. The
VESPA soft vector processor now provides a large design
space of vector processors that, relative to hardware, ranges
from 192x slower and 13x larger to 17x slower and 64x
larger. This large space allows a designer to choose the
area/performance of a system component without laborious
hardware design, and can drastically reduce the 432x scalar
soft processor performance gap to 17x for data parallel
workloads. In addition, VESPA is shown to have 3x better

area-delay product than our scalar soft processor. Finally,
by eliminating hardware in VESPA which is not used by the
application, we can reduce the area of VESPA by up to 45%,
resulting in a 5.15x reduced area-delay product than that of
a scalar soft processor. In summary, the quantified gap and
improved soft vector processor can significantly reduce the
need for embedded designers to resort to more challenging
manual hardware design.

8. REFERENCES

[1] P. Yiannacouras, J. G. Steffan, and J. Rose, “Vespa: Portable,
scalable, and flexible fpga-based vector processors,” in
CASES’08: International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems. ACM, 2008.

[2] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing
as a soft-core cpu accelerator,” in Symposium on Field
programmable gate arrays. New York, NY, USA: ACM,
2008, pp. 222–232.

[3] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-
specific customization of soft processor microarchitecture,”
in FPGA’06: Proceedings of the International Symposium
on Field Programmable Gate Arrays. New York, NY, USA:
ACM Press, 2006, pp. 201–210.

[4] R. Dimond, O. Mencer, and W. Luk, “ CUSTARD - A
Customisable Threaded FPGA Soft Processor and Tools ,”
in International Conference on Field Programmable Logic
(FPL), August 2005.

[5] D. Lau, O. Pritchard, P. Molson, and C. Altera Santa Cruz,
“Automated Generation of Hardware Accelerators with Di-
rect Memory Access from ANSI/ISO Standard C Functions,”
Field-Programmable Custom Computing Machines, pp. 45–
56, 2006.

[6] “The Embedded Microprocessor Benchmark Consortium,”
http://www.eembc.org, EEMBC.

[7] W. Hardt and R. Camposano, “Trade-offs in hw/sw code-
sign,” in Workshop on Hardware/Software Codesign. ACM,
1994.

[8] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative
analysis of the speedup factors of fpgas over processors,” in
Symposium on Field programmable gate arrays. New York,
NY, USA: ACM, 2004, pp. 162–170.

[9] C. Kozyrakis and D. Patterson, “Scalable, vector processors
for embedded systems,” Micro, IEEE, vol. 23, no. 6, pp. 36–
45, 2003.

[10] J. Fender, J. Rose, and D. R. Galloway, “The transmogrifier-
4: An fpga-based hardware development system with multi-
gigabyte memory capacity and high host and memory
bandwidth.” in IEEE International Conference on Field
Programmable Technology, 2005, pp. 301–302.

[11] R. Cliff, “Altera Corporation,” Private Comm, 2005.

[12] P. Yiannacouras, J. G. Steffan, and J. Rose, “Improving
memory systems for soft vector processors,” in WoSPS’08:
Workshop on Soft Processor Systems, 2008.


