
The Microarchitecture of FPGA-Based Soft Processors

by

Peter Yiannacouras

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2005 by Peter Yiannacouras



Abstract

The Microarchitecture of FPGA-Based Soft Processors

Peter Yiannacouras

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2005

As more embedded systems are built using FPGA platforms, there is an increasing need to

support processors in FPGAs. One option is the soft processor, a processor implemented in the

reconfigurable logic of the FPGA. Commercial soft processors have been widely deployed, and

hence we are motivated to understand their microarchitecture. We must re-evaluate microar-

chitecture in the soft processor context because an FPGA platform is significantly different

than an ASIC platform. This dissertation presents an infrastructure for rapidly generating

RTL models of soft processors, as well as a methodology for measuring their area, performance,

and power. Using the automatically-generated soft processors we explore many interesting mi-

croarchitectural axes in the trade-off space. We also compare our designs to Altera’s Nios II

commercial soft processors and find that our automatically generated designs span the design

space while remaining very competitive.

ii



Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Basic Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The MIPS-I ISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Application-Specific Instruction-set Processors (ASIPs) . . . . . . . . . . . . . . . 9

2.4 FPGA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Industrial Soft Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Architectural Exploration Environments . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Parameterized Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.2 ADL-based Architecture Exploration Environments . . . . . . . . . . . . 16

2.7 Closely Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The SPREE System 21

3.1 Input: The Architecture Description . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Describing the Instruction Set Architecture . . . . . . . . . . . . . . . . . 23

iii



3.1.2 Describing the Datapath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The SPREE Component Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Selecting and Interchanging Components . . . . . . . . . . . . . . . . . . 27

3.2.2 Creating and Describing Datapath Components . . . . . . . . . . . . . . . 28

3.3 Generating a Soft Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Datapath Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Datapath Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Control Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Practical Issues in Component Abstraction . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Combinational Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 False Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Multi-cycle Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Experimental Framework 43

4.1 Processor Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 FPGA Device and CAD Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Determination of Confidence Across Seeds . . . . . . . . . . . . . . . . . . 45

4.3 Metrics for Measuring Soft Processors . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Comparing with Altera Nios II Variations . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Benchmark Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 MiBench Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.2 XiRisc Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.3 RATES Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.4 Freescale Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 ISA Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Exploring Soft Processor Microarchitecture 55

5.1 Comparison with Nios II Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iv



5.2 The Impact of Hardware vs Software Multiplication . . . . . . . . . . . . . . . . 58

5.3 The Impact of Shifter Implementation . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 The Impact of Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.1 Branch Delay Slots in the 7-stage Pipeline . . . . . . . . . . . . . . . . . . 72

5.4.2 The Impact of Inter-Stage Forwarding Lines . . . . . . . . . . . . . . . . . 75

5.5 Register Insertion for Clock Speed Enhancement . . . . . . . . . . . . . . . . . . 77

5.6 Architectures that Minimize Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6.1 Fully Serialized ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6.2 Shared Shifting and Memory Alignment . . . . . . . . . . . . . . . . . . . 81

5.7 Instruction Set Subsetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.8.1 Dual Word-Size Data Memory . . . . . . . . . . . . . . . . . . . . . . . . 85

5.8.2 Arithmetic Unit Result Splitting . . . . . . . . . . . . . . . . . . . . . . . 86

5.8.3 Previous Stage Decode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8.4 Instruction-Independent Enable Signals . . . . . . . . . . . . . . . . . . . 89

5.9 Application Specificity of Architectural Conclusions . . . . . . . . . . . . . . . . 90

5.10 CAD Setting Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 Device Independence - Stratix vs Stratix II . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusions 97

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A SPREE System Details 100

A.1 ISA Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.2 Datapath Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2.1 2-stage Pipeline with Serial Shifter . . . . . . . . . . . . . . . . . . . . . . 108

A.2.2 3-stage Pipeline with Multiplier-based Shifter . . . . . . . . . . . . . . . . 109

A.2.3 5-stage Pipeline with LUT-based Shifter and Forwarding . . . . . . . . . 112

A.3 The Library Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

v



B Exploration Result Details 131

B.1 CAD Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B.2 Data from exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.2.1 Shifter Implementation, Multiply Support, and Pipeline Depth . . . . . . 133

B.2.2 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.2.3 Minimizing Area Processors . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.2.4 Subsetted Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2.5 Nios II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 141

vi



List of Tables

2.1 MIPS-I instructions supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Comparison of Nios II Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Comparison of ADL-based Architecture Exploration Environments . . . . . . . . 17

3.1 GENOPs used in SPREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Components in the SPREE Component Library . . . . . . . . . . . . . . . . . . . 28

3.3 Control generation for pipelined and unpipelined datapths contrasted. . . . . . . 34

4.1 Relative Areas of Stratix Blocks to LEs. . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Benchmark applications evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1 Data for hardware multiply support over different shifters and pipelines. . . . . . 133

B.2 Data for hardware multiply support over different shifters and pipelines (cont’d). 134

B.3 Data for software multiply support over different shifters and pipelines. . . . . . 135

B.4 Data for software multiply support over different shifters and pipelines (cont’d). . 136

B.5 Measurements of pipelines with forwarding. . . . . . . . . . . . . . . . . . . . . . 137

B.6 Measurements of processors which minimize area . . . . . . . . . . . . . . . . . . 138

B.7 ISA subsetting data on processors with full hardware multiply support. . . . . . 139

B.8 Area and performance of Nios II. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vii



List of Figures

2.1 The MIPS instruction format [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Stratix Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Nios II vs Nios Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Nios II ISA Instruction Word Format . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Overview of the SPREE system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 An overview of the SPREE RTL generator. . . . . . . . . . . . . . . . . . . . . . 23

3.3 The MIPS SUB instruction shown as a dependence graph of GENOPs. . . . . . . 25

3.4 The MIPS SUB instruction described using C++ code. . . . . . . . . . . . . . . 26

3.5 A datapath description shown as an interconnection of components. . . . . . . . 26

3.6 The Component Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Library entry format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Sample component description for a simplified ALU. . . . . . . . . . . . . . . . . 30

3.9 Different decode logic implementations used. . . . . . . . . . . . . . . . . . . . . 36

3.10 The pipeline stage model used by SPREE. . . . . . . . . . . . . . . . . . . . . . . 38

3.11 A combinational loop formed between two components. . . . . . . . . . . . . . . 40

3.12 A false path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.13 A multi-cycle path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 CAD flow overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Verification of Normal Distribution of Clock Frequency Measurements . . . . . . 46

4.3 Accuracy versus number of seeds for three processors. . . . . . . . . . . . . . . . 47

viii



5.1 Comparison of our generated designs vs the three Altera Nios II variations. . . . 56

5.2 Wall-clock-time vs area of processors with hardware multiplication support. . . . 60

5.3 Cycle count speedup of full hardware support for multiplication. . . . . . . . . . 60

5.4 Energy/instruction for hardware vs software multiplication support. . . . . . . . 61

5.5 A barrel shifter implemented using a multiplier . . . . . . . . . . . . . . . . . . . 62

5.6 Average wall-clock-time vs area for different pipeline depths. . . . . . . . . . . . 63

5.7 Energy per instruction across different pipelines. . . . . . . . . . . . . . . . . . . 64

5.8 Processor pipeline organizations studied. . . . . . . . . . . . . . . . . . . . . . . . 65

5.9 Area across different pipeline depths. . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.10 Performance across different pipeline depths. . . . . . . . . . . . . . . . . . . . . 68

5.11 Wall-clock-time versus area across different pipeline depths. . . . . . . . . . . . . 70

5.12 Alternative 4-stage pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.13 Energy per instruction for the different pipeline depths. . . . . . . . . . . . . . . 71

5.14 Energy per cycle for the different pipeline depths. . . . . . . . . . . . . . . . . . 72

5.15 Branch delay slot instruction separation. . . . . . . . . . . . . . . . . . . . . . . . 73

5.16 Average wall-clock-time versus area space for all pipelines. . . . . . . . . . . . . . 73

5.17 Clock frequency speedup after ignoring multiple delay slots. . . . . . . . . . . . . 75

5.18 Average wall-clock-time vs area for different forwarding lines. . . . . . . . . . . . 76

5.19 Energy per instruction for three pipelines with forwarding. . . . . . . . . . . . . . 77

5.20 The impact of RISE on a processor across the benchmark set . . . . . . . . . . . 78

5.21 Average wall-clock-time vs area space including outliers . . . . . . . . . . . . . . 80

5.22 ISA usage across benchmark set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.23 Area effect of subsetting on three architectures . . . . . . . . . . . . . . . . . . . 82

5.24 Clock Speed effect of subsetting on three architectures . . . . . . . . . . . . . . . 83

5.25 Impact of 8-bit store port on area and performance of different 2-stage pipelines. 85

5.26 Impact of result splitting on area and performance. . . . . . . . . . . . . . . . . . 86

5.27 Impact of previous stage decode on performance . . . . . . . . . . . . . . . . . . 87

5.28 Impact of instruction-independent enable signals on area and performance . . . . 89

5.29 Performance of all processors on each benchmark. . . . . . . . . . . . . . . . . . . 90

ix



5.30 Performance per unit area of all processors on each benchmark. . . . . . . . . . . 91

5.31 Effect of three different optimization focusses on area measurement. . . . . . . . 93

5.32 Effect of three different optimization focusses on clock frequency. . . . . . . . . . 94

5.33 Average wall-clock-time vs area for different pipeline depths on Stratix II. . . . . 95

A.1 Library entry format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Sample component description for a simplified ALU. . . . . . . . . . . . . . . . . 116

x



Chapter 1

Introduction

With the rapidly rising cost and time-to-market of designing state-of-the-art ASICs, an

increasing number of embedded systems are being built using Field-Programmable Gate

Array (FPGA) platforms. Such systems often contain one or more embedded micro-

processors which must also migrate to the FPGA platform to avoid the increased cost

and latency of a multi-chip design. FPGA vendors have addressed this issue with two

solutions: (i) incorporating one or more hard processors directly on the FPGA chip and

surrounding it with FPGA fabric (eg., Xilinx’s Virtex II Pro [61] and Altera’s Excal-

ibur [1]), and (ii) implementing soft processors which use the FPGA fabric itself (eg.,

Xilinx’s MicroBlaze [60] and Altera’s Nios [2]).

While the internal hard processors can be fast, small, and relatively cheap, they have

several drawbacks. First, the number of hard processors included in the FPGA device

may not match the number required by the application, leading to either too few or

wasted hard processors. Second, the performance requirements of each processor in the

application may not match those provided by the available FPGA-based hard processors.

Third, due to the fixed location of each FPGA-based hard processor, it can be difficult

to route between the processors and the custom logic. Finally, inclusion of one or more

hard processors specializes the FPGA chip, impacting the resulting yield and narrowing

the customer base for that product.

1
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While a soft processor cannot easily match the performance/area/power consump-

tion of a hard processor, soft processors do have several compelling advantages. Using

a generic FPGA chip, a designer can implement the exact number of soft processors

required by the application, and the FPGA CAD (computer-aided design) tools will

automatically place them within the design to ease routing. Since it is implemented

in configurable logic, a soft processor can be tuned by varying its implementation and

complexity to match the exact requirements of an application. Finally, since no spe-

cial hardware is required in the FPGA to support such processors, the FPGA remains

a generic part with a large customer base. While these benefits have resulted in wide

deployment of soft processors in FPGA-based embedded systems [41], the architecture

of soft processors has yet to be studied in depth.

The microarchitecture of hard processors has been studied by many researchers and

vendors for decades. However, the trade-offs for FPGA-based soft processors are signifi-

cantly different than those implemented in full or semi-custom VLSI design flows [37, 38]:

for example, on-chip memories are often faster than the clock speed of a soft processor’s

pipeline, and hard multipliers are area-efficient and fast compared to other functions

implemented in configurable logic [5]. Because of this, the body of knowledge created

by the decades of research into hard processors is not immediately transferable to soft

processors, motivating us to revisit the microarchitectural design space in an FPGA

context.

Furthermore, processor microarchitecture has traditionally been studied using high-

level functional simulators that estimate area and performance due to the difficulty in

varying designs at the logic layout level. In contrast, FPGA CAD tools allow us to quickly

and accurately measure the exact speed, area, and power of the final placed and routed

design for any soft processor. Hence we have the compelling opportunity to develop a

complete and accurate understanding of soft processor microarchitecture.

With this knowledge, future tools could automatically navigate the soft processor

design space and make intelligent application-specific architectural trade-offs based on



Chapter 1. Introduction 3

a full understanding of soft processor microarchitecture. One can envision a tool which

can take an application and a set of design constraints as inputs, and automatically

generate a customized soft processor which will satisfy those design constraints. The

application would also be compiled specifically for execution on this customized soft

processor. A crude version of this software system may be a design space iteration over

all architectures, however, with the knowledge generated by this research, the tool can

make some a priori decisions and at least reduce the design space.

1.1 Research Goals

The focus of this research is to develop an understanding of the soft processor microar-

chitectural design space. To this end, we set the following four goals:

1. To build a system for automatically-generating soft processors based on a simple

but powerful input description.

2. To develop a methodology for comparing soft processor architectures.

3. To populate and analyze the soft processor design space and draw architectural

conclusions.

4. To validate our results through comparison to an industrial soft processor family.

To satisfy the first goal, a system called Soft Processor Rapid Exploration Environ-

ment (SPREE) has been developed, which automatically generates an RTL (Register

Transfer Level) description of a soft processor from text-based ISA (Instruction Set Ar-

chitecture) and datapath descriptions. SPREE allows one to build a datapath at a high

level, abstracting away from details such as component interfaces, and functional unit

latencies. The user can assemble a datapath which can functionally support the given

ISA, and SPREE will then automatically convert the description to an RTL form and

generate the necessary control logic. FPGA CAD tools are then used to accurately mea-

sure area, clock frequency, and power of the resulting RTL designs, and RTL simulation
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is used to verify correctness and measure the cycle counts of several embedded bench-

mark applications on these designs. The second research goal addresses issues such as

accounting for area in FPGAs, choosing benchmarks, and selecting appropriate metrics

for measurement. The third goal requires extensive use of the SPREE system to gen-

erate interesting processor designs and evaluate different microarchitectural axes. The

fourth goal is required to achieve confidence in our architectural conclusions. By com-

paring the processors generated by SPREE to a family of industrial soft processors, the

Altera Nios II variations, one can evaluate whether the conclusions drawn by SPREE

suffer from prohibitive overheads. Through these measurements on several automatically

generated processor architectures, we expect to gain a confident, complete, and accurate

understanding of the soft processor architectural design space.

1.2 Organization

This dissertation is organized as follows. Chapter 2 gives a background in processor mi-

croarchitecture, and FPGA architecture, as well as summarizes the relevant research fields

and research projects. Chapter 3 describes our SPREE system, including its interface

and various problems left for manual intervention. Chapter 4 describes the experimen-

tal framework built around SPREE in order to facilitate our architectural exploration.

Chapter 5 compares our automatically generated designs against an industrial soft pro-

cessor for validation and then proceeds with an architectural exploration of various ar-

chitectural parameters. Chapter 6 concludes by summarizing the dissertation, naming

its contributions, and listing future extensions of this work.



Chapter 2

Background

In this chapter we discuss relevant background required to understand this work, and also

summarize the research field of processor architectural exploration. The organization is

as follows: Section 2.1 discusses computer architecture fundamentals and terminology;

Section 2.2 describes the MIPS-I ISA (Instruction Set Architecture) which is our se-

lected base ISA for our exploration; Section 2.3 discusses the field of Application Specific

Instruction-set Processors; Section 2.4 gives an overview of FPGA architecture and the

specific device employed in this work; Section 2.5 discusses soft processors and their pres-

ence in industry; Section 2.6 summarizes existing architectural exploration approaches;

finally Section 2.7 describes research which is more directly related to our work.

2.1 Basic Processor Architecture

The field of processor architecture has been explored extensively for more than 40 years.

Microprocessors have evolved from simple three to five stage pipelined cores to out-of-

order speculative machines with intricate caching, and branch prediction schemes. In our

work we do not consider such advanced topics in computer architecture, since the soft

processor market currently targets only embedded applications which have much simpler

architectures. Thus, we limit our exploration space to in-order issue pipelines with no

caching and no branch prediction.

5
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We now summarize basic processor architecture terminology, assuming the reader is

largely familiar with basic computer architecture principles. If not, the necessary informa-

tion on pipelines and computer architecture is available in Hennessy and Patterson [20].

A processor pipeline divides the execution of an instruction into steps and executes the

different steps of several instructions simultaneously. Pipelining allows one to increase

the clock frequency of the processor by shrinking the size of the steps, but pipelining

also gives rise to data hazards. Data hazards occur when an instruction performs an

operand fetch step before a preceding instruction has completed its operand write step

to the same operand. The effect of this, if not guarded, would result in the read step

reading an out-of-date operand value. This is referred to as a read-after-write (RAW)

hazard, and the number of simultaneous steps that can potentially cause a hazard is the

hazard window. To preserve program correctness, the architecture can delay the read

step until the write step has completed (known as interlocking or stalling), or send

the value to be written to the read step (known as forwarding). Both methods require

hazard detection logic to signal the delay or the forwarding.

Pipelining also causes branch penalties, the penalty associated with incorrectly

executing steps of instructions that should never have been fetched (which were fetched

because the step which decides whether a branch is taken occurs later in the pipeline). A

branch delay slot instruction refers to the instruction in the pipeline directly after a

branch. The idea is that the branch delay slot instruction can be executed regardless of

whether the branch is taken, allowing the processor to perform useful work as it computes

the result of the branch condition.

2.2 The MIPS-I ISA

The MIPS (Microprocessors without Interlocking Pipe Stages) ISA was developed by

John Hennessy et al. in 1981[24]. The goal of MIPS was to exploit the fact that large

portions of the chip were being unused as traditional architectures with shallow pipelines
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5−bit shift amount
6−bit function field 

26−bit branch target address
 

Figure 2.1: The MIPS instruction format [39]
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stalled to execute complex instructions. The premise was that the stalling was hindering

the pipeline from achieving faster performance. The MIPS ISA was designed ensuring all

instructions can be executed in a single cycle thereby eliminating the stalls; inherently

long instructions such as multiply and divide are handled specially in hardware as detailed

below. Since then MIPS has become a popular instruction set widely supported by

compilers and instruction simulators.

MIPS is a load-store RISC (Reduced Instruction Set Computer) instruction set with

three operands, and its instruction format is shown in Figure 2.1. The operands can

specify two locations in the register file for reading (rs and rt) and one for writing (usu-

ally rd, but can also be rt). There have been many revisions of MIPS since its inception

named MIPS-I, MIPS-II, MIPS-III, MIPS-IV, MIPS-32/64—the newer revisions were

augmented with more floating point support, trapping, and virtual memory instructions.

The following properties of the MIPS ISA should be understood before proceeding.

Branch Delay Slots: MIPS has one branch delay slot instruction accompanying

every branch or call instruction whether the branch is conditional or unconditional.

Branch delay slots help decrease the branch penalty (the number of instructions in-

correctly fetched before the processor could determine whether the branch was taken or

not). This is done by imposing the rule that the instruction after the branch is always

executed whether the branch is taken or not.

HI/LO registers: The MIPS multiply instruction produces a 64-bit result, which

is stored in two special 32-bit registers called HI and LO storing the upper and lower

halves of the 64-bit result respectively. These special registers are accessed via special

instructions which can copy the values to the register file.

Nop instruction: MIPS does not contain an explicit null operation, or nop instruc-

tion. However, the instruction whose opcode is zero corresponds to a shift-left-by-zero

instruction, which is effectively a null operation as it does not modify the processor state.

For this research MIPS-I was selected as our base ISA for two reasons. First, its wide

support in instruction simulators and compilers avoids the time investment in having
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Table 2.1: MIPS-I instructions supported

Type Instruction

Branch j, jal, jr, jalr, beq, bne, blez, bgtz, bltz, bgez

Memory lb, lh, lw, lbu, lhu, sb, sh, sw

ALU sll, srl, sra, sllv, srlv, srav, mfhi, mflo, mult,
multu, addi, addiu, slti, sltiu, andi, ori, xori,
lui, add, addu, sub, subu, and, or, xor, nor,
slt, sltu

to create one. Second, its simplicity makes it an attractive starting point. We require

a simple but robust ISA with clean instruction decoding to facilitate simpler control

generation. We believe MIPS in general meets this requirement, and is much better than

alternatives such as x86. MIPS-I is selected over the recent MIPS revisions since this

work does not explore floating-point, virtual memory, nor exceptions.

For further simplicity, a reduced version of the MIPS-I ISA is used in our exploration.

Table 2.1 lists the instruction supported in our exploration. We have removed all floating

point instructions, unaligned loads/stores (lwl, lwr, swl, swr), writes to the HI/LO

registers (mtlo, mthi), division (div, divu), and complex branches (bgezal, bltzal)—

the motivation for removing these instructions is discussed in Section 4.6.

2.3 Application-Specific Instruction-set Processors (ASIPs)

Although this work is generalized across a benchmark set, the future of this research

is to enable intelligent application-specific architectural decisions. The majority of ar-

chitectural research has been targetted toward general purpose computing—processors

designed to run several different applications. In another branch of computing, the em-

bedded processor domain, processors are usually designed to run only one application.

This property allows one to consider specializing the architecture to run that specific

application well (at the expense of running other applications poorly), making it an

Application Specific Instruction-set Processor (ASIP). The large costs of designing and

manufacturing an ASIP in the traditional ASIC flow may make this option unattractive
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for designers whose application may change. With FPGAs, it is simple to replace one

processor with another, as the device need only be reprogrammed. Thus, FPGAs pro-

vide the compelling advantage of allowing soft processors to become more aggressively

customized to its application.

In recent years, there has been a growing interest in the architecture of ASIPs [28]

and techniques for automatic customization such as compiler generation, and custom

instructions [13]. Most notably, Tensilica [49] has been providing their Xtensa config-

urable processor commercially since 1999. The Xtensa processor can be automatically

tuned by adding functional units, increasing parallelism using VLIW, and adding cus-

tom instructions (including vector operations and fused instructions). Much of this can

be done automatically using AutoTIE [16], an infrastructure that automatically detects

data structures in an application and creates register files for holding the data, and func-

tional units for operating on them. These and many other techniques exist for creating

application-specific processors. With the knowledge generated in this dissertation, one

can more accurately apply such techniques based on a complete and accurate under-

standing of the design space.

2.4 FPGA Architecture

The architecture of FPGAs has become increasingly complex and no longer consists of a

simple array of lookup tables (LUTs) and flip flops connected by programmable routing.

FPGAs now include on-chip RAM blocks, and multipliers. FPGA devices and their

architectures vary across device families and across vendors. In this work we focus on

Altera’s Stratix [5, 32] family and hence we discuss its architecture in more detail.

The Stratix FPGA is illustrated in Figure 2.2 and is comprised of a sea of logic

elements (LEs) grouped in blocks of ten referred to as a logic array block (LAB). Each

LE contains a 4-input lookup table and a flip flop. Stratix also contains fast multipliers,

known as DSP blocks, which can perform 32x32 bit multiplies at 150 MHz, which is as fast
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Figure 2.2: The Stratix Architecture

or faster than most soft processor designs—Altera’s industrial Nios II soft processor has

variations which run between 135MHz and 150 MHz. Finally, Stratix has three different

sizes of block RAMs: M512 (512 bits), M4K (4096 bits), and Mega-RAM (65536 bytes).

The speeds of each RAM are 320 MHz, 290 MHz, and 270 MHz respectively, making them

also quite fast compared to logic. All RAMs are synchronous, meaning that they have

registered inputs, and are dual ported allowing them to read/write to any two locations

simultaneously. The only exception is the M512 which supports reading on one port and

writing on the second port but can never do two reads or two writes simultaneously.

Moreover, the ports have individually configurable data widths. More details on the

architecture of Stratix can be found in the Stratix Device Handbook [5]. From the

statistics above, it is clear that FPGAs are a much different platform than traditional

hard processors, as highlighted by the difference in the relative speeds of logic versus

multipliers and memory.
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Figure 2.3: Nios II vs Nios Design Space

2.5 Industrial Soft Processors

In September 2000, Altera released the first commercial soft processor the Nios [2].

Shortly after this, Xilinx released their soft processor, the Microblaze [60]. Since then the

popularity of soft processors has grown immensely and now 16% of programmable logic

designs contain an embedded soft processor with 50% of those designs using Nios, and

40% using Microblaze [41], the remainder mostly comprised of freely available cores [42]

or a custom-made processor [59]. Both industrial soft processors have undergone several

revisions and Altera has recently released its second generation soft processor the Nios

II. The Nios II architecture varies greatly from the original Nios; intelligent architectural

decisions enabled Altera to create three Nios II cores which dominate all Nios versions.

We have measured the area and benchmarked each of the Nios II and Nios cores and

plotted the performance-area space shown in Figure 2.3—which agrees with figures re-

leased by Altera [3]. The figure shows that the three Nios II cores dominate the Nios

cores in both size and performance. We have selected Nios II as the industrial core to

validate our exploration against, and a description of its architecture follows.

Nios II has three mostly-unparameterized architectural variations: Nios II/e, a very

small unpipelined 6-CPI processor with a serial shifter and software multiplication sup-
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Table 2.2: Comparison of Nios II Variants

Nios II/e Nios II/s Nios II/f

Performance DMIPS/MHz 0.16 0.75 1.17
Max DMIPS 28 120 200
Clock (MHz) 150 135 135

Area (LEs) 600 1300 1800

Pipeline unpiped 5 6

Branch Prediction - static dynamic

ALU Multiplier - 3-cycle 1-cycle
Divider - - optional
Shifter serial 3-cycle 1-cycle

port; Nios II/s, a 5-stage pipeline with a multiplier-based barrel shifter, hardware multi-

plication, and an instruction cache; and Nios II/f, a large 6-stage pipeline with dynamic

branch prediction, instruction and data caches, and an optional hardware divider. The

three variations are contrasted in more detail in Table 2.2, which compares the three vari-

ations in terms of performance, area, and architecture. Performance is measured using

the Dhrystone benchmark and is reported in DMIPS (Dhrystone Millions of Instructions

per Second), and DMIPS/MHz, a clock frequency independent measurement of the same.

Clearly Nios II/f outperforms the other two, however it is also largest in area as reported

by the number of Stratix LEs used to implement each processor. In terms of pipelining,

The Nios II/e is unpipelined, thereby requiring no branch prediction. The Nios II/s is a

5-stage pipeline with static branch prediction, while Nios II/f is a 6-stage pipeline with

dynamic branch prediction. In both cases, the prediction scheme is not known. The

Nios II/s uses the on-chip multipliers for performing both multiplication and shifting

operations, but for both operations, the pipeline is stalled for 3 cycles. The Nios II/f also

uses the on-chip multipliers for both multiplication and shifting and completes both in

a single cycle. In addition, Nios II/f has the option of implementing a hardware divider

unit which requires 4-66 cycles to compute its result.

All three Nios II variants use the same ISA known as the Nios II instruction set. It is

very similar to the MIPS-I ISA discussed in Section 2.2; even its instruction format shown

in Figure 2.4 is nearly identical to that of the MIPS-I shown in Figure 2.1, although the
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Figure 2.4: Nios II ISA Instruction Word Format

location of the fields in the instruction word have been rearranged. However it does have

three significant differences: (i) Nios II does not have branch delay slot instructions; (ii)

Nios II does not have HI/LO registers for multiply, instead the Nios II multiply writes its

32-bit result to the register file–separate instructions are used for calculating the upper

and lower 32-bit results of a multiply; (iii) its nop instruction is implemented as an add

instruction instead of a shift left instruction as in MIPS.

2.6 Architectural Exploration Environments

While industry architects have optimized commercial soft processors, as seen by Metz-

gen [37, 38], to the best of our knowledge a microarchitectural exploration of soft pro-

cessors has never been conducted in the depth presented in this work. However, the

architectural exploration of traditional hard processors has become a popular research
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topic in recent years, and that research has produced numerous exploration environ-

ments that are primarily driven by one of two exploration methods: parameterized cores

or architecture description language (ADLs). The two methods are described below.

2.6.1 Parameterized Cores

A parameterized processor core is a processor designed at the RTL level (Register Trans-

fer Level) allowing for certain aspects of the architecture to be varied. The RTL design

is expressed using an HDL (Hardware Description Language) such as Verilog or VHDL

(Verilog Hardware Description Language) which contains parameters that can be tuned

to alter the processor architecture in a manner intended by the original designer. The

functionality of the processor is guaranteed by the original designer for many combina-

tion of parameter values. The advantage of parameterized cores is that the design is

at the RTL level allowing for accurate measurements of speed, area, and power impact.

However, few existing parameterized cores target FPGAs specifically, and all of them

narrowly constrain the potential design space because of the hard-coded parameteriza-

tion. Changing the ISA, timing, or control logic requires large-scale modification to the

source code of the processor, making these parameterized cores unsuitable for a rapid

and broad design space exploration.

We now discuss some examples of parameterized cores: the Opencores [42] website

is dedicated to providing a collection of freely available IP cores to the general public.

They have many processors available, some of them which target FPGAs, and most hav-

ing tunable parameters for meeting design constraints which can be explored. However

this exploration space is too narrow for our needs. LEON [15] is a VHDL description

of a SPARC processor which has been used by Padmanabhann [43] to conduct semi-

automatic system-level explorations (caches, TLBs, etc). The research we are conduct-

ing does not include memory hierarchy and other system-level issues and the narrow

microarchitectural design space afforded by the LEON core (register window size, and

optional multiply/divide/multiply-accumulate units) is inadequate for the breadth of ex-
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ploration we intend to conduct. The XiRisc [33] is similarly a parameterized core written

in VHDL. This DLX-like [20] processor allowed for various parameterizations including

2-way VLIW, 16/32-bit datapaths, and optional shifter, multiplier, divider, and multiply-

accumulate units. While these results are interesting, the core does not easily allow for

further interesting exploration. Fagin [12] performed a small architectural exploration

specifically for FPGA-based processors by creating an unpipelined MIPS core processor

and manually adding pipelining, and then forwarding. Again this exploration space was

very narrow and only the area effect on Actel FPGAs was considered. Gschwind [18]

produced a MIPS-based VHDL core for exploration, but no exploration results were

extracted from it.

2.6.2 ADL-based Architecture Exploration Environments

An ADL (Architecture Description Language) is a language which completely specifies

the architecture of the processor. A multitude of ADL-based architecture exploration

environments have been proposed—a good summary of these is provided by Gries [17]

and by Tomiyama [50]. The focus of these ADLs is to drive the creation of custom

compilers, instruction set simulators, cycle accurate simulators, and tools for estimating

area and power. Unfortunately these ADLs are often verbose and overly general, caused

primarily by the need to simultaneously maintain instruction semantics (for instruction

set simulation and compiler generation) and instruction behaviour (for cycle accurate

simulation and RTL generation). Since we are only interested in the latter, our architec-

ture specification can be simplified considerably. Furthermore, few ADLs provide a path

to synthesis through RTL generation, and for those that do [27, 47, 56] the resulting RTL

is often a very high-level description (for example, in SystemC), and therefore depends

heavily on synthesis tools to optimize the design. For example, Mishra [27] provided RTL

generation for the EXPRESSION ADL and discovered that the automatically generated

RTL incurred 20% more area, 52% more power, and 28% slower clock frequency than

an equivalent processor which was coded behaviourally for the purpose of cycle accurate
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Table 2.3: Comparison of ADL-based Architecture Exploration Environments

Name Source Design focus1 Path to hardware Tool generation

ASIP-Meister [23, 29] micro yes (generated) sim, comp
Chess/Check [19] micro yes (generated) sim, comp
CoCentric [48] system yes (SystemC) no
Expression [27, 40] micro yes (generated) sim, comp
LisaTek [9, 46, 47] micro SystemC or control only sim, asm
Mescal [45, 55, 56] system+micro yes (generated) sim, asm
PICO [26] system+ micro yes (generated) comp, sim

simulation. It seems reasonable to assume that had this comparison been against a de-

sign coded for efficient synthesis, the results would likely be significantly worse. Table

2.3 summarizes some ADL-based architectural exploration environments which provide

a path to hardware. In an FPGA, using different hardware resources results in large

trade-offs—hence the soft processor designer needs direct control of these decisions. For

this reason, the RTL generation provided by these ADL-based environments are inade-

quate for our purposes. In addition, availability and learning curve were also considered

when rejecting the option of using ADL-based environments. For example, the LISA

language is a commercial product and publications report requiring one month to learn

the language and design a single processor [47].

2.7 Closely Related Work

In this section, more closely related research is discussed and contrasted with the work

in this dissertation. The following works are similar in theme, but for reasons detailed

below remain inadequate for our purposes.

Mishra and Kejariwal augmented the EXPRESSION ADL to include RTL generation

enabling synthesis-driven architectural exploration [27, 40]. The quality of these results

were described above and were significantly worse than a model which was already a

poor implementation of an industrial processor core—it was meant for simulation not

1Micro refers to the microarchitecture of a processor, namely the machine state, register file, and execution
units, while system refers to system-level issues such as memory hierarchy, I/O, and operating system support.



Chapter 2. Background 18

synthesis. A small exploration was then conducted [40] for an FFT benchmark where

the number of functional units were increased from 1 to 4, the number of stages in

the multiplier unit were increased from 1 to 4, and sin/cos instructions were added

to the instruction set. The exploration was not complete as it did not consider the

entire processor (measurements were only made for the execution stage). Moreover, this

exploration was performed for traditional hard processors, without any focus on FPGA-

based processors.

The UNUM [11] system automatically generates microprocessor implementations where

users can seamlessly swap components without explicit changes to the control logic. In

this philosophy UNUM is identical to our system. The output of the UNUM system is

a processor implemented in Bluespec [8], a behavioural synthesis language which can be

translated to RTL. The drawback to this approach is that there is overhead to using the

behavioural synthesis language which also abstracts away implementation details that

are essential for efficient FPGA synthesis. This system is still being developed and has

yet to be used in an architectural study.

The PEAS-III/ASIPMeister project [29] focuses on ISA design and hardware software

co-design, and proposes a system which generates a synthesizable RTL description of a

processor from a clock-based micro-operation description of each instruction. Unfortu-

nately the design space is very limited as PEAS-III does not support hardware interlock-

ing (the compiler must insert null operations) and does not allow multi-cycle functional

units. Moreover, a small structural change to the architecture requires changes to the

description of many instructions to produce the correct control logic. It is interesting

to contrast the RTL generation of the PEAS-III system to ours: PEAS-III infers the

datapath from the micro-operation instruction descriptions; in our system we infer the

micro-operations of each instruction from the datapath, allowing the user to carefully

design the datapath. This choice reflects our desire for efficient synthesis since we believe

careful design of the datapath is crucial for efficiency. PEAS-III was used [23] to con-

duct a synthesis-driven exploration which explored changing the multiply/divide unit to
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sequential (34-cycles), and then adding a MAC (multiply-accumulate) instruction. The

results were compared for their area and clock frequency as reported by the synthesis

tool.

Plavec[44] designed an open-source RTL description of a processor which implemented

the Altera Nios ISA. During the design process, architecture and implementation deci-

sions were made incrementally based on bottlenecks found along the way. FPGA nuances

lead naturally to a 3-stage pipeline starting point, which was then successfully increased

to a 4-stage pipeline to relieve a heavily dominating critical path. Further exploration

of pipeline depth was hindered by the arduousness associated with control modification.

Estimates were performed by simply adding registers to the datapath to quantify upper

bounds on the frequency gain, and back of the envelope calculations were used to es-

timate cycle count increase. The open-source RTL model was used to perform simpler

self-contained architectural modifications such as register window size, and register file

size.

Finally, there has recently been a surge of interest in using FPGAs as a platform

for performing processor and system-level architectural studies [22]. However, the goal

of such work is to overcome the long simulation times associated with cycle-accurate

simulation of large and complex processors. Often the role of the FPGA is to emulate

cycle-accurate details or accelerate computation, whereas the role of FPGAs in our work

is to serve as the final platform for the processor. Researchers in this field of FPGA-

based system emulation often focus on an architectural novelty (for example transactional

parallel systems [30], caching [34], vector-thread processors [25]) and build FPGA-based

emulators to explore the space. None of this work focusses on area, clock frequency, or

power; a functional FPGA model is all that is desired to extract cycle-to-cycle behaviour

of the systems.
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2.8 Summary

This chapter has defined basic computer architecture terminology as well as summarized

the MIPS-I ISA and the subset of it used in our exploration. Since our research is

motivated by the desire to meet stringent design constraints through application specific

customizations, the field of architecting ASIPs has been briefly summarized. Since we

focus on soft processors, we describe the architecture of FPGAs and our target FPGA

device, as well as the industrial Nios II soft processor core we benchmark against. We

have conducted a comparison of processor architecture exploration environments and have

highlighted the motivations for designing a custom exploration environment. Finally, the

chapter has surveyed and contrasted research which is closely related to that in this

dissertation.



Chapter 3

The SPREE System

In this chapter, the Soft Processor Rapid Exploration Environment (SPREE) is described.

The purpose of SPREE [62] is to facilitate the microarchitectural exploration of soft

processors. Figure 3.1 depicts the role of SPREE in this research infrastructure, and

provides an overview of its functionality: from an architecture description, the RTL

generator emits synthesizable RTL which is used to measure area, performance, and

power.

RTL generation is employed to gain very accurate measurements of a given soft pro-

cessor design: FPGA CAD tools can be used to extract accurate area, clock frequency,

and power measurements from an RTL description of a processor, and RTL simulators

can be used to execute benchmark applications on the processor and measure exact cycle

counts. We will use SPREE to rapidly generate synthesizable RTL descriptions for a wide

variety of soft processor architectures, enabling us to thoroughly explore and understand

the soft processor design space.

Some reduction in the breadth of our soft processor exploration was necessary to

reduce the development time of SPREE. We consider simple, in-order issue processors

that use only on-chip memory as main memory and hence have no cache. The memory

on the FPGA is faster than a typical processor implementation eliminating the need for

exploring caches. Moreover, the largest FPGA devices have more than one megabyte

21
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Figure 3.1: Overview of the SPREE system.

of on chip memory which is adequate for many applications (in the future we plan to

broaden our application base to those requiring off-chip RAM and caches). We also do not

yet include support for branch prediction, exceptions, or operating systems. Finally, in

this research we do not modify the ISA or the compiler, with the exception of evaluating

software vs hardware support for multiplication (due to the large impact of this aspect

on cycle time and area).

The complete SPREE system is composed of the SPREE RTL Generator, and the

SPREE Component Library. Figure 3.2 depicts a block-level diagram of the SPREE

RTL Generator, which takes as input a description of the target ISA and the desired

datapath, verifies that the datapath supports the ISA, instantiates the datapath, and then

generates the corresponding control logic. The output is a complete and synthesizable

RTL description (in Verilog) of a soft processor. The SPREE Component Library is

a collection of hand-implemented components used to build a datapath. As shown in

Figure 3.2, the library also interfaces with the RTL Generator. The subsequent sections

will describe in more detail the architecture description input, the Component Library,
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Figure 3.2: An overview of the SPREE RTL generator.

and the operations of the RTL Generator.

3.1 Input: The Architecture Description

The input to the SPREE system is the description of the desired processor, composed of

textual descriptions of the target ISA and the processor datapath which implements that

ISA. The functionality of each instruction in the ISA is described in a language which

is also used to describe the functionality of components in the Component Library. The

datapath is then described as an interconnection of these components. The following

describes each of these in more detail.

3.1.1 Describing the Instruction Set Architecture

The instruction-set of the processor is described using a set of generic operations (GENOPs)

which form a common language for describing the behaviour of a component and the se-

mantics of an instruction. A GENOP is a small unit of functionality performed inside a

typical microprocessor: examples of GENOPs include subtraction (SUB), program counter

write (PCWRITE), load byte from memory (LOADBYTE), and register read (REGREAD). Each
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Table 3.1: GENOPs used in SPREE

GENOP Name Semantics Description

NOP o0=i0 Passes the input through unchanged

IFETCH o0=opcode,o1=rs,o2=rt,o3=rd,... Outputs complete instruction opcode

PCREAD o0=program counter Outputs the current PC value

REGREAD o0=register[i0] Reads register i0 from register file

HIREAD o0=HI Reads the MIPS HI register

LOREAD o0=LO Reads the MIPS LO register

REGWRITE Write i0 into i1 Performs write to register file

PCWRITE Write PC if i1 true Branch on condition i1

PCWRITEUNCOND Write PC Jump to target

HIWRITE Write HI register Writes to the MIPS HI register

LOWRITE Write LO register Writes to the MIPS LO register

CONST ox=x Outputs the index on every port

SIGNEXT16 o0=sign extended i1 Sign extends i1 to 32-bits

BRANCHRESOLVE o0=eq,o1=ne,o2=lez,o4=gtz,o5=gez Computes branch flags

MERGE26LO o0=hi 4-bits of i0,lo 26-bits of i1 Computes jump targets

ADD o0=i0+i1 Performs addition

SUB o0=i0-i1 Performs subtraction

SLT o0=(i0<i1) Compares i0 and i1

AND o0=i0&i1 Bitwise and of i0 and i1

OR o0=i0|i1 Bitwise or of i0 and i1

XOR o0=i0ˆi1 Bitwise xor of i0 and i1

NOR o0=˜(i0|i1) Bitwise nor of i0 and i1

STOREWORD Store i0 in address i1 Performs 32-bit stores

STOREHALF Store i0 in address i1 Performs 16-bit stores

STOREBYTE Store i0 in address i1 Performs 8-bit stores

LOADWORD o0=data in address i1 Performs 32-bit loads

LOADHALF o0=data in address i1 Performs 16-bit loads

LOADBYTE o0=data in address i1 Performs 8-bit loads

SHIFTLEFT o0=i0<<i1 Performs left shift

SHIFTRIGHTLOGIC o0=i0>>i1 Shifts right filling with zeros

SHIFTRIGHTARITH o0=i0>>i1 Shifts right filling with hi bit of i0

MULT o0,o1 = i0 * i1 Outputs upper and lower halves of product

DIV o0= i0 div i1, o1= i0 mod i1 Returns divisor and remainder

GENOP has a predetermined interface using indexed input and output ports. For ex-

ample, the SUB GENOP performs the subtraction function o0=i0-i1 by taking input

port 0 (i0), subtracting input port 1 (i1) from it and returning the result on output

port 0 (o0). Thus, the SUB GENOP uses the two input ports 0 and 1, and the output

0 to perform the subtraction. The complete set of GENOPs used in SPREE is shown in

Table 3.1 using the same notation.

Each instruction in the processor description is described in terms of a data depen-

dence graph of GENOPs. An example of such a graph is shown in Figure 3.3 for the MIPS

subtract-signed instruction. In the graph, the nodes are GENOPs and the edges rep-



Chapter 3. The SPREE System 25

REGWRITE
i1i0

REGREAD REGREAD

IFETCH
o3o1

SUB

i0i0

i0 i1

o0

o0o0

o2

Figure 3.3: The MIPS SUB instruction (sub rd,rs,rt) shown as a dependence graph of
GENOPs.

resent a flow of data from one GENOP to another. We impose the rule that no GENOP

can execute until all of its inputs are ready. For a given instruction this graph shows

the mandatory sequence of GENOP execution, although the datapath will determine the

exact timing. From the example in Figure 3.3, the IFETCH GENOP has no inputs, and

outputs the different fields of the instruction word. From the instruction word, the two

source operand identifiers are passed to the register file (REGREAD) to read the source

operand values. These values, are sent to the SUB GENOP and the difference, as well as

the destination register from the instruction word, are connected to the register file for

writing (REGWRITE).

The graph is described using C++ code as shown in Figure 3.4. New GenOp objects are

created and links are made between the indexed ports of each GENOP using the add link

function. In the example, the instruction fetch (IFETCH), the subtraction (SUB) and the

two register read GENOPs (REGREAD) are first dynamically allocated. Connections are

made between ports 1 and 2 of IFETCH to port 0 of both REGREADs to read the rs and

rt operands respectively. Their values are connected to the ports of the subtraction

operation, and the result on port 0 is connected to the writeback operation REGWRITE on

port 0. Finally, the index of the destination register from port 3 of IFETCH is connected



Chapter 3. The SPREE System 26

GenOp ∗ i f e t c h=new GenOp(GENOP IFETCH) ;
GenOp ∗ op=new GenOp(GENOP SUB) ;
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
add l ink ( i f e t c h , 1 , rs , 0 ) ;
add l ink ( rs , 0 , op , 0 ) ;
add l ink ( i f e t c h , 2 , rt , 0 ) ;
add l ink ( rt , 0 , op , 1 ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
add l ink ( op , 0 ,wb , 0 ) ;
add l ink ( i f e t c h , 3 ,wb , 1 ) ;

Figure 3.4: The MIPS SUB instruction described using C++ code.
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Figure 3.5: A datapath description shown as an interconnection of components.

to port 1 of REGWRITE. The rest of the supported MIPS-I ISA is described similarly.

3.1.2 Describing the Datapath

The datapath is described by listing the set of components and the interconnection

between their physical ports. An example of a datapath is shown in Figure 3.5. In this

simplified datapath, the instruction memory feeds the register file with the addresses of

the two source operands to read. The register file feeds the ALU and shifting unit whose

results are written back to the register file. Otherwise, the result of the ALU drives the

effective address of the data memory location to read from or write to. If data memory is

read, the loaded value is also written to the register file. The multiplexers shown in the

datapath are optional, if not specified they will be automatically inferred when a port

has multiple drivers as discussed in Section 3.3.2.

A processor architect can create any datapath that supports the specified ISA. The

datapath must also include certain control components when necessary, for example:
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pipeline registers, hazard detection units, and forwarding lines are available in the com-

ponent library and must be used in an appropriate combination to ensure correct func-

tionality of the processor. We hope to further automate the insertion of these components

in the future.

The decision to use a structural architectural description in SPREE reflects our goal of

efficient implementation. Structural descriptions provide users with the ability to manage

the placement of all components including registers, and multiplexers in the datapath.

This management is crucial for balancing the logic delay between registers to achieve

fast clock speeds. By analyzing the critical path reported by the CAD tool, users can

identify the components which limit the clock frequency and take one of three actions:

(i) reducing the internal logic delay of a component, for example, making a unit complete

in two cycles instead of one; (ii) moving some of the logic (such as such as multiplexers

and sign-extenders) from the high delay path into neighbouring pipeline stages to reduce

the amount of logic in the high delay path; (iii) adding non-pipelined registers in the

high delay path causing a pipeline stall. The latter two of these actions depend critically

on this ability to manually arrange the pipeline stages, referred to as retiming, which is

difficult for modern synthesis tools because of the complexity in the logic for controlling

the pipeline registers. Without a good ability to optimize delay we risk making incorrect

conclusions based on poor implementations. For example, one might conclude that the

addition of a component does not impact clock frequency because the impact is hidden

by the overhead in a poorly designed pipeline. For this reason, architectural exploration

in academia has traditionally neglected clock frequency considerations.

3.2 The SPREE Component Library

3.2.1 Selecting and Interchanging Components

The SPREE Component Library, which is used to build the datapath described above,

stores the RTL code and interface descriptions of every available processor component.
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Table 3.2: Components in the SPREE Component Library

Component
Name

Description

addersub An arithmetic unit used to perform add, sub, and slt instructions.

addersub 1 Same but has a 1-cycle latency.

branchresolve Compares two register operands and computes the branch conditions.

const Outputs a constant value.

data mem 1-cycle latency data memory including necessary alignment logic.

data mem reg Same but 2-cycle latency (a register before the alignment logic.

delay A delay register that is always enabled.

forwarding line A forwarding line for avoiding data hazards in a pipeline.

hazard detector A data hazard detector which stalls the pipeline.

hi reg The MIPS HI register.

ifetch unpiped Unpipelined instruction fetch unit including program counter.

ifetch pipe Pipelined version of the same.

lo reg The MIPS LO register.

logic unit The logic unit, capable of executing and, or, xor, and nor.

lui Shifts left by 16 to execute the MIPS load-upper-immediate instruction.

merge26lo Concatenates the 4 upper bits and 26 lower bits of two oerands.

mul performs 32-bit multiplication producing a 64-bit result.

mul 1, mul 2 1-cycle and 2-cycle latency multipliers.

mul shift performs multiplication and shifting (left, right logical, right arithmetic).

nop The null component, behaves as a wire.

pcadder A 30-bit adder used for computing branch targets.

pipereg A pipelined register.

pipedelayreg A non-pipelined register which stalls the pipeline when used.

reg file The register file which can perform two reads and one write simultaneously.

serialalu A fully serialized ALU capable of performing arithmetic, logic, and shift operations.

shifter LUT A LUT-based barrel shifter.

shifter LUT 1 A 1-cycle pipelined version of the same.

shifter serial An variable-latency serial shifter requiring as many cycles as the amount being shifted.

shifter serial
datamem

A combined serial shifter and data memory unit where the shifter is used for memory
alignment.

signext16 Sign extends the 16-bit input forming a 32-bit signed result.

zeroer A wire which either passes the input when enabled or the value 0 when not.

Examples of these include register files, shifters, and ALUs. To evaluate different options

for a given part of the datapath, a user can easily interchange components and regenerate

the control logic. Therefore, whether a component is pipelined, combinational, or variable

in latency, the automatically-generated control logic adapts to accommodate it. A list of

the components in the SPREE Component Library is given in Table 3.2.

3.2.2 Creating and Describing Datapath Components

The Component Library described above can also be expanded by a user to include

custom components. In this section we describe how these components are described
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Figure 3.6: The Component Interface.

and imported into the Component Library. To create a datapath component, a user

must perform three tasks: (i) provide the RTL description of the new component; (ii)

ensure it adheres to SPREE’s component interface rules; and (iii) describe its interface

and functionality in a library entry. Each of these three steps will be considered in detail

below.

The RTL Description The user must write the RTL description for the new com-

ponent in Verilog. Since the goal is to produce an efficiently-synthesizable processor,

users should consider the resources available on the target FPGA device and implement

the component as efficiently as possible. The Verilog is placed in a text file where the

top-level module is that specified by the component name.

The Component Interface The control generation in SPREE can support compo-

nents with a wide variety of timing interfaces including zero cycle latency (or purely

combinational), pipelined, multi-cycle unpipelined, and variable cycle latency. SPREE

components are constrained to using the following style of control interface by requiring

the presence of the following four control signals (when appropriate): opcode, enable,

squash, and stalled signals as shown in Figure 3.6. The opcode signal is used to tell the

component what operation to perform and is mandatory when a component can perform

more than one operation. For example, this signal will instruct the arithmetic unit to

perform an add or subtract. The enable signal indicates when the component should

perform its operation and is thus used for scheduling. The squash signal is used only

for pipeline registers whose contents must be destroyed when the stage is squashed. The
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Module <base component name>_<version name> {  
 File <Verilog source file> 
 Parameter <param name> <parameter width> 
 … 
 Input <port name> <port width> 
 … 
 Output <port name> <port width> 
 … 
 Opcode <port name> <port width> [en <enable port name>] [squash <squash port name>] {  
  <GENOP> <opcode value> <latency> <port mapping> 
  … 
 }  
 … 
 [clk] 
 [resetn] 
}  

Figure 3.7: Library entry format.

opcode

result
ADD
SUB
SLT

inB

inA

Input opA 32
Input opB 32

Module alu_small {

Output result 32

ADD 0 0
SUB 1 0
SLT 2 0
}

}

Opcode opcode 2 {

Figure 3.8: Sample component description for a simplified ALU. The ALU supports the
GENOPs ADD, SUB, and SLT.

squash interface is exposed to the user to allow users to embed their own pipeline reg-

isters within a component. Finally the stalled signal is generated by variable-latency

components to indicate that its operation has yet to complete. These four signal types

are generic enough to accommodate a wide variety of components and must be used

where appropriate when creating a custom component. The control logic generated by

SPREE will drive the opcode, enable and squash signals and monitor the stalled lines;

the user need only support and declare these signals. The names of each physical port in

the component which connect to these signals can have arbitrary names, except for the

stalled signal which must have the port name “stalled”.
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The Library Entry The interface and functionality of a component is communicated

to SPREE through a text library entry. Figure 3.7 gives the complete format for a

library entry which is detailed in Appendix A.3. Figure 3.8 shows a simplified library

entry for a small ALU. The RTL interface to the component is described by the Module

line, which defines the name of the Verilog module, and by the names and bit-widths of

the RTL input and output ports which follow. The functionality of the component is

described in the Opcode section which defines an opcode port (opcode). The fields inside

the Opcode section describe the functionality of the component. Each line begins with

the name of the supported operation and is proceeded by two integers: (i) the opcode

port value that selects that operation, and (ii) the latency in cycles for the operation

to complete (variable cycle latency is denoted with a negative latency). For example,

the ADD function of the simple ALU specified in Figure 3.8 is selected by opcode 0 and

has zero extra cycles of latency. The Opcode section can support an arbitrary number

of GENOPs, which allows for versatile functional units, and a component can have an

arbitrary number of opcode ports, which allows for parallelism within a component.

3.3 Generating a Soft Processor

From the above inputs (ISA description, datapath description, and Component Library),

SPREE generates a complete Verilog RTL model of the desired processor. As shown

in Figure 3.2 and described below, SPREE generates the processor in three phases: (i)

datapath verification, (ii) datapath instantiation, and (iii) control generation.

3.3.1 Datapath Verification

A consistency problem arises as there are two separate inputs that describe the processor

datapath and ISA: it is possible to assemble a datapath incapable of executing the de-

scribed ISA. To prevent the generation of non-functional processors, SPREE must verify

that the datapath indeed supports the ISA by ensuring the flow of data through the
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datapath is analogous to the flow of data imposed by the instruction descriptions. In

the ISA description, each instruction has an associated graph of GENOPs describing its

functionality as discussed in Section 3.1.1. The datapath is described as an interconnec-

tion of components, but the components are described in terms of GENOPs as seen in

Section 3.2.2. Therefore the datapath is also a graph of GENOPs. To verify that the

datapath supports the ISA, SPREE must confirm that each of the instruction graphs are

subgraphs of the datapath graph.

The algorithm for detecting subgraphs is a simultaneous traversal of both the instruc-

tion graph and the datapath graph beginning from the IFETCH node. Connections in the

instruction graph are confirmed present in the datapath one at a time. A connection

is confirmed if it connects between identical ports of the same GENOP, and all down-

stream connections are confirmed. For example, using the subtract instruction graph in

Figure 3.3, we wish to confirm the link from IFETCH port o1 to REGREAD port i0. From the

datapath graph, all REGREAD i0 ports fed by IFETCH port o1 are found. Of the possible

candidates, one is chosen arbitrarily and is assumed to confirm that in the instruction

graph. The algorithm then recursively confirms all output links of the REGREAD GENOP

in the instruction graph using the same method. This occurs for all downstream links

until the REGWRITE is confirmed which terminates the confirmation as it has no outputs.

At this point, if all downstream instruction graph links are confirmed in the datapath,

then the link is confirmed, if not, the algorithm will choose a different candidate. If none

of the candidates confirm the instruction link, SPREE exits and reports an error citing

the unconfirmed instruction link.

There are two factors which complicate this verification process: (i) the presence of

NOP GENOPs in the datapath, and (ii) the indexed ports associated with GENOPs.

NOPs appear in the datapath as multiplexers, and registers. Both of these components

are guaranteed to function correctly by the control generation, therefore, they do not alter

the functionality of the datapath. The ISA description does not contain NOPs, therefore,

when the verification takes place, NOPs in the datapath are ignored. The indexed ports
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cause the graph traversal to be slightly different than in traditional graphs. It is not

enough to know that one node connects to another: rather, SPREE must verify how

the nodes connect, specifically, with which ports. This is complicated further by the

commutativity of the inputs of some GENOPs.

The datapath verification confirms that the components are connected in a manner

which allows for correct instruction execution. However, timing considerations (such as

data and control hazards in a pipeline) which depend on the architecture are not verified

here. For example, forwarding lines and data hazard detection must be manually inserted

to prevent pipelined processors from operating on out-of-date register contents. It is up

to the user to engineer a datapath while being mindful of these considerations. If not,

the simulation verification step described in Chapter 4 will catch the error.

3.3.2 Datapath Instantiation

From the input datapath description, we must generate an equivalent Verilog description.

This task is relatively straight-forward since the connections between each component

are known from the datapath description. However, to simplify the input, SPREE allows

physical ports to be driven from multiple sources and then automatically inserts the logic

to multiplex between the sources, and generates the corresponding select logic during the

control generation phase.

Automatic multiplexer insertion simplifies the input, but must be carefully controlled

directly by the user to prevent excessive overhead since multiplexers are often large units

when implemented in FPGAs. SPREE will automatically create a new multiplexer for

each instance of a port with multiple drivers. This may create some duplicate multi-

plexing, so it may be advantageous to share multiplexing logic to save area, however,

it may also decrease clock frequency since the multiplexer may be placed further from

some components. To share multiplexing logic, the user can direct a number of signals

into a special nop component which acts as a wire and use the output of the wire to feed

components which share the inputs. SPREE allows the designer to manage this tradeoff
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Table 3.3: Control generation for pipelined and unpipelined datapths contrasted.

Unpipelined Pipelined

Decode logic centralized distributed
FSM generation automatic manual (use stall logic)
Stall logic N/A automatic
Squashes none automatic

without having to worry about multiplexer select signals.

3.3.2.1 Removal of Unnecessary Hardware

SPREE is equipped with the ability to remove unused hardware which aids in mini-

mizing a processor design. While performing the verification described in Section 3.3.1,

connections that are not used by the ISA can be identified by noting which edges in

the datapath graph do not appear in any of the subgraphs of the instructions. These

connections are marked and later removed by the RTL generator. Then, any compo-

nents without connections are removed. This capability enables another feature of our

research: ISA subsetting. Users can disable instructions not used by their application,

and the generator will eliminate any wiring or hardware that is not required by any

instruction. ISA subsetting will be further discussed in Section 5.7.

3.3.3 Control Generation

Once the datapath has been described and verified, SPREE automatically performs the

laborious task of generating the logic to control the datapath’s operation to correctly

implement the ISA. From the datapath and ISA descriptions, SPREE is used to generate

the decode logic, finite-state-machine (FSM), stall logic, and squashing logic required

by the datapath. The generation of these is different for pipelined and unpipelined

datapaths. Table 3.3 summarizes the differences in the control generation steps. The

control generation for unpipelined datapaths generates the decode logic, and the FSM,

while the control generation for pipelined datapaths generates the decode logic, stalling

logic, and squashing logic. The details for both are described below.
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3.3.3.1 Unpipelined Control Generation

The control logic for unpipelined datapaths must generate the opcode values which tell

the components what operations to perform, and activate the enable signals when it is

time to perform the specified operation. Also, the control logic needs to respond to stalled

components and appropriately wait for their completion. These are done in two steps:

(i) decode logic generation which calculates the opcode values, and (ii) FSM generation

which activates the enable signals and responds to stalled components. Both of these

steps are described below.

Decode Logic Generation The decode logic is responsible for computing the oper-

ation of each component from the instruction word and broadcasting it to the opcodes

of the components. From the datapath and ISA description we know which operation is

performed by each component for a given instruction, hence the opcode value is simply

calculated as a boolean function from the instruction word. A single monolithic decode

logic block is created which computes all opcodes for all components from the instruction

word immediately after it has been fetched. The resulting opcode values are broadcast

to all components as seen in Figure 3.9(a). Long routing paths are required between

the centralized decode logic and the scattered components potentially causing decreased

maximum clock frequency. An option exists within SPREE to detect components which

will not be used in the first cycle of execution and put registers on the opcode values

feeding those components in order to reduce the effect of these long connections. The

impact of this option is discussed in Section 5.8.3. The advantage of the centralized

decoding approach is reduced area as registers for propagating the instruction word or

the opcode values are not required. Since an unpipelined datapath will likely be used

for designs requiring minimal area, the routing problem is ignored and we continue to

employ the generation of centralized decode logic for unpipelined datapaths.
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(a) Centralized decode logic for unpipelined datapaths.
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(b) Distributed decode logic for pipelined datapaths.

Figure 3.9: Different decode logic implementations used.

FSM Generation A finite-state-machine (FSM) is required to drive the enable signals

of the components and to respond to stall requests. SPREE generates this finite-state-

machine from the datapath and ISA inputs. The unpipelined control generation performs

automatic finite-state-machine creation by interpreting the latency of components as

the number of wait states until completion, the procedure is as follows: Using the ISA

description, the datapath is traversed with each instruction starting from the instruction

fetch and determining which enable signals must be activated and when. A component

enable is activated if the instruction uses the component, and all its inputs are ready.

The first condition is calculated based on the instruction code, while the second condition

requires analysis of the flow of data through the datapath and proper accounting of timing

and stall signals. As the datapath is traversed with each instruction, the enable signal

for each component is activated in the cycle of its latest arriving data input. From this

traversal, the number of cycles required for each instruction is deduced, not including

wait states for variable-latency components (for variable-latency components the state

machine must wait for the stall signal to signal completion). The required number of

states in the finite-state-machine is then the maximum number of cycles required for the

longest instruction plus one extra state used as a dedicated wait state for all variable-
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latency components. The activation of enables for each component is distributed among

these states to form a simple minimal-state state-machine.

3.3.3.2 Pipelined Control Generation

The control logic for pipelined datapaths must also generate opcode values, activate

the enable signals, and respond to stalled components. However these are done much

differently than was done for the unpipelined datapaths. In addition, the pipelined control

generation needs to squash instructions which were fetched but must not complete. All

of these are done in three steps: (i) decode logic generation which calculates the opcode

values, (ii) stalling logic generation which intervenes in the activation of the enable signals

and responds to stalled components, and (iii) squashing logic generation which eliminates

instructions in the pipeline.

Decode Logic Generation In pipelined architectures, SPREE distributes the decode

logic to each stage by propagating the instruction word and inserting necessary decode

logic locally to each stage, as illustrated in Figure 3.9(b). This alleviates the long routing

paths of the centralized decode logic but increases area since more registers are inserted

and the smaller decode logic is less amenable to logic optimization. The user can option-

ally locate the decode logic in the previous stage, which can have the effect of shortening

a control-dominated critical path (further discussion and evaluation of the effect of this

feature occurs in Section 5.8.3).

Stalling Logic Generation The pipelined control generation creates inter-stage stalling

logic used to enforce the rule that when a component stalls in a pipeline, all components

in the same or earlier stages as that component must also stall. This propagation of stalls

is referred to as the stall distribution network and is automatically generated in SPREE.

A stage is enabled (or not stalled) when none of its components are stalled and the stage

following is not stalled. This condition is implemented using simple combinational logic

and is used to propagate the stalls to all appropriate components. The determination
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Figure 3.10: The pipeline stage model used by SPREE.

of which components to propagate the stall to is a much more difficult and requires the

definition of a pipeline stage. Our pipeline stage model is shown in Figure 3.10, and

includes all logic and the terminating registers of a stage and has one stage-wide enable

signal and one stage-wide squash signal. The partitioning of the datapath components

into the different pipeline stages is performed as follows: from the ISA and datapath

descriptions, the datapath is traversed with each instruction and each components is

placed in the stage when its inputs arrive (all inputs must arrive from the same stage

in pipelined datapaths—this is enforced by SPREE, if violated SPREE exits citing the

offending connection). When a pipelined unit is found (such as a pipeline register or the

register file), the stage boundary is placed immediately following the component.

In addition to the inter-stage stalling logic generated above, each stage in the pipeline

requires its own FSM to handle any multi-cycle unpipelined components within that

stage. When a component within a stage requires more than one clock cycle to complete,

a finite-state-machine is required to indicate its completion. For simplicity reasons, and

due to its lack of usefulness, these FSMs are not automatically generated. Stalling in a

pipeline is very much discouraged as indicated by the success of the MIPS architecture

which aimed to eliminate the interlocking of pipeline stages from the processor. To
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include a multi-cycle unpipelined component in a SPREE-generated processor, the user

must implement the finite-state-machine within the RTL of the component and use the

variable-latency interface to indicate when the component is stalled. Another option is

to use the pipeline delay register pipedelayreg from the Component Library (see Table

3.2) to insert a non-pipelined cycle delay within a stage.

Squashing Logic Generation Squashing refers to the elimination of an instruction

from the pipeline by changing it into a null instruction. Since an instruction occupies only

one stage of the pipeline, to squash an instruction one must squash the stage it resides

in. There are two conditions which can each cause a pipeline stage to be squashed. One

condition occurs when the pipeline stalls, in which case the latest stalling stage forwards

null operations to the next stage until it is not stalled. This logic is implemented simply

by activating the squash for a stage if that stage is not stalled and the previous one is.

The second condition occurs when a branch is mis-speculated and stages in the pipeline

are executing instructions which should never have been fetched. The recovery from mis-

speculated branches is fully automated; SPREE will automatically squash all instructions

behind the branch omitting the branch delay slot instruction.

3.4 Practical Issues in Component Abstraction

SPREE’s processor generation is simplified by using functional component abstraction,

meaning only the functionality and interface need be known for each component. This

abstraction reduces the complexity of SPREE, although some practical issues arise from

naively connecting components without understanding their internal structure. There are

three such issues, discussed below, which can affect both functionality and performance

of a processor.
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Figure 3.11: A combinational loop formed between two components.
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Figure 3.12: A false path.

3.4.1 Combinational Loops

A combinational loop is a feedback path purely through combinational logic. An example

is shown in Figure 3.11 which illustrates a feedback path between two components forming

a ring oscillator. If registers exist within the path, then this is a valid connection. If

not, the components may oscillate radically as in the ring oscillator example shown. It

is possible to create such situations using SPREE since the abstraction allows careless

use of the components. Luckily this rarely occurs since data naturally flows forward

through a processor pipeline, but bizarre datapaths with feedback is allowed and should

be handled without neglecting combinational loops. Users must be aware of component

internal structure and prevent combinational loops, and must always parse through the

output of the CAD software which will issue warnings when a combinational loop is

detected.

3.4.2 False Paths

Modern timing analysis tools produce conservative maximum operating frequencies if

the functionality of the given circuit is not fully understood. During timing analysis, the

longest possible combinational logic and routing path between any two registers dictates
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the maximum operating frequency. However, sometimes this path is never actually used,

in which case, it is referred to as a false path [58]. In the example in Figure 3.12, the

critical path is through Logic1, the multiplexer, Logic3 and to R2. However, if R2

is enabled only when the the faster Logic2 is used, then the path from Logic1 to R2

will never actually be used. Since CAD tools are unable to detect such a situation, the

timing analysis is conservative leading to a slower reported clock frequency. SPREE’s

component implementation abstraction can make it difficult to detect such cases—false

paths can be detected by analyzing the critical path and reasoning about whether the

reported path will ever be used. An example of a false path was observed in our work,

in which an arithmetic unit whose result was broadcast both to the register file and data

memory created a false path which limited the processor clock frequency. Details of this

are discussed later in Section 5.8.2. In general, users can largely prevent this phenomenon

during component design: if a component produces separate outputs, they should be each

given separate output ports instead of being multiplexed into a single output port.

3.4.3 Multi-cycle Paths

Timing analysis tools can be conservative about the timing requirements of a given path

leading to slower maximum operating frequencies. In determining the longest logic path

between two registers, the timing analysis may not be aware that some logic paths need

not be completed in a single cycle. For example, Figure 3.13 shows an example of a

big and slow block of logic (Logic1) which is given multiple cycles to execute by the
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controlling state machine. The timing analyzer, being unaware of this fact, may report

a conservative maximum operating frequency under the assumption that such a logic

block need be completed in a single cycle. Such situations can arise in the building of a

datapath, in which case it is up to the user to ensure the critical path is not affected. For

example, in an unpipelined processor, the destination register index can be provided early

by the instruction word, while the data to be written to that destination register may

come from data memory or some multi-cycle execution unit. The user should monitor

the output report files from the CAD software and reason as to whether the critical path

is truly one which must complete in a single cycle.

3.5 Summary

This chapter has described the Soft Processor Rapid Exploration Environment which

facilitates our exploration of soft processor architecture through the employment of RTL

generation from textual descriptions of a soft processor. The textual description is com-

posed of an ISA and datapath description, each detailed in this chapter. The chapter also

outlined the use of the Component Library, and the process for generating the complete

RTL description, including the control logic. Finally, possible pitfalls in using the system

were described. The next chapter describes the remainder of the infrastructure used in

our exploration.
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Experimental Framework

Having described the design and implementation of the SPREE software system for

generating soft processors in the previous chapter, this chapter will now describe the

framework for measuring and comparing the soft processors it produces. We present a

method for verifying the correctness of our soft processors, methods for employing FPGA

CAD tools, a methodology for measuring and comparing soft processors (including a

commercial soft processor), and the benchmark applications that are used to do so.

4.1 Processor Verification

The SPREE system verifies that the datapath is capable of executing the target ISA

as described in Section 3.3.1. However, the generated control logic and the complete

system functionality must also be verified. To do so, we have implemented trace-based

verification by using a cycle-accurate industrial RTL simulator (Modelsim [36]) that

generates a trace of all writes to the register file and memory as it executes an application.

This trace is compared to one generated by MINT [53] (a MIPS instruction set simulator)

and it is ensured that the traces match. All processors presented in this work have been

verified to be functionally correct through this process.

Creating the traces from automatically generated RTL descriptions is somewhat cum-

bersome. First, the applications must be instrumented so that the end of the execution

43
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Figure 4.1: CAD flow overview. Optimizations and seed values add noise to the system affecting
the final area, clock frequency, and power measurements, and hence must be carefully managed.

is detected by the RTL simulator. Special startup code initializes the stack pointer and

jumps to the program main function. Upon returning from main, the program returns

to special code that indicates the termination of the benchmark by writing the value

0xDEADDEAD to data memory which is then caught by the simulator. Second, since the

processors are automatically generated, the places to ”tap in” to the architecture to gen-

erate the traces change with each processor. SPREE was augmented with the ability to

automatically generate test benches which correctly tap in to the generated processor.

Finally, to facilitate debugging of erroneous control logic, SPREE automatically gener-

ates debug outputs for observing the pipeline state including, the instruction word in

each stage and the stage-wide enable and squash signals.

4.2 FPGA Device and CAD Tools

While SPREE itself operates independently of the target FPGA architecture, a particular

FPGA device was selected for performing our FPGA-based exploration. The Component

Library targets Altera Stratix [32] FPGAs. Quartus II v4.2 [4] CAD software is used

for the synthesis, technology mapping, placement and routing of all designs to a Stratix

EP1S40F780C5 device (a middle-sized device in the family, with the fastest speed grade)
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using default optimization settings. From the generated report files, one can extract area,

clock frequency, and power measurements from the placed-and-routed result.

It is important to understand that one must proceed carefully when using CAD tools

to compare soft processors. Normally when an HDL design fails design constraints (as

reported by the CAD software), there are three alternatives that avoid altering the de-

sign: (i) restructure the HDL code to encourage more efficient synthesis, (ii) use different

optimization settings of the CAD tools, and (iii) perform seed sweeping—a technique

which selects the best result among randomly-chosen starting placements. These three

alternatives are design-independent techniques for coaxing a design into meeting speci-

fications, and their existence illustrates the non-determinism inherent in combinatorial

optimization applied in a practical context.

We have taken the following measures to counteract variation caused by the non-

determinism inherent in CAD algorithms: (i) we have manually coded our component

designs structurally to avoid the creation of inefficient logic from behavioural synthesis;

(ii) we have experimented with optimization settings and ensured that our conclusions

do not depend on them as seen in Section 5.10, and (iii) for the area and clock frequency

of each soft processor design we determine the arithmetic mean across 10 seeds (different

initial placements before placement and routing) so that we are 95% confident that our

final reported value is within 2% of the true mean. The analysis of this confidence interval

is detailed in the subsequent section.

4.2.1 Determination of Confidence Across Seeds

The randomness in the place-and-route phase of compilation is captured in an integer

parameter known as a seed. Implementations are identical for the same seed value but

vary non-deterministically across different seeds. Thus the measurements of area, power,

and clock frequency may also vary non-deterministically. Power measurements are seen

to exhibit only 0.13% variation across 10 seeds on three processors (2, 3, and 5-stage

pipelines each with different shifter implementations), and area measurements vary ran-
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Figure 4.2: Verification of Normal Distribution of Clock Frequency Measurements

domly only when certain unsuccessful optimization techniques were applied and so this

variation is ignored—the CAD software was directed to trade area for better speed and

on average improved clock frequency by 2.4% at the expense of 47% increased area. As

a result, power and area are considered to be independent of seed variations. The maxi-

mum operating clock frequency varied significantly across seeds, hence requiring analysis

and quantification of confidence.

The maximum clock frequency measurements varied randomly according to a normal

Gaussian distribution. This was verified through experimentation by sweeping through

122 seeds for Altera’s Nios [2], which is enough seeds to produce a relatively smooth

curve as shown in Figure 4.2. The figure verifies the normality of the noise by plotting

the observed cumulative distribution function (CDF) of the data using the median rank

method versus a CDF of a normal distribution whose parameters were estimated using

maximum likelihood estimation (MLE). The result is shown in Figure 4.2 which indicates

that a normal distribution is a good estimation of the distribution of the clock frequency.

With the distribution known, one can determine the number of seeds needed so that

the arithmetic mean of the measurements is within some ε percent of the true mean

(that obtained by taking the arithmetic mean across an infinite number of seeds) with
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Figure 4.3: Accuracy versus number of seeds for three processors.

some specified degree of confidence. We performed this analysis on three processors:

XiRisc [51], and two variations of Altera Nios. The graph shown in Figure 4.3 shows

the value of ε as a function of the number of seeds for three different soft processors and

with 95% confidence. The conclusion drawn from this work is that we will sweep over 10

seeds for each compilation in order to be 95% confident that we are accurate to 2% of

the true mean.

4.3 Metrics for Measuring Soft Processors

To measure area, performance, and power of the soft processors, an appropriate set of

specific metrics is required. For an FPGA, one typically measures area by counting the

number of resources used. In the Stratix FPGA, the main resource is the Logic Element

(LE), where each LE is composed of a 4-input lookup table (LUT) and a flip flop. Other

resources, such as the hardware multiplier block and memory blocks can be converted into

an equivalent number of LEs based on the relative areas of each in silicon. The relative

area of these blocks was provided by Altera [10] and are listed in Table 4.1, allowing

us to report area in terms of equivalent LEs. Note that the relative areas include the
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Table 4.1: Relative Areas of Stratix Blocks to LEs.

Stratix Block Relative Area

LE 1
DSP (9x9 bit) CENSORED
M512 RAM CENSORED
M4K RAM CENSORED
Mega-RAM CENSORED

programmable routing associated with each block.

To measure performance, we have chosen to report the wall-clock-time for execution

of a collection of benchmark applications, since reporting clock frequency or instructions-

per-cycle (IPC) alone can be misleading. To be precise, we multiply the minimum clock

period (determined by the Quartus timing analyzer after routing) with the arithmetic

mean of the cycles-per-instruction (CPI) across all benchmarks, and multiply that by the

average number of instructions executed across all benchmarks. Calculating wall-clock-

time in this way prevents a long-running benchmark from biasing our results.

The Quartus Power Play tool is used to produce a power measurement based on the

switching activities of post-placed-and-routed nodes determined by simulating bench-

mark applications on a post-placed-and-routed netlist of a processor in Modelsim. We

subtract out static power as it is solely a function of area, and we also subtract the power

of the I/O pins since this power is significant and is more dependent on how the pro-

cessor interfaces to off-chip resources than its microarchitecture. For each benchmark,

we measure the dynamic energy per instruction and report the arithmetic mean of these

across the benchmark set. The remainder of this document focusses only on dynamic

energy even when “dynamic” is not specified.

4.4 Comparing with Altera Nios II Variations

Several measures were taken to ensure that comparison against the commercial Nios II

soft processor is as fair as possible. Each of the Nios processors were generated with

memory systems identical to those of our designs: two 64KB blocks of RAM for separate

instruction and data memory. Caches are not included in our measurements, though some
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Table 4.2: Benchmark applications evaluated.
Reduced Decreased Removed Contains Dyn. Instr.

Source Benchmark Input Iterations I/O Multiply Counts

MiBench [52] bitcnts x x x 26175
CRC32 x x 109414
qsort x x x 42754
sha x x 34394

stringsearch x x 88937
FFT x x x 242339

dijkstra x x x 214408
patricia x x 84028

XiRisc [51] bubble sort x 1824
crc x 14353
des x 1516
fft x x 1901
fir x x 822

quant x x 2342
iquant x x 1896
turbo x 195914
vlc x 17860

Freescale [14] dhry x x x 47564

RATES [54] gol x x x 129750
dct x x x x 269953

logic required to support the caches will inevitably count towards the Nios II areas. The

Nios II instruction set is very similar to the MIPS-I ISA with some minor modifications

(for example, it has no branch delay slots)—hence Nios II and our generated processors

are very similar in terms of ISA. Nios II supports exceptions and OS instructions, which

are so far not supported in SPREE generated processors meaning that SPREE saves on

area and complexity.1 Finally, like Nios II, we also use GCC for compiling benchmark

applications, though we did not modify any machine specific parameters nor alter the

instruction scheduling. Despite these differences, we believe that comparisons between

Nios II and our generated processors are relatively fair.

4.5 Benchmark Applications

We measure the performance of our soft processors using 20 embedded benchmark ap-

plications from four sources, which are summarized in Table 4.2. Some benchmark ap-

1Nios II architect Kerry Veenstra suggests that exception logic accounts for approximately 100 LEs worth of
logic [57]
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plications operate solely on integers, others on floating point values (although for now

we use only software floating point emulation), some are compute intensive, others are

control intensive. Table 4.2 also indicates any changes we have made to the application to

support measurement, including reducing the size of the input to fit in on-chip memory,

decreasing the number of iterations executed in the main loop, and removing file and

other I/O since we do not yet support an operating system. More in-depth descriptions

of each benchmark and its modifications follows; source code can be found on the SPREE

webpage [62].

4.5.1 MiBench Benchmarks

The benchmarks below were extracted from the freely available MiBench benchmark

suite developed at the University of Michigan. In addition to removing I/O, the input

data sets were reduced in order to reduce RTL simulation time. Franjo Plavec [44] at

the University of Toronto performed much of this task as he ported the benchmarks onto

Altera’s Nios [2] processor.

1. bitcnts: From the Automotive section of MiBench, the application uses four dif-

ferent algorithms to count the number of bits in a 32-bit word and iterates over

them. The benchmark initially generated random values to count the bits of, how-

ever, this was rather inconvenient for debugging purposes. Instead, the application

was modified to iterate over an array of fixed integers.

2. CRC32: From the Telecomm section, the application computes the 32-bit CRC as

in the frame check sequence in ADCCP (Advanced Data Communications Control

Procedure). The input string was reduced in size.

3. qsort: A quick sort algorithm which uses the standard C library qsort function

to sort an array of strings. The number of strings to sort were reduced. This

benchmark was also from the Automotive section.
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4. sha: From the Security section, performs an NIST (National Institute of Standards

and Technology) Secure Hash Algorithm on an input string that was reduced in

size.

5. stringsearch: From the Office section, the application searches for a number of

substrings in a number of longer strings. The number of strings to search through

were reduced.

6. FFT MI: From the Telecomm section, the benchmark performs forward and reverse

fast fourier transforms on floating point values. The benchmark was stripped of

command line parameters, and random number generation to facilitate debugging.

Only one wave is transformed without performing the inverse transform, and its

size is reduced.

7. dijkstra: From the Network section, this application performs dijkstra’s algo-

rithm. The number of nodes was reduced and I/O was removed.

8. patricia: From the Network section, the benchmark uses the Patricia trie library

for performing longest prefix matching. The number of inputs and number of iter-

ations were reduced. I/O was also removed.

4.5.2 XiRisc Benchmarks

The following benchmarks were developed as part of a suite used to measure the per-

formance of their XiRisc processor [51]. These benchmarks required no (or very little)

modification since the applications target a similar simulation environment for embedded

systems.

9. bubble sort: A simple N
2 bubble sort algorithm performed on a small array of

integers. The array was increased from 10 to 20 elements.

10. crc: Computes the checksum value for a given string using an automatically gen-

erated CRC Table from Rocksoft.
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11. des: Applies a des encryption algorithm to an input text of 8 characters. The input

string was modified since it was only 4 characters long.

12. fft: Performs a fixed point fft on 16 samples.

13. fir: An FIR filter with 8 taps performed on 10 data points.

14. quant: Quantization operation. This is used in jpeg and mpeg compression after

the fdct step to reduce the information size of the samples.

15. iquant: the inverse operation of quant, used in jpeg and mpeg.

16. turbo: An implementation of a Turbo decoder.

17. vlc: Variable length compression algorithm used after quant in jpeg and mpeg

compression schemes.

4.5.3 RATES Benchmarks

The first two applications were taken from Lesley Shannon at the University of Toronto

[54]. For these benchmarks, I/O and dynamic allocation was eliminated.

18. gol: John Conway’s Game of Life, a simulation of cells interacting with each other.

The simulation size was reduced by decreasing the number of cells.

19. dct: Performs a 2D-Direct Cosine Transform. Note this benchmark is a floating

point application, though the floating point operations are implemented as software

routines. The number of iterations was reduced to 1 and the size of the input block

was reduced by half.

4.5.4 Freescale Benchmark

The last benchmark is the Dhrystone benchmark since it is often reported by soft pro-

cessor vendors, including Altera.
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20. dhry: Executes the Dhrystone 2.1 benchmark. I/O calls were stripped and the

number of iterations reduced.

4.6 ISA Reduction

Within the subset of MIPS I supported, there are certain instructions which are not (or

seldomly) used and unnecessarily add overhead to the processor. We have removed these

instructions from the supported ISA to remove this overhead. The first such instruction

is the divide instruction. Our benchmark profiling has revealed that over all benchmarks

in the suite 0.027% of dynamic instructions are divides. We have also noticed that the

hardware divider is a very large and slow unit (a single-cycle divider is 1500 LEs and

has a maximum operating clock frequency of 14 MHz). For these reasons, the divide

instruction has been eliminated from the ISA and replaced with a software routine - the

Altera Nios II makes the same design decision but offers an optional hardware divide in

the fast variant.

MIPS has two instructions, BGEZAL and BLTZAL, which execute branch-on-condition-

and-link operations. These instructions serve as conditional calls to subroutines. With

this instruction, the architecture is forced to have a separate adder for the branch compu-

tation. By eliminating these instructions, we open the door to using the ALU to perform

the branch address computation. For this reason, and since the instructions are not used

in any benchmark, we have removed it.

In trying to accommodate the inherently long cycle latency of multiply/divide in-

structions, MIPS uses two dedicated registers, HI and LO, for storing the results of this

unit. Special instructions are used to write these results to the register file, but there

are also instructions for writing to these registers, MTLO and MTHI. This could allow the

compiler to use these registers, however, the MTLO and MTHI instructions do not appear

in any of our benchmarks. Furthermore, with our assumption of using on-chip memory,

there is no performance gain in using these instructions versus a normal load and store.
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Thus we have removed the support for this instruction saving 80 LEs and providing an

average of 4.9% clock frequency improvement.

4.7 Summary

In this chapter, the remainder of our research infrastructure was described. The trace-

based verification method used to guarantee the functionality of the automatically gen-

erated soft processors was described. A mid-sized Altera Stratix was chosen as the target

device and the Quartus II 4.2 software was selected for synthesis, technology mapping,

and place-and-route onto the device. Metrics were chosen to evaluate processors on

their size, performance, and energy requirements, these metrics are: equivalent LEs for

area, wall-clock-time for performance, and energy/instruction for power. The details in

generating the Nios II variations were revealed, and the benchmark suite was described

in detail. Finally the further reduction of the MIPS-I ISA used in this research was

described.
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Exploring Soft Processor

Microarchitecture

In this chapter, we perform an investigation into the microarchitectural trade-offs of soft-

processors using the SPREE exploration environment. We first validate our infrastruc-

ture by showing that the generated designs are comparable to the highly-optimized Nios

II commercial soft processor variations. We then investigate in detail the following as-

pects of soft processor microarchitecture: hardware vs software multiplication—whether

the architecture should contain hardware support for performing multiply instructions;

shifter implementations—how one should implement the shifter, since shifting logic can

be expensive in FPGA fabrics; pipelining—we look at pipeline organization, measure

different pipeline depths, and experiment with inter-stage forwarding logic. SPREE is

also used to explore more radical architectures, for example, a fully serialized ALU. An

investigation is then performed into generating ASIPs by performing architectural ISA

subsetting per benchmark, which is followed by several optimizations which were dis-

covered during our experiments. Finally, a quantitative analysis of the following three

factors on our architectural conclusions is performed: their application specificity, their

fidelity across CAD settings, and their fidelity across FPGA devices.

55
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5.1 Comparison with Nios II Variations

Each Nios II variation (the economy, standard, and fast as described in Section 2.5)

was synthesized, placed, and routed by the CAD tools and was benchmarked using the

complete benchmark set. Similarly, the complete set of generated processors (MIPS-

I based processors with different pipelines, shifters and multiplication support), were

measured. The area in equivalent LEs and average wall-clock-time was extracted from

all processors, each pair forming the x and y coordinates respectively of the design point

in a scatter plot corresponding to that processor.

Figure 5.1 shows the scatter plot, where our generated designs are compared to the

three Nios II variations. The three points in the space for Nios II lie furthest left for

Nios II/e (smallest area, lowest performance), furthest right for Nios II/f (largest

area, highest performance), and in between for Nios II/s. The figure shows that our

generated designs span the design space, and that one of our generated designs is even

smaller and faster than the Nios II/s—hence we examine that processor in greater

detail.

The processor of interest is an 80MHz 3-stage pipelined processor, which is 9% smaller

and 11% faster in wall-clock-time than the Nios II/s, suggesting that the extra area

used to deepen the Nios II/s pipeline succeeded in increasing the frequency, but brought

overall wall-clock-time down. The generated processor has full inter-stage forwarding

support which prevent data hazard delays, and suffers no branching penalty. The pipeline

stalls only on load instructions (which must await the value being fetched from data

memory) and on shift and multiply instructions (which complete in two cycles instead

of one, since both are large functional units). In contrast, the Nios II/s is a five stage

pipeline with more frequent hazards and larger branch penalties (recall Nios II does not

have branch delay slots), and the multiplication and shift operations stall the pipeline

for 3 cycles compared to our two. The cycles-per-instruction (CPI) of this processor

is 1.36 whereas the CPIs of Nios II/s and Nios II/f are 2.36 and 1.97 respectively.

However, this large gap in CPI is countered by a large gap in clock frequency: Nios II/s
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Figure 5.1: Comparison of our generated designs vs the three Altera Nios II variations.

and Nios II/f achieve clock speeds of 120 MHz and 135 MHz respectively, while the

generated processor has a clock frequency of only 80MHz. These results demonstrate the

importance of evaluating wall-clock-time over clock frequency or CPI alone, and show

that faster frequency is not always better. A similar conclusion was drawn for the original

Nios by Plavec [44], who matched the wall-clock-time of the original Nios [2] by targetting

lower cycle counts instead of higher frequencies.

Our smallest generated processor is within 15% of the area of Nios II/e, but is also

11% faster (in wall-clock-time). The area difference of 85 LEs can be attributed to over-

head in the generated designs compared to the hand-optimized Nios II/e. Specifically,

these overheads are caused by two factors: (i) the lack of optimization in the generated

control logic since SPREE supports only 50 instructions but decodes enough bits to hold

158; and (ii) the lack of optimizations performed across components—a component can

be simplified if information is known about its inputs, but SPREE components were de-

signed for the general case. With respect to performance, Altera reports that Nios II/e
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typically requires 6 cycles per instruction, while our smallest processor typically requires

2-3 cycles per instruction. Although our design has less than half the CPI of the Nios

II/e, our design also has half the clock frequency (82MHz for our design, 159 MHz for

Nios II/e), reducing the CPI benefit to an 11% net win in wall-clock-time for our design.

Note that comparing our generated processors against Nios II/e is more fair than against

the other variations for two reasons: (i) it also does not have support for caches (ii) it

has much simpler exception handling being an unpipelined processor.

Bearing in mind the differences between Nios II and our processors, it is not our

goal to draw architectural conclusions from a comparison against Nios II. Rather, we

see that the generator can indeed populate the design space while remaining relatively

competitive with commercial, hand-optimized soft processors.

5.2 The Impact of Hardware vs Software Multiplication

Whether multiplication is supported in hardware or software can greatly affect the area,

performance, and power of a soft processor. For this reason, the Nios II/e has no

hardware support while the other two Nios II variations have full hardware support.

There are many variations of hardware multiplication support which trade off area for

cycle time. For example, the original Altera Nios supported a hardware instruction which

performed a partial multiplication which can be used in a software routine to perform a

full 32-bit multiply much faster than the typical software routine which uses a sequence of

shift and add instructions. In this work, we do not consider such hybrid implementations,

we focus only on either full or no hardware multiplication support.

Implementing full hardware multiplication support on newer FPGAs is simplified by

the recent addition of dedicated multipliers in the FPGA fabric. We conducted a prelimi-

nary investigation into implementing multiplication in the dedicated multipliers versus in

the programmable fabric using LUTs. Our experiments showed that a 2-stage pipelined

processor with the multiplier implemented using lookup tables required 125% more area,
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25% more energy per cycle, and reduced clock frequency by 10x over the same processor

with multiplication implemented in the dedicated multipliers. This shows that imple-

menting such a multiplier should be accomplished using the dedicated multipliers. Thus,

our exploration of multiplication support is binary: a purely software approach with no

hardware support (small and slow), and a purely hardware approach with minimal cycle

latency (big and fast) where the software support used is the default C multiplication

routine provided with GCC and is the same used for Nios II. We implement both versions

of multiplication support on a variety of architectures, and compare the results in order

to quantify and bound the tradeoff space.

Figure 5.2 illustrates the trade-off between area and wall-clock-time for multiplication

support. In the figure we plot the Nios II variations, as well as the collection of our gen-

erated designs each with either full hardware support for multiplication or software-only

multiplication. In terms of area, removing the multiplication saves 230 equivalent LEs,

or approximately one fifth the area of the processor. However, in some of the designs, the

multiplier is also used to perform shift operations as recommended by Metzgen [38], hence

the multiplier itself is not actually removed even though it is no longer used for multi-

plies. For such designs the control logic, multiplexing, and the MIPS HI and LO registers

used for storing the multiplication result are all removed, resulting in an area savings

of approximately 80 equivalent LEs. In both cases the area savings is substantial, and

depending on the desired application may be well worth any reduction in performance.

Figure 5.3 shows the impact of hardware support for multiplication on the number

of cycles to execute each benchmark, but only for those benchmarks that use multiplica-

tion (see Table 4.2). We see that some applications are sped up minimally while others

benefit up to 8x from a hardware multiplier, proving that multiplication support is cer-

tainly an application-specific design decision. Software-only support for multiplication

roughly doubles the total number of cycles required to execute the entire benchmark suite

compared to hardware support. This increase translates directly into a wall-clock-time

slowdown of a factor of two, since the clock frequency remains unimproved by the removal
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Figure 5.3: Cycle count speedup of full hardware support for multiplication, for only the bench-
marks that use multiply instructions.
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Figure 5.4: Energy/instruction for hardware vs software multiplication support.

of the multiplication hardware: during the design of each architecture, care was taken to

ensure the critical path was not heavily dominated by any one path in the architecture.

Hence, either the multiplication was not the critical path in the design, or if it was,

there was another path equal to it in delay which prevented any noticeable increase in

frequency.

The impact of multiplication support on energy can be seen in Figure 5.4 where three

processors were used to see the difference between supporting multiplication in hardware

or software. The figure shows that the energy per instruction is reduced for the software

multiplication when averaged across all benchmarks. In fact, even benchmarks which do

not contain multiply instructions exhibit reduced energy per instruction, proving that

the multiply hardware is wasting energy even when it is not used (no circuitry exists to

prevent it from switching when not used). On average, the software multiplication saves

between 4% and 7% nJ/instruction, however, it also must execute more instructions—

the single hardware multiply instruction is replaced by a subroutine. It follows that

multiply-intensive applications will consume more energy if software multiplication is

used, whereas applications with little or no multiplies will save on the energy wasted in

supporting hardware multiply.
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Figure 5.5: A barrel shifter implemented using a multiplier

5.3 The Impact of Shifter Implementation

Shifters can be implemented very efficiently in an ASIC design, however this is not

true for FPGAs due to the relatively high cost of multiplexing logic [38]. We study

three different shifter implementations: a serial shifter, implemented by using flip-flops

as a shift register and requiring one cycle per bit shifted; a LUT-based barrel shifter

implemented in LUTs as a tree of multiplexers; and a multiplier-based barrel shifter

implemented using hard multipliers as shown in Figure 5.5. The 5:32 decoder has the

effect of exponentiating the shift amount, allowing the left shifted result to be computed

as 2shift amount ∗ (data) on the low 32-bits of the product, and the right shifted result to

computed as 232−shift amount ∗ (data) on the high 32-bits of the product. The multiplexer

on the output of the multiplier selects between the high and low 32-bit words of the the 64-

bit product for right and left shift respectively. More information on this implementation

of shifting is available in Metzgen [38].

We study the effects of using each of these shifter types in four different architectures

with different pipeline depths. Note that both barrel shifters, multiplier-based and LUT-

based, are pipelined to match the clock speed supported by the rest of the pipeline.

For example, the barrel shifters complete in two stages in the 5-stage pipeline but in one

stage in the 3-stage and 4-stage pipelines. Figure 5.6 gives the wall-clock-time versus area

tradeoff space for the different shifter implementations in the four architectures. In each

series we have in order from left-to-right the 3 shifter implementations: Serial, Multiplier-

based, LUT-based. The shape of the series is consistent across the four pipelines, and the

L-type shape is indicative of the efficiency in using multiplier based shifters as discussed
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Figure 5.6: Average wall-clock-time vs area for different pipeline depths.

below.

The figure shows that the serial shifter is the smallest (furthest left) while the LUT-

based barrel shifter is largest, on average 250 LEs larger than the serial shifter. In

contrast, the multiplier-based shifter is only 64 LEs larger than the serial shifter: the

multiplier is being shared for both shift and multiplication instructions, and the modest

area increase is caused by the additional logic required to support shift operations in the

multiplier (the 5:32 decoder and the multiplexer from Figure 5.5).

The impact of each shifter type on wall-clock-time is also seen in Figure 5.6. On

average, the performance of both the LUT-based and multiplier-based shifters are the

same, because in all architectures the cycle counts are identical. The differences in

wall-clock-time are caused only by slight variations in the clock frequency for different

architectures. Thus, the multiplier-based shifter is superior to the LUT-based shifter

since it is smaller yet yields the same performance. There is a definite trade-off between

the multiplier-based shifter and serial shifter: the multiplier-based shifter is larger as

discussed before—however, it yields an average speedup of 1.8x over the serial shifter.

Ideally, customization should be performed not only to the microarchitecture, but to

the ISA as well. The MIPS ISA was designed to eliminate interlocking by ensuring all

operations can complete in a single cycle. However, when implemented on an FPGA
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platform, shift operations require more than one cycle, hence requiring interlocking (in-

terlocking was used in all four of the pipelines when the shifter was either the multiplier or

LUT-based barrel shifter). Since shift and multiply instructions both require more than

one cycle, one should accommodate either both or neither in the ISA. Currently, MIPS

accommodates the multiply with dedicated destination registers, but not shift operations

since it assumes they can be performed in a single cycle. To correct this discrepancy, one

might provide dedicated result registers for shift operations; however, a better solution

is that used by Altera in the Nios II ISA: remove the dedicated multiply result registers

and reduce the output of the unit to 32-bits (the multiplier can emit either the 32 high

or low bits of the product). With this modification, shifting can be supported for free

in the multiplier, resulting in a single shift/multiply unit which is the only component

which interlocks the pipeline.

In Figure 5.7 we show the energy per instruction for each of the shifter types with three

different pipelines. Both the LUT-based and multiplier-based barrel shifters consume the

same amount of energy, even though the LUT-based shifter is significantly larger in area.

This is due to the increased switching activity in the multiplier and its tighter integration

with the datapath (MIPS multiply instructions are written to dedicated registers while
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the shift result must be written directly to the register file). The processors with serial

shifters consume more energy per instruction than those with barrel shifters because

of the switching activity in the pipeline while the serial shifter is stalled. The shifter

consumes significant energy as counters and comparators are toggled for every cycle of

the shift, in addition to the shift register itself. Further energy overhead is caused by the

SPREE Component Library which is yet to utilize power-aware features (even when not

used, many functional units remain active). As the pipeline stalls for many cycles, these

overheads accumulate and surpass that of a barrel shifter which would complete without

stalling.

5.4 The Impact of Pipelining

We now use SPREE to study the impact of pipelining in soft processor architectures by

generating processors with pipeline depths between two and seven stages, the organiza-
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tions of which are shown in Figure 5.8. A 1-stage pipeline (or purely unpipelined proces-

sor) is not considered since it provides no benefit over the 2-stage pipeline: the instruction

fetch stage and writeback stage can be pipelined for free, increasing the throughput of

the system and decreasing the size of the control logic by a small margin. The free

pipelining arises from both the instruction memory and register file being implemented

in synchronous RAMs which require registered inputs. The 6-stage pipeline is also not

considered since the 5-stage pipeline had competing critical paths in the writeback stage

and decode stage requiring both stages to be split to achieve significant clock frequency

gain. For every pipeline, data hazards are prevented through interlocking, branches are

statically predicted to be not-taken, and mis-speculated instructions are squashed. For

each pipeline depth, we use a multiplier-based shifter and full hardware multiply support.

The results are similar with different shifter units and software multiply support.

Figure 5.9 shows that as expected, area increases with the number of pipeline stages

due to the addition of pipeline registers and data hazard detection logic. The 5-stage

pipeline suffers a considerably smaller area increase over the 4-stage pipeline. The reason

for this is in the 5-stage pipeline, some interlocking logic was removed: For shorter

pipelines, memory operations stall until they have completed, while in the 5-stage pipeline

memory operations are contained within their own pipeline stage, eliminating the need

for the corresponding stalling logic. The removal of this logic counteracts the increase in

area from pipeline registers and hazard detection logic.

Figure 5.10(a) shows the maximum clock frequency of the different pipelines and il-

lustrates that deepening pipelines indeed improves clock frequency. In an ideal setting,

growing from N to N+1 stages should yield an (N+1)/N clock frequency speedup. Realis-

tically, routing, setup time, and hold time overheads prevent such large gains. Moreover,

in FPGAs, designs are synthesized into an interconnection of large logic blocks causing

more coarse-grained control over register placement than is available at the transistor

level. This effect also imposes additional overhead. Thus, the clock frequency gains

shown in the figure are reduced. The critical path of the 2-stage pipeline was in the



Chapter 5. Exploring Soft Processor Microarchitecture 67

0

200

400

600

800

1000

1200

1400

1600

2-stage 3-stage 4-stage 5-stage 7-stage

A
re

a 
(E

q
u

iv
al

en
t 

L
E

s)

Figure 5.9: Area across different pipeline depths.

F/D/EX/M stage from the output of the register file through the arithmetic unit and mem-

ory alignment logic to the data memory. In the 3-stage pipeline this stage is pipelined

and the hazard detection logic in the F/D stage forms the critical path. The 4-stage

pipelines splits the fetch and decode into separate stages causing the critical path to

appear in the EX/M stage as the data loaded from data memory is aligned and passed

through the writeback multiplexer. In the 5-stage pipeline the execute stage is separated

from the memory and the critical path becomes the branch resolution logic. Finally, in

the 7-stage pipeline the branch resolution completes in the EX/M stage and the critical

path moves to logic which prevents the squashing of delay slot instructions as described

in the subsequent section.

With respect to wall-clock-time, we see that deepening the pipeline improves perfor-

mance over that of the 2-stage pipeline as seen in Figure 5.10(c). The 2-stage pipeline

has neither branch penalties nor data hazards, but suffers from frequent stalls which

are mostly due to an FPGA nuance: reading operands from the register file stalls the

pipeline because the register file is implemented using the synchronous RAMs in the

FPGA, which inherently incur a one cycle delay. This frequent stalling of the 2-stage

pipeline is apparent in Figure 5.10(b) which shows that the cycles-per-instruction for the

2-stage pipeline is significantly worse than the other pipelines. There is a large perfor-
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Figure 5.10: Performance across different pipeline depths.
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mance gain for increasing the pipeline depth from 2 to 3 stages since we pipeline this

cycle delay. In the 3-stage pipeline the operand fetch is executed in parallel with the

write back, which will cause stalls only on read-after-write (RAW) hazards instead of

on the fetch of every operand. Combined with the increase in clock frequency shown in

Figure 5.10(a), this decrease in stalls leads to the 1.7x wall-clock-time speedup for the

3-stage pipeline over 2-stages. We conclude that the FPGA nuance of using synchronous

RAMs causes a major performance disadvantage to 2-stage pipelines.1

While Figure 5.10(a) shows that frequencies improve for the 4, 5, and 7 stage pipelines

over the 3-stage, their cycle counts increase due to increased branch penalties and data

hazards, as seen in Figure 5.10(b). The net effect on wall-clock-time, shown in Fig-

ure 5.10(c), shows that the overall performance of the 3, 4, and 5 stage pipelines remains

relatively constant while the 7-stage pipeline suffers a performance loss (discussed in the

next section). These results indicate that pipelining trades slower cycles-per-instruction

for faster clock frequency evenly, such that the product of the two (wall clock time)

remains mostly unaffected.

Figure 5.11 shows the wall-clock-time versus area for the different pipeline depths.

Though the 3-stage pipeline seems the most attractive, it has the least opportunity for

future performance improvements: for example, the cycle count increase suffered by

the deeper pipelines can potentially be reduced by devoting additional area to branch

prediction or more aggressive forwarding. Frequency improvements may also be possible

with more careful placement of pipeline registers. We conclude that the 3-stage pipeline

provides a good balance between area and performance while the 2-stage pipeline suffers

in performance for a modest area savings and the deeper pipelines will suffer in area for

modest performance gains.

Tradeoffs not only exist in the number of pipeline stages, but also in the placement

of these stages. While deciding the stage boundaries for our 3-stage pipeline was obvious

1The register file may be implemented in the flip flops in each LE instead, however this would require 1024
LEs for the register file as well as associated multiplexing/enable logic.
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Figure 5.11: Wall-clock-time versus area across different pipeline depths.
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and intuitive, deciding how to add a fourth stage pipeline was not. One can add a decode

stage as shown in Figure 5.8(c), or further divide the execution stage as in Figure 5.12.

We implemented both pipelines for all three shifters and observed that although the

pipeline in Figure 5.8(c) is larger by 5%, its performance is 16% better. Hence there

is an area-performance trade-off, proving that such trade-offs exist not only in pipeline

depth, but also in pipeline organization.

The energy per instruction of the pipelines can be seen in Figure 5.13 and the energy

per cycle is shown in Figure 5.14. The energy consumed per instruction of the three,

four, and five stage pipelines remain relatively consistent with a slight decrease as the

pipeline depth increases in spite of the extra area gained, while the energy per cycle of the

three, four, and five stage pipelines decreases with pipeline depth indicating that there

is less switching activity per cycle as the deeper pipelines spend more time stalling. The

fact that the energy per instruction decreases shows that the amount of wasted switching

per instruction is decreased by a larger margin than the wasted switching associated
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Figure 5.13: Energy per instruction for the different pipeline depths.

with stalling the pipeline and inserting null operations. We attribute this to decreased

glitching2 in the logic as more pipeline registers are added.

The 2-stage pipeline suffers from significant energy per instruction consumption over

the 3-stage pipeline as seen in Figure 5.13. Earlier, it was shown that the 2-stage pipeline

suffers from a performance disadvantage due to the presence of synchronous RAMs in

the FPGA, namely, it must stall and wait for register file accesses. Curiously, Figure 5.14

shows that the energy consumed per cycle is the same for both, thus the extra cycles

required for the register file accesses translates directly to increased energy per instruc-

tion. We attribute this to extra glitching in the 2-stage pipeline. There is no logic in

the writeback stage, all components reside in the F/D/EX/M stage of the 2-stage pipeline,

so any glitching, especially at the outputs of the instruction memory effects all logic

downstream including control logic.

The 7-stage pipeline consumes more energy per instruction than the three, four, or

five stage pipelines. This is caused by the increase in squashing as the branch penalty

is increased and more instructions are fetched and then squashed. This wasted energy

accumulates and surpasses any energy savings from decreased glitching.

2Glitching refers to the spurious toggling of gate outputs often due to differing arrival times of the gate inputs.
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Figure 5.14: Energy per cycle for the different pipeline depths.

5.4.1 Branch Delay Slots in the 7-stage Pipeline

In the 7-stage pipeline shown in Figure 5.8(e), delay slots are very problematic as the

pipeline is now big enough to contain two unresolved branches and their corresponding

branch delay slot instructions. SPREE was designed to allow users to extend the pipeline

arbitrarily without having to worry about branch mis-speculation. SPREE can automat-

ically squash mis-speculated instructions, while protecting the delay slot instruction, but

the hardware to support this became a performance bottleneck.

Branch delay slots are complicated by two factors: (i) A branch delay slot instruction

can be in any stage prior to the stage the branch is resolved, and (ii) there can be more

than one branch delay slot instruction in the pipeline at a time. The first factor is shown

in Figure 5.15, where the branch (BEQ) is resolved in the EX stage but the branch delay

slot instruction (ADD) stalled and was separated from the branch (ie. the branch continues

through the pipeline as the branch delay slot instruction is stalled in an earlier stage). If

the branch is taken, only the F stage should be squashed. It follows that a branch delay

slot instruction can be in any stage prior to the branch resolution which complicates the

logic used to protect branch delay slot instructions. The second factor is also apparent in

Figure 5.15. If the ADD had not stalled, the branch delay slot instruction for the jump JR
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Figure 5.15: Branch delay slot instruction separation.
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Figure 5.16: Average wall-clock-time versus area space for all pipelines.

would have been fetched and thus there would be two unresolved delay slot instructions

in the pipeline. Both of these factors complicate the identification of branch delay slot

instructions in the pipeline.

To facilitate the automatic handling of mis-speculated branches, we have addressed

both of the two aforementioned factors. The branch delay separation problem is solved

by propagating a flag through the pipeline which indicates whether the instruction in

that stage was fetched after a branch. This flag grants immunity to that stage from

squashing hence protecting branch delay slot instructions. To address the multiple delay

slot problem, the fetch unit is stalled if a delay slot instruction exists in the pipeline and

the last instruction fetched was a branch. This prevents multiple delay slot instructions

from being in the pipeline. With both factors handled, users can extend the pipeline and

place the branch resolution in any stage without worrying about branch mis-speculation.

Figure 5.16 shows the 7-stage pipeline in the performance-area design space alongside
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the smaller pipelines. Due to increased hazard detection logic and pipeline registers, the

area of the 7-stage pipeline is significantly larger. Curiously, the 7-stage pipelines are

approximately 150 LEs larger than the 5-stage pipelines, while the 5-stage pipelines were

only 90 LEs larger than the 3-stage pipelines. This may seem unintuitive, however, the

hazard window doubled from 2 to 4 in going to 7-stages, and the branch penalty also

doubled from 1 to 2 cycles. Both require more hardware for detecting data hazards and

managing branch mis-speculation. In addition, the extra logic required to handle the

multiple delay slot problem discussed above also increases area.

With respect to wall clock performance, we notice that the 7-stage pipeline suffered

a large speed degradation, compared to the 4 and 5-stage pipelines which were able to

match the performance of the fast 3-stage pipeline. One reason for this performance

degradation is the increased cycle count due to the larger hazard window and branch

penalty. With more hazards occurring and larger branch penalties, the pipeline spends

more time stalling instead of executing useful instructions. Additional hardware such as

aggressive forwarding and branch prediction would be required to counteract this effect,

and is a topic of future work.

The other reason for the performance degradation is the less than satisfactory clock

frequency improvement. The clock frequencies of all the pipelines are shown in Fig-

ure 5.10(a). The clock frequency gain from 3 to 5-stages is much larger than from 5 to

7-stages: the new logic inserted to prevent the multiple delay slot problem had formed

the critical path in the design and was responsible for limiting the frequency gain. This

motivated an investigation into the exact cost in speed and area of this logic. SPREE

was modified to regenerate the 7-stage pipelines without the logic to handle the multiple

delay slot problem. These processors are no longer correctly functional, but they give

insight into the impact of the multiple delay slot problem.

Figure 5.17 shows the clock frequency speedup for each of the three 7-stage pipeline

variations when the logic for the multiple delay slot problem is removed compared to

when it is present. The figure obviates the frequency limitation imposed by the new
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Figure 5.17: Clock frequency speedup after ignoring multiple delay slots.

extra logic. In the case of the serial shifter, the clock frequency is 11% better without

the extra logic, the multiplier-based barrel shifter is 5% better as the multiplier also

limits the clock frequency, and the LUT-based barrel shifter is 8% faster. In terms of

area, the extra logic requires only 12 LEs, however they are in the stalling logic, which

is a critical part of the design. This statistic invites further investigation into the actual

cost of branch delay slots. They may be clearly beneficial for small pipelines, however

modern ISAs [21] do not use branch delay slots for three reasons: (i) branch penalties in

modern architectures are so big that saving one or two cycles using branch delay slots

is not a practical use of chip area; (ii) branch predictors are so good they can predict

branches with close to perfect accuracy [35]; and (iii) modern architectures speculate on

all instructions so there is no need to have branch delay slot instructions which only allow

for speculation after branches. We can use our infrastructure to accurately quantify when

delay slots are good or bad, but we leave this for future work.

5.4.2 The Impact of Inter-Stage Forwarding Lines

An important optimization of pipelined architectures is to include forwarding lines be-

tween stages to reduce stalls due to RAW hazards. We use SPREE to evaluate the

benefits of adding forwarding lines to our pipelined designs. In all pipelines studied in



Chapter 5. Exploring Soft Processor Microarchitecture 76

no forwarding

forward rt

forward rs

forward rs&rt

1200

1300

1400

1500

1600

1700

1800

1900

2000

800 900 1000 1100 1200 1300 1400 1500 1600

Area (Equivalent LEs)

A
ve

ra
g

e 
W

al
l C

lo
ck

 T
im

e 
(u

s)
   

   
   

   
   

 _

3-stage
4-stage
5-stage
7-stage

Figure 5.18: Average wall-clock-time vs area for different forwarding lines.

this paper, there is only one pair of stages where forwarding is useful: from the write-

back stage (WB) to the first execute stage (EX) (see Figure 5.8). Since the MIPS ISA

can have two source operands (referred to as rs and rt) per instruction, there are four

possible forwarding configurations for each of the pipelines: no forwarding, forwarding

to operand rs, forwarding to operand rt, and forwarding to both rs and rt.

Figure 5.18 shows the effects of each forwarding configuration on wall-clock-time and

area (note that points in the same series differ only in their amount of forwarding).

As more forwarding is added, the processor moves right (more area) and down (faster

wall-clock-time). While there is clearly an area penalty for including forwarding, it is

consistently 65 LEs for any one forwarding line, and 100 LEs for two across the three

different pipeline depths. In all cases the performance improvement is substantial, with

more than 20% speedup for supporting both forwarding lines. An interesting observation

is that there is clearly more wall-clock-time savings from one forwarding line than the

other: forwarding operand rs results in a 12% speedup compared to only 5% for operand

rt, while the area costs for each are the same. Also, the inclusion of forwarding did not

decrease clock frequency significantly.

The impact of forwarding lines on energy is shown in Figure 5.19. Energy is decreased

by 15% (compared to no forwarding) when forwarding is present for both the rs and
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rt operands. This indicates that the energy consumption of the forwarding lines and

associated control logic is considerably less than the energy consumed in the pipeline

when instructions are stalled (without forwarding lines).

5.5 Register Insertion for Clock Speed Enhancement

Adding pipeline registers increases frequency but decreases CPI as more data hazards

and branch penalties occur. Registers can be used in a more direct way for trading clock

frequency and CPI: non-pipelined registers can be inserted within a pipeline stage which

prevent it from executing in a single cycle, but allow it to run at a higher clock frequency.

We have coined this technique RISE (Register Insertion for clock Speed Enhancement).

An example of RISE is having a multi-cycle unpipelined execution unit, such as a 2-cycle

unpipelined multiply. Whenever used, the multiplier must stall the pipeline for 2-cycles

as it computes the result. The alternative is to use a single-cycle multiplier, but this

may limit the clock frequency of the whole processor. In this way, RISE is used to trade

maximum clock frequency for CPI.

The effect of RISE is examined in two cases. First we consider the three stage pipeline
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with multiplier-based barrel shifter. When the multiplier-based shifter is implemented

as a single-cycle execution unit, it forms the critical path of the processor and limits

the clock frequency to 48.7 MHz while the average CPI is 1.48. If the multiplier-based

shifter is implemented as a two-cycle unpipelined execution unit, the frequency increases

to 76.9 MHz but the CPI also increases to 1.62. The clock frequency is improved by 58%

while the CPI worsens by 9.4%. In this case, no benchmark benefits from the one-cycle

unpipelined implementation and thus RISE is an intuitive architectural design choice

where the two-cycle implementation is a clear win.

We now consider the 5-stage pipeline with 2-cycle multiplier-based barrel shifter. This

processor has critical path through the shifter which limits the clock speed to 82.0 MHz

while achieving 1.80 average CPI. RISE is used to make the multiplier-based shifter a

3-cycle unpipelined execution unit which results in a clock frequency of 90.2 MHz and

1.92 average CPI. The 10% clock frequency improvement is countered by an average CPI

increase of 6.7%. Figure 5.20 shows the instruction throughput in MIPS of both pro-

cessors and indicates that benchmarks can favour either one. Specifically, bubble sort

achieves 10% increased performance when using the 3-cycle multiplier-based shifter while

crc achieves 6% increased performance with the 2-cycle implementation. It follows that

RISE can be used both for making application specific tradeoffs between clock frequency

and CPI, and also for making intuitive architectural design decisions as in the example

previous.

5.6 Architectures that Minimize Area

SPREE has also been used to explore more radical architectural modifications. Since

SPREE can automatically accommodate different interfaces and can allow for different

component implementations, one can experiment with more creative architectures. Two

such experiments are described below; both have the common goal of reducing the area

of the processor.
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Figure 5.20: The impact of RISE on a processor across the benchmark set

5.6.1 Fully Serialized ALU

Often the ALU and other execution units account for a significant fraction of the area.

This, of course, depends on the implementation of these execution units, so one interesting

experiment is to compare how small the execution units can be made. In this experiment,

all of the execution units (excluding the multiplication) are serialized and shared, creating

a single serial ALU which can perform shifting (left, right-logical, right-arithmetic), logic

functions (and, or, nor, xor) and arithmetic functions (add, sub, set-on-less-than). The

logic and arithmetic functions will now require 32 cycles to complete, while the shifting

depends on the amount being shifted. This serial ALU is implanted in two different

datapaths, which are then generated by SPREE, and benchmarked. The two datapaths

employ the same 2-stage pipeline (no hazards or branch penalties) and differ only in

the amount of extra cycle latency in each (the number of non-pipelined registers in the

datapath). One of the datapaths has no extra cycle latency and has a typical CPI of 35

cycles, the other has a significant amount of extra cycle latency providing a typical CPI

of 40 cycles, but achieves faster clock speeds.

Figure 5.21 shows the entire design space as generated by SPREE, including the two

designs with the serial ALU. We see that the wall-clock-times for these two designs are
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Figure 5.21: Average wall-clock-time vs area space including more serialized processors

significantly worse than any other design, approximately 5x and 3.92x slower than the

next slowest non-serialized generated design, for the 35 and 40 CPI datapaths respec-

tively. The 40 CPI datapath performs 27% faster in overall wall-clock-time since the

increased CPI lead to a much faster clock speed: 119 MHz versus 88 MHz for the 35 CPI

datapath. Adding cycle latency here for increased clock speed is clearly beneficial since

the base CPI value is so high, and the logic delay is so imbalanced (the high-speed serial

ALU is placed in a datapath which cannot sustain such high clock speeds).

The areas of the two designs are reduced but not by a significant margin. Compared

to an equivalent datapath which uses a serial shifter, but performs logic and arithmetic

operations in parallel, the serial ALU saved 53 LEs, approximately 6% area savings,

while incurring 5x performance degradation. We had expected close to 64 LEs from the

serialization of the logic and arithmetic units which each require 32 LEs, however even

greater gains were expected in reducing the multiplexer which selects between the results

of the arithmetic, logic, and shifting units. Unfortunately, the extra control logic required

to perform the operations in serial, in combination with the increased multiplexing at

the inputs of the serial ALU, diminished the expected area savings.
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5.6.2 Shared Shifting and Memory Alignment

Another interesting architectural idea is to use the shifting logic to perform memory

alignment operations. Memory alignment must be performed when reading/writing 8 or

16-bit values from the 32-bit memory ports. For example, when a load is performed, all

32-bits at that location are read, then logic must zero out unwanted portions of the word

and potentially shift the desired value to the appropriate bit position. As mentioned

before, this shifting logic is generally expensive in FPGAs so it may be advantageous to

use the shifting unit to perform this task. This modification was also performed to a

2-stage pipeline with no extra cycle latencies.

Figure 5.21 shows this point in the performance-area design space. Similar to the

serial ALU, this design is also smaller and slower than any other design. Compared to

an architecture that is nearly equivalent (i.e. without sharing the shifter for memory

alignment), this new design performs 28% slower and saves only 9 LEs. This is an

insignificant area savings, indicating that the shifting logic saved was not appreciably

larger than the extra logic required to coordinate the sharing and integrate with the

shifter unit.

5.7 Instruction Set Subsetting

SPREE has been augmented with the capability to reduce the submitted datapath so that

only connections and components which are actually used by the ISA are implemented

in the generated soft processor. This capability enables another interesting ability: if one

reduces (subsets) the ISA, the processor is automatically reduced as appropriate. Thus

we can explore the effect of customizing a processor for running a specific application by

analyzing the application and removing support for all instructions which it does not use

from the processor.

Applications rarely fully utilize the complete ISA. To verify this claim, all bench-

marks were analyzed and the number of unique instructions in each application counted.
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Figure 5.22: ISA usage across benchmark set

The results of this analysis are shown in Figure 5.22 which illustrates that most of the

benchmarks used in this thesis rarely use more than half of the supported instructions.3

Some benchmarks, in particular bubble sort, fir, and CRC32 use only about one

quarter of the ISA. This fact motivates an investigation into the impact of eliminating

the architectural support for parts of the ISA which are not used. Such an elimination is

practical if (i) it is known that the soft processor will only run one application; or (ii) the

soft processors can be reconfigured, since the designer can regenerate the soft processor

as the application changes.

To evaluate the effect of subsetting, three previously generated architectures were

subsetted for each of the 20 benchmarks: (i) A 2-stage pipeline with LUT-based barrel

shifting; (ii) The 3-stage pipeline with multiplier-based barrel shifting; (iii) a 5-stage

pipeline with LUT-based barrel shifting. Since the execution of each benchmark is unaf-

fected, clock frequency is used to measure performance gain.

The relative area of each subsetted processor with respect to its non-subsetted version

is shown in Figure 5.23. It is apparent that the three benchmarks which utilized 25% of

the ISA (bubble sort, fir, and CRC32) achieved the most significant area savings.

3The reader is reminded that the current supported instruction set is a subset of MIPS-I and consists of 50
instructions. In comparison, the MIPS-IV ISA contains 128 instructions excluding floating point.
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Figure 5.23: Area effect of subsetting on three architectures
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In the 2-stage architecture, a 60% area savings is achieved by these three benchmarks

while most other benchmarks saved 10-25%. Closer inspection of these three benchmarks

revealed that they are the only benchmarks which do not contain shift operations. The

large area savings comes from elimination of the shifter unit since, as mentioned before,

shifters are large functional units in FPGAs. The savings is more pronounced in the 2

and 5-stage pipeline where the shifter is LUT-based and hence larger as seen in Section

5.3.

There is one problem with eliminating the shifter unit completely. Recall that in the

MIPS ISA, there is no explicit nop instruction, nops are encoded as a shift left by zero

instruction. To facilitate the complete removal of the shifter, one must remove all nop

instructions, or, re-encode the nop instruction as another instruction without state side-

effects. In this work the nop was re-encoded as an add zero (similar to Nios II) to allow

for complete removal of the shifter. All benchmarks use the arithmetic unit, therefore an

add does not hinder any subsetting.

Figure 5.24 shows the clock frequency speedup of the subsetted architectures. In

general we see modest speedups, 7% and 4% on average for the 2 and 5-stage pipelines

respectively. The 3-stage pipeline, being one of the most well-balanced in terms of logic

delay, did not achieve significant speedups. In other words, when logic was removed

from a path, there is often another path to maintain the previous critical path length;

the odds of reducing all paths is relatively small. Again there is notable performance

improvement in the 2-stage pipeline for the three benchmarks, bubble sort, fir, and

CRC32. This is because the LUT-based shifter was severely limiting the clock frequency

of that architecture, removing it allowed for more than 20% frequency improvement.

5.8 Optimizations

During the development of SPREE, many optimizations were discovered. These opti-

mizations are caused by FPGA-specific considerations, CAD timing analysis limitations,
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Figure 5.25: Impact of 8-bit store port on area and performance of different 2-stage pipelines.

or limitations in SPREE. We discuss the following four optimization below: dual word-

size data memory which is an example of an FPGA-specific optimization utilizing the

robustness of the on-chip RAM blocks; arithmetic unit result splitting which often pre-

vents a false path from becoming critical; previous stage decode which prevents control

paths from becoming critical; and instruction-independent enable signals which give the

user the ability to tell SPREE to be less conservative with a component enable signal.

5.8.1 Dual Word-Size Data Memory

The memory alignment of byte and halfword loads and stores to data memory required

by the MIPS ISA costs a significant amount of area and can often form part of the

critical path of an architecture. However, this cost can be reduced by capitalizing on

the capabilities of modern FPGAs. The RAMs on Stratix are all dual-ported and can

individually have their aspect ratio modified. Therefore, we can make one port a typical

32-bit wide port, and the other an 8-bit wide port for reading/writing bytes. Doing so

would reduce the memory alignment logic since we only need to accommodate halfwords,

which we do with the 32-bit port.

We implemented this technique for the data memory of a number of architectures: all
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Figure 5.26: Impact of result splitting on area and performance.

2-stage pipelines with the three different shifters and different amounts of RISE. RISE is

quantified according to the number of cycles typically required for the execution stage.

For example, a RISE of 5 cycles means that most instructions require the execution

stage to stall for 5 cycles. We realized that for loads the results are actually the same

or worse since we must now multiplex between the two ports of the RAM. We then

implemented the optimization for stores only and gathered the results shown in Figure

5.25. The area savings is apparent in all architectures and amounts to 10-12 LEs. With

respect to frequency we see two architectures gain significantly in clock speed. These

two architectures both had critical paths through the store memory alignment unit.

Another architecture suffered more than 2% performance degradation, which is outside

our allowable noise margin. We can attribute this penalty partly to noise, and partly to

the extra routing required to access the newly used port on the RAM. Because of this,

one must be careful when using this optimization since it is not always beneficial.

5.8.2 Arithmetic Unit Result Splitting

As discussed in Section 3.4.2, false paths can cause the timing analysis tool to report

a conservative value for maximum operating clock frequency. This phenomenon was

observed in the arithmetic unit, which performs addition, subtraction, and the set-on-
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less-than operations. The set-on-less-than instruction compares the two source operands

and return 1 or 0 depending on whether the first operand is less than the second. To

perform this operation, a subtraction is executed and the carry-out of the most significant

bit is fed to the least significant bit of the 32-bit result. The memory alignment logic

then requires the two least significant bits of the result. However, the timing analysis

tool, being conservative, assumes that the worst case path is that of a set-on-less-than

instruction which passes through all 32-bits of the arithmetic unit. Clearly the set-on-less-

than path and the memory alignment path will never be used by the same instruction as

MIPS is a load-store ISA. To overcome this inaccuracy, the arithmetic unit was rewritten

to have two outputs, one of which goes only to the memory alignment logic (which does

not contain the set-on-less-than result), and the other which goes to the writeback stage

(which contains all results of the arithmetic result).

We applied this transformation to several processors and achieved the results shown

in Figure 5.26. Several architectures achieve 4% to 9% clock frequency speedup, others

less than 2% which falls in the noise margin. We also see an area savings likely caused by

the combining of multiplexing of the two arithmetic results with the results of all other

functional units. Overall this optimization gives good area and speed improvements.

5.8.3 Previous Stage Decode

In the pipeline, the decoding of opcodes is distributed to each stage and is computed

in the same stage they are used. This may extend the critical path of an architecture

since the decode logic can be significant. Most notably, the arithmetic unit will suffer

from this problem whenever in the critical path because the carry-in to the adder is a

control signal (it is low for an add instruction and high for a subtract). As a solution,

one can pre-compute the opcode values in the previous stage and store their values in

pipe registers, which may improve the critical path. This option was implemented as

a parameter to SPREE and we compared architectures with it turned on and off. The

architectures used were a 3-stage, 4-stage, and 7-stage pipeline, where in each pipeline
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Figure 5.27: Impact of previous stage decode on performance

the shifter was varied.

Figure 5.27 shows the clock frequency improvement for previous stage decoding across

the selected benchmarks. In the 3 and 4-stage pipelines, a noticeable speed degradation

occurs – though this is close to our 2% place and route error margin, we regain confidence

in that all six points show the same trend. This is caused by the merging of decode logic

in the first stage of the pipeline, causing it to grow much bigger. For example, the 3-

stage pipeline has only two stages of decode logic since the third stage is writeback during

which nothing need be controlled. When using previous stage decode for this pipeline, all

the decode logic becomes merged into stage 1, where some of the opcodes are registered

for stage 2, while others are not because they are used in stage 1—there is no stage

before stage 1 to pre-compute the opcodes in. This merging of decode logic is performed

automatically by SPREE which currently does not support maintaing the two decode

logic blocks separately. This growth in the decode logic not only grows in area, but in

routing resources. The congested routing often makes any opcode-affected critical path

even worse. In the 7-stage pipeline however, the decode logic is distributed so thinly to

each of the stages, that combining decode logic in stages 1 and 2 has no negative impact

on the frequency and the improvements expected are seen. With the speed improvement

so small, and the approximately 25 LE cost for using previous stage decode, this option
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Figure 5.28: Impact of instruction-independent enable signals on area and performance

is off by default.

5.8.4 Instruction-Independent Enable Signals

As mentioned previously SPREE assumes a component interface which uses enable signals

to schedule operations. These enable signals are activated by SPREE when two conditions

are met: (i) the stage the component resides in is activated; (ii) and when the instruction

being executed requires the component activated. However, certain modules can be

activated for any instruction without affecting the functionality of the processor, hence

not requiring the second condition. For example, reading an operand from the register

file may occur for any instruction, whether the instruction requires an operand or not.

Eliminating this condition would reduce the logic necessary for the enable signal, and

since the hazard detection and stalling logic was seen as a critical path, this reduced logic

may even increase clock frequency. The option to eliminate this condition by introducing

instruction-independent enable signals was added to SPREE allowing the exploration of

this optimization. Instruction-independent enable signals were used on the register file

for the 3-stage pipeline whose critical path was the hazard detection and stalling in the

operand fetch stage. We varied the shifter implementation and measured the effect of

this optimization on each variant.
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Figure 5.28 shows the impact of this optimization on the area and performance of each

variant. Since cycle-to-cycle behaviour is unchanged, clock frequency is used to report

overall performance improvement. The area savings is approximately 20 LEs which

translates to almost 2% area reduction. The performance improvement is significant,

varying between 12% and 5% depending on the architecture and its critical path. These

results show that this optimization reduces logic and can significantly increase the clock

frequency without cost. There may be negative impact on energy consumption from

this optimization, but we have yet to study its effect and plan to once we consider more

power-aware architectures.

5.9 Application Specificity of Architectural Conclusions

So far, the performance of each processor has been measured by averaging over a large

set of benchmarks as described in Chapter 4, giving a “universally” fast/slow attribute

to each processor. Since the long-term goal of this research is to make application-

specific design decisions, one must consider how much the design space varies if only

considering one application at a time. Specifically, it would be interesting to know what

the penalty is for selecting a universally good processor versus making application-specific

decisions. This problem is analyzed by comparing the performance of all processors on

a per-application level.

Figure 5.29 shows the performance of all processors on each benchmark in millions

of instruction per second (MIPS). The processors include all pipeline stages, shifter im-

plementations, and multiplication support. The bold line indicates the performance of

the fastest overall processor (the 3-stage pipeline with LUT-based barrel shifting) which

is calculated by taking the arithmetic mean of all performance measurements across the

benchmark set. The figure shows that the fastest overall processor is also often the fastest

processor for each benchmark since there are very few dots that are higher than the bold

line. Some exceptions are for the stringsearch, CRC32, and turbo benchmarks for
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Figure 5.29: Performance of all processors on each benchmark—in bold is the overall fastest
processor.

which there are processors that can execute 16.4%, 13.3%, and 5.7% faster respectively.

Overall there is little room for application specific consideration with respect to per-

formance since the architectural axes used in this work often trade area for speed. For

example, the benefit of using a serial shifter or software multiply is in reducing area at the

expense of performance. Therefore, if only performance is considered, there is no moti-

vation for using either of these two options. This motivates a simultaneous consideration

of area and speed.

Instead of considering performance alone, we now consider performance per unit area.

The performance per unit area was measured in MIPS/LE for each benchmark executed

on each processor (the same set of processors as above) and graphed in Figure 5.30. The

bold line is the 3-stage pipeline with multiplier-based shifter which has the best perfor-

mance per unit area out of all the processors (determined by comparing the arithmetic

mean of performance per unit area across all benchmarks for each processor). The figure
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Figure 5.30: Performance per unit area of all processors on each benchmark—in bold is the
best processor overall benchmarks.

shows much more promising results as the best overall processor is not the best processor

for many benchmarks, in fact, only 6 of the 20 benchmarks achieve their highest perfor-

mance per unit area using the best overall processor. The benchmarks stringsearch,

qsort, CRC32, and bubble sort can achieve approximately 30% increased perfor-

mance per unit area using processors other than the best overall processor. On average

across the entire benchmark set, a benchmark can achieve 11.4% improved performance

per unit area over the best overall processor. This indicates a strong motivation for

making application-specific architectural decisions. We expect this number to grow with

more interesting architectural axes but leave this for future work.
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5.10 CAD Setting Independence

As discussed in Chapter 4, the optimization settings in the Quartus CAD software can

potentially alter the design space terrain. Our hypothesis is that the results presented in

this chapter hold across different CAD optimization settings. Some variation is expected,

however, we believe that the conclusions drawn from this research will hold because

the structure of the processors are very similar: all processors contain instruction fetch

units, branch resolution, memory alignment, and other common components. Moreover,

all components, including these common components are coded structurally to avoid

potentially superfluous synthesis of logic functions from behavioural descriptions. As a

result, the synthesis tool is more directed and becomes less sensitive to optimizations.

We have evaluated the effect of CAD settings on the two to five stage pipelines each

with one of the three shifter implementations. Quartus was used to synthesize and

place-and-route each design using three sets of optimization focusses: (i) the default

focus which considers both area and speed; (ii) an area focus which sets all settings

to minimize area and neglect speed (aggressive register packing, mux-restructuring on,

gate and register duplication off); (iii) a speed focus which maximizes operating clock

frequency by increasing area (register packing off, mux-restructuring off, gate and register

duplication on). Details on the exact optimization settings used for each focus can be

found in Appendix B.

Figure 5.31 and Figure 5.32 respectively show the area and clock frequency of each

processor using the three different optimization focusses. The area of the default focus

and area focus are co-linear proving that they track each other exactly, which is also true

of the clock frequency measurements. This proves that in the processors there is little

room for the area focussed compile to trade speed for area. A similar conclusion can

be drawn about the speed focus, which increases area significantly but still tracks the

area of the default focus and area focus. The clock frequency measurements also track

each other without appreciable increase. We thus conclude that the speed optimizations

attempted to increase the clock frequency using duplication of critical path logic but
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Figure 5.31: Effect of three different optimization focusses on area measurement. The default

and area are colinear.

0

10

20

30

40

50

60

70

80

90

100

pi
pe

2_
se

ria
ls

hi
ft

pi
pe

2_
m

ul
sh

ift

pi
pe

2_
LU

T
sh

ift

pi
pe

3_
se

ria
ls

hi
ft

pi
pe

3_
m

ul
sh

ift

pi
pe

3_
LU

T
sh

ift

pi
pe

4_
se

ria
ls

hi
ft

pi
pe

4_
m

ul
sh

ift

pi
pe

4_
LU

T
sh

ift

pi
pe

5_
se

ria
ls

hi
ft

pi
pe

5_
m

ul
sh

ift

pi
pe

5_
LU

T
sh

ift

C
lo

ck
 F

re
q

u
en

cy
 (

M
H

z)

default
area
speed

Figure 5.32: Effect of three different optimization focusses on clock frequency measurement.
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Figure 5.33: Average wall-clock-time vs area for different pipeline depths when implemented
on Stratix II.

was unsuccessful. Since the different focusses track each other we maintain that the

architectural conclusions do not vary significantly with different optimization settings.

Moreover, since the optimizations were unsuccessful, we conclude that the processors are

too small, simple, and efficiently coded to be sensitive to CAD optimizations.

5.11 Device Independence - Stratix vs Stratix II

The difference between ASIC and FPGA platforms is large enough that we are mo-

tivated to revisit the microarchitectural design space in an FPGA context. However,

FPGA devices differ among themselves: across device families and vendors the resources

and routing architecture on each FPGA vary greatly. We have focused on a single FPGA

device, the Altera Stratix, to enable efficient synthesis through device-specific optimiza-

tions. Our hypothesis, is that in spite of differences in FPGA architecture, the conclusions

drawn about soft processor architecture will be transferable between many FPGA fami-

lies. In the future, we plan to investigate this across a range of different FPGA families.

For now, we have migrated to Stratix II and observed that there is some noise in the

architectural conclusions, but most of the conclusions still hold.
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The fifteen pipelined processors (five different pipeline depths each with three different

shifter implementations), were synthesized to Stratix II where measurements were made

using the same experimental procedure with the exception of area: Stratix II has a

different fundamental logic block so area is measured in terms of equivalent ALUTs

instead of LEs. The wall-clock-time versus area plot in Figure 5.33 for the Stratix II[7, 31]

is nearly identical to Figure 5.6 for the Stratix, except the LUT-based shifter is smaller in

area as expected [6]. Further exploration into the device dependence of the soft processor

architectural conclusions drawn here is needed. Due to the difficulty in migrating the

Stratix-optimized SPREE Component Library to other devices, this task is left as future

work.



Chapter 6

Conclusions

As FPGA-based soft processors are adapted more widely in embedded processing, we

are motivated to understand the architectural trade-offs to maximize their efficiency. We

have presented SPREE, an infrastructure for rapidly generating soft processors, and have

analyzed the performance, area, and power of a broad space of interesting designs. We

presented a rigorous method for comparing soft processors. We compared our generated

processors to Altera’s Nios II family of commercial soft processors and discovered a gener-

ated design which came within 15% of the smallest Nios II variation while outperforming

it by 11%, while other generated processors both outperformed and were smaller than

the standard Nios II variation.

Our initial exploration included varying hardware multiplication support, shifter im-

plementations, pipeline depths and organization, and support for inter-stage forwarding.

We found that a multiplier-based shifter is often the best, and that pipelining increases

area but does not always increase performance. We observed that for a given pipeline

depth, there still exist performance/area trade-offs for different placements of the pipeline

stages. We also quantified the effect of inter-stage forwarding, and observed that one

operand benefits significantly more from forwarding than the other. These observations

have guided us towards interesting future research directions, including the addition of

a closely-coupled compiler which would enable further avenues for optimization and cus-

97
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tomization.

We have explored other more novel ideas such as instruction set subsetting where we

witnessed dramatic area reductions, as well as other architectures which achieved area

reduction through serialization and resource sharing. We also studied the effect of adding

non-pipelined cycle latency to a pipeline, which we refer to as RISE, and found that it

can provide an application specific tradeoff as well. Finally, we evaluated the fidelity

of our architectural conclusions across different applications, CAD settings, and FPGA

devices.

6.1 Contributions

This dissertation makes the following contributions:

1. an infrastructure for generating efficient RTL descriptions from text-based archi-

tectural descriptions;

2. a methodology for comparing and measuring soft processor architectures;

3. accurate area, clock frequency, and energy measurements for a wide variety of soft

processors;

4. a comparison of Altera’s Nios II soft processor variations against our automatically

generated processors;

5. architectural features, component implementations, and potential compiler opti-

mizations which are specific to FPGA-based soft processors.

6.2 Future Work

In the future, we plan to further validate the soft processor architectural conclusions

drawn from SPREE by testing the fidelity of the conclusions across more FPGA de-

vices and by implementing exception support to put SPREE generated soft processors
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in the same class as other commercial embedded processors. We will further investigate

power/energy and more power-aware architectural features. We also plan to broaden our

architectural exploration space by including dynamic branch predictors, caches, more ag-

gressive forwarding, VLIW datapaths, and other more advanced architectural features.

In addition, we will explore compiler optimizations, ISA changes, custom instructions

and hardware/software tradeoffs using SPREE. Finally, we will research and adopt dif-

ferent exploration methods since our exhaustive exploration strategy is not applicable to

a more broad architectural space.



Appendix A

SPREE System Details

A.1 ISA Descriptions

In SPREE, the subset of the MIPS-I ISA supported is hardcoded as a graph of GENOPS.

A text-based frontend is postponed as future work since we have fixed the ISA for this

study. The descriptions of all supported instructions are shown below.

case MIPSOP J :
{

GenOp ∗ op = new GenOp(GENOP MERGE26LO) ;
path−>add l ink (new GenOp(GENOP PCREAD) ,0 , op , 0 ) ;
path−>add l ink ( i f e t c h , IF INSTR INDEX , op , 1 ) ;
path−>add l ink ( op , 0 ,new GenOp(GENOPPCWRITEUNCOND) , 0 ) ;
break ;

}
case MIPSOP JAL :
{

GenOp ∗ op = new GenOp(GENOP MERGE26LO) ;
path−>add l ink (new GenOp(GENOP PCREAD) ,0 , op ) ;
path−>add l ink ( i f e t c h , IF INSTR INDEX , op , 1 ) ;
path−>add l ink ( op , 0 ,new GenOp(GENOPPCWRITEUNCOND) ) ;

GenOp ∗ add = new GenOp(GENOP ADDU) ;
path−>add l ink (new GenOp(GENOP PCREAD) ,0 , add ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( add , 0 ,wb ) ;
path−>add l ink (new GenOp(GENOP CONST) ,31 ,wb , 1 ) ;
break ;

}
case MIPSOP BEQ:
case MIPSOP BNE:
{

GenOp ∗ op = new GenOp(GENOP ADDU) ;
path−>add l ink (new GenOp(GENOP PCREAD) ,0 , op , 0 ) ;
GenOp ∗ s ext = new GenOp(GENOP SIGNEXT16) ;
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path−>add l ink ( i f e t c h , IF OFFSET , sext ) ;
path−>add l ink ( sext , 0 , op , 1 ) ;

GenOp ∗ b r r e s = new GenOp(GENOP BRANCHRESOLVE) ;
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , b r r e s ) ;
path−>add l ink ( i f e t c h , IF RT , r t ) ;
path−>add l ink ( rt , 0 , b r r e s , 1 ) ;

GenOp ∗ pc = new GenOp(GENOP PCWRITE) ;
path−>add l ink ( op , 0 , pc ) ;
switch ( mipsop )
{

case MIPSOP BEQ: path−>add l ink ( br r e s ,BR EQ, pc , 1 ) ; break ;
case MIPSOP BNE: path−>add l ink ( br r e s ,BR NE, pc , 1 ) ; break ;
default : break ; // s i l e n c e g++ warnings

}
break ;

}
case MIPSOP BLEZ:
case MIPSOP BGTZ:
{

GenOp ∗ op = new GenOp(GENOP ADDU) ;
path−>add l ink (new GenOp(GENOP PCREAD) ,0 , op , 0 ) ;
GenOp ∗ s ext = new GenOp(GENOP SIGNEXT16) ;
path−>add l ink ( i f e t c h , IF OFFSET , sext ) ;
path−>add l ink ( sext , 0 , op , 1 ) ;

GenOp ∗ b r r e s = new GenOp(GENOP BRANCHRESOLVE) ;
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , b r r e s ) ;

GenOp ∗ pc = new GenOp(GENOP PCWRITE) ;
path−>add l ink ( op , 0 , pc ) ;
switch ( mipsop )
{

case MIPSOP BLEZ: path−>add l ink ( br r e s ,BR LEZ, pc , 1 ) ; break ;
case MIPSOP BGTZ: path−>add l ink ( br r e s ,BR GTZ, pc , 1 ) ; break ;
default : break ; // s i l e n c e g++ warnings

}
break ;

}
case MIPSOP ADDI :
case MIPSOP ADDIU:
case MIPSOP SLTI :
case MIPSOP SLTIU :
{

GenOp ∗ op ;
switch ( ( MipsOp t ) mipsop )
{

case MIPSOP ADDI : op=new GenOp(GENOP ADD) ; break ;
case MIPSOP ADDIU: op=new GenOp(GENOP ADDU) ; break ;
case MIPSOP SLTI : op=new GenOp(GENOP SLT) ; break ;
case MIPSOP SLTIU : op=new GenOp(GENOP SLTU) ; break ;
default : break ; // s i l e n c e g++ warnings

}



Appendix A. SPREE System Details 102

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
GenOp ∗ s ext = new GenOp(GENOP SIGNEXT16) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , op ) ;
path−>add l ink ( i f e t c h , IF OFFSET , sext ) ;
path−>add l ink ( sext , 0 , op , 1 ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( op , 0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RT ,wb , 1 ) ;
break ;

}
case MIPSOP ANDI :
case MIPSOP ORI :
case MIPSOP XORI :
{

GenOp ∗ op ;
switch ( ( MipsOp t ) mipsop )
{

case MIPSOP ANDI : op=new GenOp(GENOP AND) ; break ;
case MIPSOP ORI : op=new GenOp(GENOP OR) ; break ;
case MIPSOP XORI : op=new GenOp(GENOP XOR) ; break ;
default : break ; // s i l e n c e g++ warnings

}
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , op ) ;
path−>add l ink ( i f e t c h , IF OFFSET , op , 1 ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( op , 0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RT ,wb , 1 ) ;
break ;

}
case MIPSOP LUI :
{

GenOp ∗ op = new GenOp(GENOP SHIFTLEFT) ;
path−>add l ink (new GenOp(GENOP CONST) ,16 , op , 1 ) ;
path−>add l ink ( i f e t c h , IF OFFSET , op , 0 ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( op , 0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RT ,wb , 1 ) ;
break ;

}
case MIPSOP LB:
case MIPSOP LH:
case MIPSOP LW:
case MIPSOP LBU:
case MIPSOP LHU:
{

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
GenOp ∗ s ext = new GenOp(GENOP SIGNEXT16) ;
path−>add l ink ( i f e t c h , IF OFFSET , sext ) ;
GenOp ∗ e f f add r=new GenOp(GENOP ADD) ;
path−>add l ink ( rs , 0 , e f f add r ) ;
path−>add l ink ( sext , 0 , e f f addr , 1 ) ;

GenOp ∗ mem;
switch ( mipsop ){

case MIPSOP LB: mem=new GenOp(GENOP LOADBYTE) ; break ;
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case MIPSOP LH: mem=new GenOp(GENOP LOADHALF) ; break ;
case MIPSOP LW: mem=new GenOp(GENOPLOADWORD) ; break ;
case MIPSOP LBU: mem=new GenOp(GENOPLOADBYTEU) ; break ;
case MIPSOP LHU: mem=new GenOp(GENOP LOADHALFU) ; break ;
default : mem=NULL;

}
path−>add l ink ( e f f addr , 0 ,mem) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink (mem, 0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RT ,wb , 1 ) ;
break ;

}
case MIPSOP SB :
case MIPSOP SH:
case MIPSOP SW:
{

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
GenOp ∗ s ext = new GenOp(GENOP SIGNEXT16) ;
path−>add l ink ( i f e t c h , IF OFFSET , sext ) ;
GenOp ∗ e f f add r=new GenOp(GENOP ADD) ;
path−>add l ink ( rs , 0 , e f f add r ) ;
path−>add l ink ( sext , 0 , e f f addr , 1 ) ;

GenOp ∗ mem;
switch ( mipsop ){

case MIPSOP SB : mem=new GenOp(GENOP STOREBYTE) ; break ;
case MIPSOP SH: mem=new GenOp(GENOP STOREHALF) ; break ;
case MIPSOP SW: mem=new GenOp(GENOPSTOREWORD) ; break ;
default : mem=NULL;

}
path−>add l ink ( e f f addr , 0 ,mem, 1 ) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RT , r t ) ;
path−>add l ink ( rt , 0 ,mem) ;
break ;

}

case MIPSOP SLL :
case MIPSOP SLLV:
{

GenOp ∗ op = new GenOp(GENOP SHIFTLEFT) ;
i f ( mipsop==MIPSOP SLLV)
{

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , op , 1 ) ;

}
else

path−>add l ink ( i f e t c h , IF SA , op , 1 ) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RT , r t ) ;
path−>add l ink ( rt , 0 , op , 0 ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( op , 0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RD ,wb , 1 ) ;
break ;

}
case MIPSOP SRL:
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case MIPSOP SRA:
case MIPSOP SRLV:
case MIPSOP SRAV:
{

GenOp ∗ op ;
switch ( mipsop )
{

case MIPSOP SRL:
case MIPSOP SRLV:

op = new GenOp(GENOP SHIFTRIGHTLOGIC) ; break ;
case MIPSOP SRA:
case MIPSOP SRAV:

op = new GenOp(GENOP SHIFTRIGHTARITH) ; break ;
default : op=NULL;

}
i f ( mipsop==MIPSOP SRLV | | mipsop==MIPSOP SRAV)
{

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , op , 1 ) ;

}
else

path−>add l ink ( i f e t c h , IF SA , op , 1 ) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RT , r t ) ;
path−>add l ink ( rt , 0 , op , 0 ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( op , 0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RD ,wb , 1 ) ;
break ;

}
case MIPSOP JR :
{

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 ,new GenOp(GENOPPCWRITEUNCOND) , 0 ) ;
break ;

}
case MIPSOP JALR:
{

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 ,new GenOp(GENOPPCWRITEUNCOND) , 0 ) ;

GenOp ∗ add = new GenOp(GENOP ADDU) ;
path−>add l ink (new GenOp(GENOP PCREAD) ,0 , add ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( add , 0 ,wb ) ;
path−>add l ink (new GenOp(GENOP CONST) ,31 ,wb , 1 ) ;
break ;

}
case MIPSOP MFHI :
{

GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink (new GenOp(GENOP HIREAD) ,0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RD ,wb , 1 ) ;
break ;

}
case MIPSOP MTHI:
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{
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 ,new GenOp(GENOP HIWRITE) ) ;
break ;

}
case MIPSOP MFLO:
{

GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink (new GenOp(GENOP LOREAD) ,0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RD ,wb , 1 ) ;
break ;

}
case MIPSOP MTLO:
{

GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 ,new GenOp(GENOP LOWRITE) ) ;
break ;

}
case MIPSOP MULT:
case MIPSOP MULTU:
{

GenOp ∗ op ;
switch ( ( MipsOp t ) mipsop )
{

case MIPSOP MULT: op=new GenOp(GENOP MULT) ; break ;
case MIPSOP MULTU: op=new GenOp(GENOPMULTU) ; break ;
default : break ; // s i l e n c e g++ warnings

}
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( i f e t c h , IF RT , r t ) ;
path−>add l ink ( rs , 0 , op ) ;
path−>add l ink ( rt , 0 , op , 1 ) ;
path−>add l ink ( op , 1 ,new GenOp(GENOP HIWRITE) ) ;
path−>add l ink ( op , 0 ,new GenOp(GENOP LOWRITE) ) ;
break ;

}
case MIPSOP DIV :
case MIPSOP DIVU:
{

GenOp ∗ op ;
switch ( ( MipsOp t ) mipsop )
{

case MIPSOP DIV : op=new GenOp(GENOP DIV) ; break ;
case MIPSOP DIVU: op=new GenOp(GENOP DIVU) ; break ;
default : break ; // s i l e n c e g++ warnings

}
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( i f e t c h , IF RT , r t ) ;
path−>add l ink ( rs , 0 , op ) ;
path−>add l ink ( rt , 0 , op , 1 ) ;
path−>add l ink ( op , 1 ,new GenOp(GENOP HIWRITE) ) ;
path−>add l ink ( op , 0 ,new GenOp(GENOP LOWRITE) ) ;
break ;
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}
case MIPSOP ADD:
case MIPSOP ADDU:
case MIPSOP SUB:
case MIPSOP SUBU:
case MIPSOP AND:
case MIPSOP OR:
case MIPSOP XOR:
case MIPSOP NOR:
case MIPSOP SLT:
case MIPSOP SLTU:
{

GenOp ∗ op ;
switch ( ( MipsOp t ) mipsop )
{

case MIPSOP ADD: op=new GenOp(GENOP ADD) ; break ;
case MIPSOP ADDU: op=new GenOp(GENOP ADDU) ; break ;
case MIPSOP SUB: op=new GenOp(GENOP SUB) ; break ;
case MIPSOP SUBU: op=new GenOp(GENOP SUBU) ; break ;
case MIPSOP SLT: op=new GenOp(GENOP SLT) ; break ;
case MIPSOP SLTU: op=new GenOp(GENOP SLTU) ; break ;
case MIPSOP AND: op=new GenOp(GENOP AND) ; break ;
case MIPSOP OR: op=new GenOp(GENOP OR) ; break ;
case MIPSOP XOR: op=new GenOp(GENOP XOR) ; break ;
case MIPSOP NOR: op=new GenOp(GENOP NOR) ; break ;
default : break ; // s i l e n c e g++ warnings

}
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
GenOp ∗ r t = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , op ) ;
path−>add l ink ( i f e t c h , IF RT , r t ) ;
path−>add l ink ( rt , 0 , op , 1 ) ;
GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( op , 0 ,wb ) ;
path−>add l ink ( i f e t c h , IF RD ,wb , 1 ) ;
break ;

}
case MIPSOP BLTZ:
case MIPSOP BGEZ:
{

GenOp ∗ op = new GenOp(GENOP ADDU) ;
path−>add l ink (new GenOp(GENOP PCREAD) ,0 , op , 0 ) ;
GenOp ∗ s ext = new GenOp(GENOP SIGNEXT16) ;
path−>add l ink ( i f e t c h , IF OFFSET , sext ) ;
path−>add l ink ( sext , 0 , op , 1 ) ;

GenOp ∗ b r r e s = new GenOp(GENOP BRANCHRESOLVE) ;
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , b r r e s ) ;

GenOp ∗ pc = new GenOp(GENOP PCWRITE) ;
path−>add l ink ( op , 0 , pc ) ;
switch ( mipsop )
{

case MIPSOP BLTZ: path−>add l ink ( br r e s ,BR LTZ, pc , 1 ) ; break ;
case MIPSOP BGEZ: path−>add l ink ( br r e s ,BR GEZ, pc , 1 ) ; break ;
default : break ; // s i l e n c e g++ warnings
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}
break ;

}

case MIPSOP BLTZAL:
case MIPSOP BGEZAL:
{

GenOp ∗ op = new GenOp(GENOP ADDU) ;
GenOp ∗ pcread=new GenOp(GENOP PCREAD) ;
path−>add l ink ( pcread , 0 , op , 0 ) ;
GenOp ∗ s ext = new GenOp(GENOP SIGNEXT16) ;
path−>add l ink ( i f e t c h , IF OFFSET , sext ) ;
path−>add l ink ( sext , 0 , op , 1 ) ;

GenOp ∗ add8 = new GenOp(GENOP ADDU) ;
path−>add l ink ( pcread , 0 , add8 , 0 ) ;
path−>add l ink (new GenOp(GENOP CONST) , 4 , add8 , 0 ) ;

GenOp ∗ b r r e s = new GenOp(GENOP BRANCHRESOLVE) ;
GenOp ∗ r s = new GenOp(GENOP RFREAD) ;
path−>add l ink ( i f e t c h , IF RS , r s ) ;
path−>add l ink ( rs , 0 , b r r e s ) ;

int br por t ;
switch ( mipsop )
{

case MIPSOP BLTZ: br por t=( int )BR LTZ; break ;
case MIPSOP BGEZ: br por t=( int )BR GEZ; break ;
default : break ; // s i l e n c e g++ warnings

}

GenOp ∗ pc = new GenOp(GENOP PCWRITE) ;
path−>add l ink ( op , 0 , pc ) ;
path−>add l ink ( br r e s , br port , pc , 1 ) ;

GenOp ∗ wb = new GenOp(GENOP RFWRITE) ;
path−>add l ink ( add8 , 0 ,wb ) ;
path−>add l ink (new GenOp(GENOP CONST) ,31 ,wb , 1 ) ;
path−>add l ink ( br r e s , br port ,wb , 2 ) ;
break ;

}

A.2 Datapath Descriptions

Some examples of datapath descriptions are shown in this section. Below are the complete

structural descriptions of three processors: a 2-stage pipeline with serial shifter, a 3-

stage pipeline with multiplier-based shifter, and a 5-stage pipeline with LUT-based barrel

shifter and forwarding. A simple text-based frontend can be made for these descriptions.
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A.2.1 2-stage Pipeline with Serial Shifter

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Component L i s t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLComponent ∗addersub=new RTLComponent( ”addersub” , ” s l t ” ) ;
RTLComponent ∗ l o g i c u n i t=new RTLComponent( ” l o g i c u n i t ” ) ;
RTLComponent ∗ s h i f t e r b a r r e l=new RTLComponent( ” s h i f t e r ” , ” p e rb i t ” ) ;
RTLComponent ∗mul=new RTLComponent( ”mul” ) ;
RTLComponent ∗ h i r e g=new RTLComponent( ” h i r e g ” ) ;
RTLComponent ∗ l o r e g=new RTLComponent( ” l o r e g ” ) ;
RTLComponent ∗ r e g f i l e=new RTLComponent( ” r e g f i l e ” ) ;
RTLComponent ∗ i f e t c h=new RTLComponent( ” i f e t c h ” ) ;
RTLComponent ∗pcadder=new RTLComponent( ”pcadder ” ) ;
RTLComponent ∗ s i gnex t=new RTLComponent( ” s i gnext16 ” ) ;
RTLComponent ∗merge26lo=new RTLComponent( ”merge26lo ” ) ;
RTLComponent ∗data mem=new RTLComponent( ”data mem” , ”” ) ;
RTLComponent ∗ branchre so lve=new RTLComponent( ” branchre so lve ” ) ;

RTLComponent ∗nop opB=new RTLComponent( ”nop” ) ;

RTLParameters const8 params ;
const8 params [ ”VAL”]=”4” ;
RTLComponent ∗ const8=new RTLComponent( ” const ” , const8 params ) ;

RTLParameters const16 params ;
const16 params [ ”VAL”]=”16” ;
RTLComponent ∗ const16=new RTLComponent( ” const ” , const16 params ) ;

RTLParameters const31 params ;
const31 params [ ”VAL”]=”31” ;
RTLComponent ∗ const31=new RTLComponent( ” const ” , const31 params ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Datapath Wiring ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLProc proc ( ” system” ) ;

proc . addConnection ( i f e t c h , ” r s ” , r e g f i l e , ” a r eg ” ) ;
proc . addConnection ( i f e t c h , ” r t ” , r e g f i l e , ” b reg ” ) ;

// Cond i t iona l Branch path
proc . addConnection ( i f e t c h , ” o f f s e t ” , s ignext , ” in ” ) ;
proc . addConnection ( s ignext , ”out” , pcadder , ” o f f s e t ” ) ;
proc . addConnection ( i f e t c h , ” pc out ” , pcadder , ”pc” ) ;
proc . addConnection ( pcadder , ” r e s u l t ” , i f e t c h , ” load data ” ) ;
proc . addConnection ( branchreso lve , ”eq” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ”ne” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” l e z ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” l t z ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” gez ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” gtz ” , i f e t c h , ” load ” ) ;

// J and JAL path
proc . addConnection ( i f e t c h , ” pc out ” , merge26lo , ” in1 ” ) ;
proc . addConnection ( i f e t c h , ” i n s t r i n d e x ” , merge26lo , ” in2 ” ) ;
proc . addConnection ( merge26lo , ”out” , i f e t c h , ” load data ” ) ;
proc . addConnection ( i f e t c h , ” pc out ” , addersub , ”opA” ) ;
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// JR and JALR path
proc . addConnection ( r e g f i l e , ” a readdataout ” , i f e t c h , ” load data ” ) ;

// Other IR cons tant fanou t s
proc . addConnection ( s ignext , ”out” , nop opB , ”d” ) ;
proc . addConnection ( i f e t c h , ” o f f s e t ” , nop opB , ”d” ) ;
proc . addConnection ( i f e t c h , ” sa ” , s h i f t e r b a r r e l , ” sa ” ) ;

// RS fanout
proc . addConnection ( r e g f i l e , ” a readdataout ” , addersub , ”opA” ) ;
proc . addConnection ( r e g f i l e , ” a readdataout ” , l o g i c un i t , ”opA” ) ;
proc . addConnection ( r e g f i l e , ” a readdataout ” , s h i f t e r b a r r e l , ” sa ” ) ;
proc . addConnection ( r e g f i l e , ” a readdataout ” ,mul , ”opA” ) ;
proc . addConnection ( r e g f i l e , ” a readdataout ” , branchreso lve , ” r s ” ) ;

// RT fanout
proc . addConnection ( r e g f i l e , ” b readdataout ” , nop opB , ”d” ) ;
proc . addConnection ( r e g f i l e , ” b readdataout ” ,mul , ”opB” ) ;
proc . addConnection ( r e g f i l e , ” b readdataout ” , data mem , ” d wr i t edata ” ) ;
proc . addConnection ( r e g f i l e , ” b readdataout ” , branchreso lve , ” r t ” ) ;

proc . addConnection ( nop opB , ”q” , addersub , ”opB” ) ;
proc . addConnection ( nop opB , ”q” , l o g i c un i t , ”opB” ) ;
proc . addConnection ( nop opB , ”q” , s h i f t e r b a r r e l , ”opB” ) ;

// MUL
proc . addConnection (mul , ” h i ” , h i r eg , ”d” ) ;
proc . addConnection (mul , ” l o ” , l o r e g , ”d” ) ;

// Data memory
proc . addConnection ( addersub , ” r e s u l t ” , data mem , ” d addres s ” ) ;

// Adder
proc . addControlConnection ( const8 , ”out” , nop opB , ”d” ) ;

// S h i f t e r
proc . addConnection ( const16 , ”out” , s h i f t e r b a r r e l , ” sa ” ) ;

// Writeback
proc . addConnection ( addersub , ” r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( addersub , ” r e s u l t s l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( l o g i c un i t , ” r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( s h i f t e r b a r r e l , ” r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection (data mem , ” d l o ad r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( h i r eg , ”q” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( l o r e g , ”q” , r e g f i l e , ” c wr i t eda t a i n ” ) ;

// Writeback d e s t i n a t i o n
proc . addConnection ( i f e t c h , ” r t ” , r e g f i l e , ” c r e g ” ) ;
proc . addConnection ( i f e t c h , ” rd” , r e g f i l e , ” c r e g ” ) ;
proc . addConnection ( const31 , ”out” , r e g f i l e , ” c r e g ” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Con t ro l l e r ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
Ctr lUnPipe l ined con t r o l (&fdp ,&proc ) ;

A.2.2 3-stage Pipeline with Multiplier-based Shifter
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/∗∗∗∗∗∗
∗ Pipepe l ined Processor
∗
∗ F − R/E − W
∗∗∗∗∗∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Component L i s t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLComponent ∗addersub=new RTLComponent( ”addersub” , ” s l t ” ) ;
RTLComponent ∗ l o g i c u n i t=new RTLComponent( ” l o g i c u n i t ” ) ;
RTLComponent ∗mul=new RTLComponent( ”mul” , ” s h i f t s t a l l ” ) ;

RTLComponent ∗ i f e t c h=new RTLComponent( ” i f e t c h ” , ” pipe ” ) ;
RTLComponent ∗data mem=new RTLComponent( ”data mem” , ” s t a l l ” ) ;
RTLComponent ∗ r e g f i l e=new RTLComponent( ” r e g f i l e ” , ” pipe ” ) ;

RTLComponent ∗pcadder=new RTLComponent( ”pcadder ” ) ;
RTLComponent ∗ s i gnex t=new RTLComponent( ” s i gnext16 ” ) ;
RTLComponent ∗merge26lo=new RTLComponent( ”merge26lo ” ) ;
RTLComponent ∗ branchre so lve=new RTLComponent( ” branchre so lve ” ) ;
RTLComponent ∗ h i r e g=new RTLComponent( ” h i r e g ” ) ;
RTLComponent ∗ l o r e g=new RTLComponent( ” l o r e g ” ) ;

RTLParameters const8 params ;
const8 params [ ”VAL”]=”0” ;
RTLComponent ∗ const8=new RTLComponent( ” const ” , const8 params ) ;

RTLParameters const16 params ;
const16 params [ ”VAL”]=”16” ;
RTLComponent ∗ const16=new RTLComponent( ” const ” , const16 params ) ;

RTLParameters const31 params ;
const31 params [ ”VAL”]=”31” ;
RTLComponent ∗ const31=new RTLComponent( ” const ” , const31 params ) ;

RTLProc proc ( ” system” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Reg i s t e r s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLParameters width5 params ;
width5 params [ ”WIDTH”]=”5” ;
RTLParameters width26 params ;
width26 params [ ”WIDTH”]=”26” ;

RTLComponent ∗ o f f s e t r e g 1=new RTLComponent( ” p ipe reg ” ) ;
RTLComponent ∗ i n s t r i n d e x r e g 1=new RTLComponent( ” p ipe reg ” , width26 params ) ;
RTLComponent ∗ s a r eg1=new RTLComponent( ” p ipe reg ” , width5 params ) ;
RTLComponent ∗ ds t r e g1=new RTLComponent( ” p ipe reg ” , width5 params ) ;
RTLComponent ∗ pc reg1=new RTLComponent( ” p ipe reg ” ) ;

RTLComponent ∗ pc f ake r eg1=new RTLComponent( ” fakede l ay ” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Other Components ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLComponent ∗nop opB=new RTLComponent( ”nop” ) ;
RTLComponent ∗ r s z e r o e r=new RTLComponent( ” z e r o e r ” , width5 params ) ;
RTLComponent ∗ r t z e r o e r=new RTLComponent( ” z e r o e r ” , width5 params ) ;
RTLComponent ∗ r d z e r o e r=new RTLComponent( ” z e r o e r ” , width5 params ) ;
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/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Stage Requests ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
proc . putInStage ( const31 , ”op” , 1 ) ;
proc . putInStage ( const16 , ”op” , 2 ) ;
proc . putInStage ( const8 , ”op” , 2 ) ;
proc . putInStage ( h i r eg , ”op” , 2 ) ;
proc . putInStage ( l o r e g , ”op” , 2 ) ;
proc . putInStage ( i f e t c h , ”pcreadop” , 1 ) ;
proc . putInStage ( addersub , ”op” , 2 ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Datapath Wiring ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

proc . addConnection ( i f e t c h , ” r s ” , r s z e r o e r , ”d” ) ;
proc . addConnection ( i f e t c h , ” r t ” , r t z e r o e r , ”d” ) ;
proc . addConnection ( r s z e r o e r , ”q” , r e g f i l e , ” a r eg ” ) ;
proc . addConnection ( r t z e r o e r , ”q” , r e g f i l e , ” b reg ” ) ;

// Stage 1 p ipe r e g i s t e r s
proc . addConnection ( i f e t c h , ” o f f s e t ” , o f f s e t r e g 1 , ”d” ) ;
proc . addConnection ( s ignext , ”out” , o f f s e t r e g 1 , ”d” ) ;
proc . addConnection ( i f e t c h , ” i n s t r i n d e x ” , i n s t r i nd ex r e g 1 , ”d” ) ;
proc . addConnection ( i f e t c h , ” sa ” , sa reg1 , ”d” ) ;
proc . addConnection ( i f e t c h , ” pc out ” , pc reg1 , ”d” ) ;

proc . addConnection ( i f e t c h , ” r t ” , rd ze roe r , ”d” ) ;
proc . addConnection ( i f e t c h , ” rd” , rd ze roe r , ”d” ) ;
proc . addConnection ( const31 , ”out” , rd ze roe r , ”d” ) ;
proc . addConnection ( rd ze roe r , ”q” , ds t r eg1 , ”d” ) ;

// Cond i t iona l Branch path
proc . addConnection ( i f e t c h , ” o f f s e t ” , s ignext , ” in ” ) ;
proc . addConnection ( o f f s e t r e g 1 , ”q” , pcadder , ” o f f s e t ” ) ;
proc . addConnection ( pc reg1 , ”q” , pcadder , ”pc” ) ;
proc . addConnection ( pcadder , ” r e s u l t ” , i f e t c h , ” load data ” ) ;

proc . addConnection ( branchreso lve , ”eq” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ”ne” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” l e z ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” l t z ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” gez ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” gtz ” , i f e t c h , ” load ” ) ;

// J and JAL path
proc . addConnection ( pc reg1 , ”q” , merge26lo , ” in1 ” ) ;
proc . addConnection ( i n s t r i nd ex r e g 1 , ”q” , merge26lo , ” in2 ” ) ;
proc . addConnection ( merge26lo , ”out” , i f e t c h , ” load data ” ) ;

proc . addConnection ( i f e t c h , ” pc out ” , pc fakereg1 , ”d” ) ;
proc . addConnection ( pc fakereg1 , ”q” , addersub , ”opA” ) ;

// JR and JALR path
proc . addConnection ( r e g f i l e , ” a readdataout ” , i f e t c h , ” load data ” ) ;

// Other IR cons tant fanou t s
proc . addConnection ( o f f s e t r e g 1 , ”q” , nop opB , ”d” ) ;

// RS fanout
proc . addConnection ( r e g f i l e , ” a readdataout ” , addersub , ”opA” ) ;
proc . addConnection ( r e g f i l e , ” a readdataout ” , l o g i c un i t , ”opA” ) ;
proc . addConnection ( r e g f i l e , ” a readdataout ” ,mul , ” sa ” ) ;
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proc . addConnection ( r e g f i l e , ” a readdataout ” ,mul , ”opA” ) ;
proc . addConnection ( r e g f i l e , ” a readdataout ” , branchreso lve , ” r s ” ) ;

// RT fanout
proc . addConnection ( r e g f i l e , ” b readdataout ” , nop opB , ”d” ) ;
proc . addConnection ( r e g f i l e , ” b readdataout ” ,mul , ”opB” ) ;
proc . addConnection ( r e g f i l e , ” b readdataout ” , data mem , ” d wr i t edata ” ) ;
proc . addConnection ( r e g f i l e , ” b readdataout ” , branchreso lve , ” r t ” ) ;
// proc . addConnection ( r e g f i l e ,” b readda taou t ” , data mem ,” d wr i t e da t a ” ) ;

proc . addConnection ( nop opB , ”q” , addersub , ”opB” ) ;
proc . addConnection ( nop opB , ”q” , l o g i c un i t , ”opB” ) ;
proc . addConnection ( nop opB , ”q” ,mul , ”opA” ) ;

// MUL
proc . addConnection (mul , ” h i ” , h i r eg , ”d” ) ;
proc . addConnection (mul , ” l o ” , l o r e g , ”d” ) ;
proc . addControlConnection ( ds t reg1 , ”q” ,mul , ” dst ” ) ;

// Data memory
proc . addConnection ( addersub , ” r e s u l t ” , data mem , ” d addres s ” ) ;

// Adder
proc . addControlConnection ( const8 , ”out” , nop opB , ”d” ) ;

// S h i f t e r
proc . addConnection ( const16 , ”out” ,mul , ” sa ” ) ;
proc . addConnection ( sa reg1 , ”q” ,mul , ” sa ” ) ;

// Writeback
proc . addConnection ( addersub , ” r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( addersub , ” r e s u l t s l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( l o g i c un i t , ” r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection (mul , ” s h i f t r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection (data mem , ” d l o ad r e s u l t ” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( h i r eg , ”q” , r e g f i l e , ” c wr i t eda t a i n ” ) ;
proc . addConnection ( l o r e g , ”q” , r e g f i l e , ” c wr i t eda t a i n ” ) ;

// Writeback d e s t i n a t i o n
proc . addConnection ( ds t reg1 , ”q” , r e g f i l e , ” c r e g ” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Con t ro l l e r ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
Pipe l ineOpt ions opt ions ;
opt i ons . r e g i s t e r o p c od e s=fa l se ;
C t r lP ip e l i n ed con t r o l (&fdp ,&proc , opt i ons ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Hazard d e t e c t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
HazardDetector ∗ r s haz=con t r o l . newHazardDetector ( r s z e r o e r , ”q” , ds t r eg1 , ”q” ) ;
HazardDetector ∗ r t haz=con t r o l . newHazardDetector ( r t z e r o e r , ”q” , ds t r eg1 , ”q” ) ;
c on t r o l . stal lOnHazard ( rs haz , 1 ) ;
c on t r o l . stal lOnHazard ( rt haz , 1 ) ;

A.2.3 5-stage Pipeline with LUT-based Shifter and Forwarding

/∗∗∗∗∗∗
∗ Pipepe l ined Processor
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∗
∗ F − R/E − W
∗∗∗∗∗∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Component L i s t ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLComponent ∗addersub=new RTLComponent( ” addersub” , ” s l t 1 ” ) ;
RTLComponent ∗ l o g i c u n i t=new RTLComponent( ” l o g i c u n i t ” ) ;
RTLComponent ∗ s h i f t e r=new RTLComponent( ” s h i f t e r ” , ” b a r r e l p i p e 1 ” ) ;
RTLComponent ∗mul=new RTLComponent( ”mul” , ”1” ) ;

RTLComponent ∗ i f e t c h=new RTLComponent( ” i f e t c h ” , ” pipe ” ) ;
RTLComponent ∗data mem=new RTLComponent( ”data mem” , ” s t a l l ” ) ;
RTLComponent ∗ r e g f i l e=new RTLComponent( ” r e g f i l e ” , ” pipe ” ) ;

RTLComponent ∗pcadder=new RTLComponent( ”pcadder ” ) ;
RTLComponent ∗ s i gnex t=new RTLComponent( ” s i gnext16 ” ) ;
RTLComponent ∗merge26lo=new RTLComponent( ”merge26lo ” ) ;
RTLComponent ∗ branchre so lve=new RTLComponent( ” branchre so lve ” ) ;
RTLComponent ∗ h i r e g=new RTLComponent( ” h i r e g ” ) ;
RTLComponent ∗ l o r e g=new RTLComponent( ” l o r e g ” ) ;

RTLParameters const8 params ;
const8 params [ ”VAL”]=”0” ;
RTLComponent ∗ const8=new RTLComponent( ” const ” , const8 params ) ;

RTLParameters const16 params ;
const16 params [ ”VAL”]=”16” ;
RTLComponent ∗ const16=new RTLComponent( ” const ” , const16 params ) ;

RTLParameters const31 params ;
const31 params [ ”VAL”]=”31” ;
RTLComponent ∗ const31=new RTLComponent( ” const ” , const31 params ) ;

RTLProc proc ( ” system” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Reg i s t e r s ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLParameters width6 params ;
width6 params [ ”WIDTH”]=”6” ;
RTLParameters width5 params ;
width5 params [ ”WIDTH”]=”5” ;
RTLParameters width26 params ;
width26 params [ ”WIDTH”]=”26” ;
RTLParameters width16 params ;
width16 params [ ”WIDTH”]=”16” ;

RTLComponent ∗ r t r e g 0=new RTLComponent( ” p ipe reg ” , width5 params ) ;
RTLComponent ∗ rd r eg0=new RTLComponent( ” p ipe reg ” , width5 params ) ;
RTLComponent ∗ r s r e g 0=new RTLComponent( ” p ipe reg ” , width5 params ) ;
RTLComponent ∗ o f f s e t r e g 0=new RTLComponent( ” p ipe reg ” , width16 params ) ;
RTLComponent ∗ s a r eg0=new RTLComponent( ” p ipe reg ” , width5 params ) ;
RTLComponent ∗ i n s t r i n d e x r e g 0=new RTLComponent( ” p ipe reg ” , width26 params ) ;
RTLComponent ∗ pc reg0=new RTLComponent( ” p ipe reg ” ) ;

RTLComponent ∗ o f f s e t r e g 1=new RTLComponent( ” p ipe reg ” ) ;
RTLComponent ∗ i n s t r i n d e x r e g 1=new RTLComponent( ” p ipe reg ” , width26 params ) ;
RTLComponent ∗ s a r eg1=new RTLComponent( ” p ipe reg ” , width5 params ) ;
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RTLComponent ∗ pc reg1=new RTLComponent( ” p ipe reg ” ) ;

RTLComponent ∗ l o g i c r e g 2=new RTLComponent( ” p ipe reg ” ) ;
RTLComponent ∗ s t o r eda t a r e g2=new RTLComponent( ” p ipe reg ” ) ;

RTLComponent ∗ ds t r e g1=new RTLComponent( ” p ipe reg ” , width5 params ) ;
RTLComponent ∗ ds t r e g2=new RTLComponent( ” p ipe reg ” , width5 params ) ;

RTLComponent ∗ r e s u l t r e g 3=new RTLComponent( ” p ipe reg ” ) ;

RTLComponent ∗ pc f ake r eg1=new RTLComponent( ” fakede l ay ” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Other Components ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

RTLComponent ∗ nop rs=new RTLComponent( ”nop” ) ;
RTLComponent ∗ nop rt=new RTLComponent( ”nop” ) ;
RTLComponent ∗ nop r e su l t=new RTLComponent( ”nop” ) ;

RTLComponent ∗nop opB=new RTLComponent( ”nop” ) ;
RTLComponent ∗ r s z e r o e r=new RTLComponent( ” z e r o e r ” , width5 params ) ;
RTLComponent ∗ r t z e r o e r=new RTLComponent( ” z e r o e r ” , width5 params ) ;
RTLComponent ∗ r d z e r o e r=new RTLComponent( ” z e r o e r ” , width5 params ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Stage Requests ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
proc . putInStage ( const31 , ”op” , 2 ) ;
proc . putInStage ( const16 , ”op” , 3 ) ;
proc . putInStage ( const8 , ”op” , 3 ) ;
proc . putInStage ( h i r eg , ”op” , 4 ) ;
proc . putInStage ( l o r e g , ”op” , 4 ) ;
proc . putInStage ( i f e t c h , ”pcreadop” , 1 ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Datapath Wiring ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

// Stage 0 p ipe r e g i s t e r s
proc . addConnection ( i f e t c h , ” r t ” , r t r eg0 , ”d” ) ;
proc . addConnection ( i f e t c h , ” r s ” , r s r eg0 , ”d” ) ;
proc . addConnection ( i f e t c h , ” rd” , rd reg0 , ”d” ) ;
proc . addConnection ( i f e t c h , ” sa ” , sa reg0 , ”d” ) ;
proc . addConnection ( i f e t c h , ” o f f s e t ” , o f f s e t r e g 0 , ”d” ) ;
proc . addConnection ( i f e t c h , ” i n s t r i n d e x ” , i n s t r i nd ex r e g 0 , ”d” ) ;
proc . addConnection ( i f e t c h , ” pc out ” , pc reg0 , ”d” ) ;

proc . addConnection ( r s r eg0 , ”q” , r s z e r o e r , ”d” ) ;
proc . addConnection ( r t r eg0 , ”q” , r t z e r o e r , ”d” ) ;
proc . addConnection ( r s z e r o e r , ”q” , r e g f i l e , ” a r eg ” ) ;
proc . addConnection ( r t z e r o e r , ”q” , r e g f i l e , ” b reg ” ) ;

// Stage 1 p ipe r e g i s t e r s
proc . addConnection ( o f f s e t r e g 0 , ”q” , o f f s e t r e g 1 , ”d” ) ;
proc . addConnection ( s ignext , ”out” , o f f s e t r e g 1 , ”d” ) ;
proc . addConnection ( i n s t r i nd ex r e g 0 , ”q” , i n s t r i nd ex r e g 1 , ”d” ) ;
proc . addConnection ( sa reg0 , ”q” , sa reg1 , ”d” ) ;
proc . addConnection ( pc reg0 , ”q” , pc reg1 , ”d” ) ;

proc . addConnection ( r t r eg0 , ”q” , rd ze roe r , ”d” ) ;
proc . addConnection ( rd reg0 , ”q” , rd ze roe r , ”d” ) ;
proc . addConnection ( const31 , ”out” , rd ze roe r , ”d” ) ;
proc . addConnection ( rd ze roe r , ”q” , ds t r eg1 , ”d” ) ;
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// Cond i t iona l Branch path
proc . addConnection ( o f f s e t r e g 0 , ”q” , s ignext , ” in ” ) ;
proc . addConnection ( o f f s e t r e g 1 , ”q” , pcadder , ” o f f s e t ” ) ;
proc . addConnection ( pc reg1 , ”q” , pcadder , ”pc” ) ;
proc . addConnection ( pcadder , ” r e s u l t ” , i f e t c h , ” load data ” ) ;

proc . addConnection ( branchreso lve , ”eq” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ”ne” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” l e z ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” l t z ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” gez ” , i f e t c h , ” load ” ) ;
proc . addConnection ( branchreso lve , ” gtz ” , i f e t c h , ” load ” ) ;

// J and JAL path
proc . addConnection ( pc reg1 , ”q” , merge26lo , ” in1 ” ) ;
proc . addConnection ( i n s t r i nd ex r e g 1 , ”q” , merge26lo , ” in2 ” ) ;
proc . addConnection ( merge26lo , ”out” , i f e t c h , ” load data ” ) ;

proc . addConnection ( pc reg0 , ”q” , pc fakereg1 , ”d” ) ;
proc . addConnection ( pc fakereg1 , ”q” , addersub , ”opA” ) ;

// JR and JALR path
proc . addConnection ( nop rs , ”q” , i f e t c h , ” load data ” ) ;

// Other IR cons tant fanou t s
proc . addConnection ( o f f s e t r e g 1 , ”q” , nop opB , ”d” ) ;

// RS fanout
proc . addConnection ( r e g f i l e , ” a readdataout ” , nop rs , ”d” ) ;

proc . addConnection ( nop rs , ”q” , addersub , ”opA” ) ;
proc . addConnection ( nop rs , ”q” , l o g i c un i t , ”opA” ) ;
proc . addConnection ( nop rs , ”q” , s h i f t e r , ” sa ” ) ;
proc . addConnection ( nop rs , ”q” ,mul , ”opA” ) ;
proc . addConnection ( nop rs , ”q” , branchreso lve , ” r s ” ) ;

// RT fanout
proc . addConnection ( r e g f i l e , ” b readdataout ” , nop rt , ”d” ) ;

proc . addConnection ( nop rt , ”q” , nop opB , ”d” ) ;
proc . addConnection ( nop rt , ”q” ,mul , ”opB” ) ;
proc . addConnection ( nop rt , ”q” , s t o r eda ta r eg2 , ”d” ) ;
proc . addConnection ( nop rt , ”q” , branchreso lve , ” r t ” ) ;
// proc . addConnection ( nop rt ,” q ” , data mem ,” d wr i t e da t a ” ) ;

proc . addConnection ( nop opB , ”q” , addersub , ”opB” ) ;
proc . addConnection ( nop opB , ”q” , l o g i c un i t , ”opB” ) ;
proc . addConnection ( nop opB , ”q” , s h i f t e r , ”opB” ) ;

// MUL
proc . addConnection (mul , ” h i ” , h i r eg , ”d” ) ;
proc . addConnection (mul , ” l o ” , l o r e g , ”d” ) ;

// Data memory
proc . addConnection ( addersub , ” r e s u l t ” , data mem , ” d addres s ” ) ;
proc . addConnection ( s to r eda ta r eg2 , ”q” , data mem , ” d wr i t edata ” ) ;

// Adder
proc . addControlConnection ( const8 , ”out” , nop opB , ”d” ) ;
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// Logic Unit
proc . addConnection ( l o g i c un i t , ” r e s u l t ” , l o g i c r e g 2 , ”d” ) ;

// S h i f t e r
proc . addConnection ( const16 , ”out” , s h i f t e r , ” sa ” ) ;
proc . addConnection ( sa reg1 , ”q” , s h i f t e r , ” sa ” ) ;

// Writeback
proc . addConnection ( addersub , ” r e s u l t ” , nop re su l t , ”d” ) ;
proc . addConnection ( addersub , ” r e s u l t s l t ” , nop re su l t , ”d” ) ;
proc . addConnection ( l o g i c r e g 2 , ”q” , nop re su l t , ”d” ) ;
proc . addConnection ( s h i f t e r , ” r e s u l t ” , nop re su l t , ”d” ) ;
proc . addConnection (data mem , ” d l o ad r e s u l t ” , nop re su l t , ”d” ) ;
proc . addConnection ( h i r eg , ”q” , nop re su l t , ”d” ) ;
proc . addConnection ( l o r e g , ”q” , nop re su l t , ”d” ) ;

proc . addConnection ( nop re su l t , ”q” , r e g f i l e , ” c wr i t eda t a i n ” ) ;

// Writeback d e s t i n a t i o n
proc . addConnection ( ds t reg1 , ”q” , ds t r eg2 , ”d” ) ;
proc . addConnection ( ds t reg2 , ”q” , r e g f i l e , ” c r e g ” ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Con t ro l l e r ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
Pipe l ineOpt ions opt ions ;
opt i ons . r e g i s t e r o p c od e s=fa l se ;
C t r lP ip e l i n ed con t r o l (&fdp ,&proc , opt i ons ) ;

proc . addControlConnection ( nop re su l t , ”q” , r e s u l t r e g 3 , ”d” ) ;
c on t r o l . inser tPipeReg ( r e s u l t r e g 3 , 2 ) ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Hazard d e t e c t i on ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
HazardDetector ∗ r s haz1=con t r o l . newHazardDetector ( r s z e r o e r , ”q” , ds t r eg1 , ”q” ) ;
HazardDetector ∗ r t haz1=con t r o l . newHazardDetector ( r t z e r o e r , ”q” , ds t r eg1 , ”q” ) ;
c on t r o l . stal lOnHazard ( rs haz1 , 2 ) ;
c on t r o l . stal lOnHazard ( rt haz1 , 2 ) ;

HazardDetector ∗ r s haz2=con t r o l . newHazardDetector ( r s z e r o e r , ”q” , ds t r eg2 , ”q” ) ;
HazardDetector ∗ r t haz2=con t r o l . newHazardDetector ( r t z e r o e r , ”q” , ds t r eg2 , ”q” ) ;
c on t r o l . bypassOnHazard ( rs haz2 , 3 , r e s u l t r e g 3 , ”q” , nop rs , ”d” ) ;
c on t r o l . bypassOnHazard ( rt haz2 , 3 , r e s u l t r e g 3 , ”q” , nop rt , ”d” ) ;

A.3 The Library Entry

The library entry is a textual description of a component’s functionality and interface

formatted as in Figure A.1; an example of a component description is seen in Figure A.2

for a simplified arithmetic unit. The Module keyword starts a new description of a

component and is followed by the module’s name. The name is separated by the first

underscore into a base component name and a version name. The top-level name of the

Verilog module must take the name of the base component. In the automatically gen-
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Module <base component name>_<version name> { 
 File <Verilog source file> 
 Parameter <param name> <parameter width> 
 … 
 Input <port name> <port width> 
 … 
 Output <port name> <port width> 
 … 
 Opcode <port name> <port width> [en <enable port name>] [squash <squash port name>] { 
  <GENOP> <opcode value> <latency> <port mapping> 
  … 
 } 
 … 
 [clk] 
 [resetn] 
} 

Figure A.1: Library entry format.

opcode

result
ADD
SUB
SLT

inB

inA

Input opA 32
Input opB 32

Module alu_small {

Output result 32

ADD 0 0
SUB 1 0
SLT 2 0
}

}

Opcode opcode 2 {

Figure A.2: Sample component description for a simplified ALU. The ALU supports the
GENOPs ADD, SUB, and SLT.

erated RTL description, wire names are named after the base component name to avoid

lengthy wire names. Within the curly braces, the File statement indicates the name of

the source file where the RTL can be found (the library entry and RTL implementation

must be in the same directory).

The interface is described beginning with the component parameters and their default

values using the Parameters keyword. In Verilog, modules are paremeterizable so one can

design one module and instantiate different variations of it by modifying the parameters

passed to each instance. The SPREE infrastructure also supports this parameterization

allowing users to modify component parameters as they are selected from the library.

The Parameter statements identify the names of the parameters and their default values

respectively following the Parameter keyword.
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The input and output ports of the module are defined using the Input/Output key-

word followed by the name of the port and its bit width. The bit width can be an integer

or a parameter name. Only ports used to move data are declared here; ports used for

control signals, clock, and reset ports are declared separately as outlined below.

The Opcode statement is used to define control signals, and functionality. All library

entries must contain an Opcode statement even if there is no physical opcode port—in

this case the opcode port width is set to zero creating a virtual opcode port. In the Opcode

statement, the user defines the names of the opcode, enable, and squash ports if present;

the stall port is inferred if the latency of any operation indicates it is variable-latency.

In the example in Figure A.2, the ALU has an opcode port named ”opcode” which is

2-bits wide. Within the curly braces of the Opcode statement is the list of the GENOPs

supported by this component. Only one GENOP from the list can be executed at a time,

which allows for resource sharing. In the ALU example, the component can be used for

either addition (ADD), subtraction (SUB), and set-on-less-than (SLT) operations.

Each GENOP in the list is accompanied by three fields: (i) the opcode value which in-

dicates the value on the opcode port required to perform the operation; (ii) the latency in

cycles where 0 indicates combinational, and negative indicates variable-latency; and (iii)

(not shown in the example) the port mapping from the indexed GENOP ports to the com-

ponent physical ports. The format for this port mapping is {GENOP port}:{component

port}, where GENOP port is the index preceded with either i or o for input or output, and

the component port is indicated by name. The ALU example should have the following

port mapping beside each GENOP after the latency: i0:opA i1:opB o0:result.

SPREE supports an arbitrary amount of parallelism by allowing a component to have

more than one Opcode declaration. For example, a register file is a single component

capable of performing two operand reads and one write simultaneously. In the library

entry for such a component, there would be three opcode ports, two with an RFREAD

GENOP and one with an RFWRITE. Each of these parallel operations would have unique

control interfaces specified by their respective Opcode statement.
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Finally, the last two optional flags in the Module section are clk and resetn. These

flags indicate the presence of a clock signal named ”clk” and an active-low global reset

signal named ”resetn” in the component. SPREE will connect the processor clock and

global reset to these ports. Components which, for example, are purely combinational

do not require a clock or reset signal.

All the components listed in Table 3.2 have been described using library entries as

described above. The following is a listing of all the library entries for all components

used in this exploration.

Module i f e t c h {
F i l e i f e t c h . v

Input load data 32
Input load 1
Output pc out 32
Output next pc 30
Output opcode 6
Output r s 5
Output r t 5
Output rd 5
Output sa 5
Output o f f s e t 16
Output i n s t r i n d e x 26
Output func 6
Output i n s t r 32
Opcode pcreadop 0 {

PCREAD 0 0 o0 : pc out o1 : next pc
}
Opcode i f e t c hop 0 {

IFETCH 0 0 o0 : r s o1 : r t o2 : rd o3 : sa o4 : o f f s e t o5 : i n s t r i n d e x o6 : opcode o7 : func o8 : i n s t r
}
Opcode op 1 en en {

PCWRITE 0 0 i 0 : l oad data i 1 : load
PCWRITEUNCOND 1 0 i 0 : l oad data

}
c l k
r e s e tn

b o o t i n s t r
}

Module i f e t c h p i p e {
F i l e i f e t c h p i p e . v

Input load data 32
Input load 1
Output next pc 30
Output sa 5
Output o f f s e t 16
Output i n s t r i n d e x 26
Output rd 5
Output r t 5
Output r s 5
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Output func 6
Output opcode 6
Output i n s t r 32
Output pc out 32
Opcode pcreadop 0 {

PCREAD 0 0 o0 : pc out o1 : next pc
}
Opcode i f e t c hop 0 en in s t ru c t i on i ndependen t en squashn squashn {

IFETCH 0 0 o0 : r s o1 : r t o2 : rd o3 : sa o4 : o f f s e t o5 : i n s t r i n d e x o6 : opcode o7 : func o8 : i n s t r
}
Opcode op 1 en we {

PCWRITE 0 0 i 0 : l oad data i 1 : load
PCWRITEUNCOND 1 0 i 0 : l oad data

}
c l k
r e s e tn

b o o t i n s t r
}

Module r e g f i l e {
F i l e r e g f i l e . v

Input a r eg 5
Output a readdataout 32
Input b reg 5
Output b readdataout 32
Input c r e g 5
Input c wr i t eda t a i n 32
Opcode a op 0 {

RFREAD 0 1 i 0 : a r eg o0 : a readdataout
}
Opcode b op 0 {

RFREAD 0 1 i 0 : b reg o0 : b readdataout
}
Opcode c op 0 en c we {

RFWRITE 0 0 i 0 : c wr i t eda t a i n i 1 : c r e g
}
c l k
r e s e tn

}

Module r e g f i l e p i p e {
F i l e r e g f i l e p i p e . v

Input a r eg 5
Output a readdataout 32
Input b reg 5
Output b readdataout 32
Input c r e g 5
Input c wr i t eda t a i n 32
Opcode a op 0 en in s t ru c t i on i ndependen t a en {

RFREAD 0 1 i 0 : a r eg o0 : a readdataout
}
Opcode b op 0 en in s t ru c t i on i ndependen t b en {

RFREAD 0 1 i 0 : b reg o0 : b readdataout
}
Opcode c op 0 en c we {

RFWRITE 0 0 i 0 : c wr i t eda t a i n i 1 : c r e g
}
c l k
r e s e tn
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}

Module pcadder {
F i l e pcadder . v

Input pc 32
Input o f f s e t 32
Output r e s u l t 32
Opcode op 0 {

ADDU 0 0 i 0 : pc i 1 : o f f s e t o0 : r e s u l t
}

}

Module pcadder merge26lo {
F i l e pcadder merge26lo . v

Input pc 32
Input o f f s e t 32
Input i n s t r i n d e x 26
Output r e s u l t 32
Opcode op 1 {

MERGE26LO 0 0 i 0 : pc i 1 : i n s t r i n d e x o0 : r e s u l t
ADDU 1 0 i 0 : pc i 1 : o f f s e t o0 : r e s u l t

}
}

Module addersub {
F i l e addersub . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output r e s u l t 32
Opcode op 3 {

ADD 3 0 i 0 : opA i1 : opB o0 : r e s u l t
ADDU 1 0 i 0 : opA i1 : opB o0 : r e s u l t
SUB 0 0 i 0 : opA i1 : opB o0 : r e s u l t
SUBU 2 0 i 0 : opA i1 : opB o0 : r e s u l t
SLT 6 0 i 0 : opA i1 : opB o0 : r e s u l t
SLTU 4 0 i 0 : opA i1 : opB o0 : r e s u l t

}
}

Module addersub 1 {
F i l e addersub 1 . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output r e s u l t 32
Opcode op 3 {

ADD 3 1 i 0 : opA i1 : opB o0 : r e s u l t
ADDU 1 1 i 0 : opA i1 : opB o0 : r e s u l t
SUB 0 1 i 0 : opA i1 : opB o0 : r e s u l t
SUBU 2 1 i 0 : opA i1 : opB o0 : r e s u l t
SLT 6 1 i 0 : opA i1 : opB o0 : r e s u l t
SLTU 4 1 i 0 : opA i1 : opB o0 : r e s u l t

}
c l k
r e s e tn

}

Module adde r sub s l t {



Appendix A. SPREE System Details 122

F i l e adde r sub s l t . v
Parameter WIDTH 32
Input opA 32
Input opB 32
Output r e s u l t 32
Output r e s u l t s l t 1
Opcode op 3 {

ADD 3 0 i 0 : opA i1 : opB o0 : r e s u l t
ADDU 1 0 i 0 : opA i1 : opB o0 : r e s u l t
SUB 0 0 i 0 : opA i1 : opB o0 : r e s u l t
SUBU 2 0 i 0 : opA i1 : opB o0 : r e s u l t
SLT 6 0 i 0 : opA i1 : opB o0 : r e s u l t s l t
SLTU 4 0 i 0 : opA i1 : opB o0 : r e s u l t s l t

}
}

Module adde r sub s l t 1 {
F i l e adde r sub s l t 1 . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output r e s u l t 32
Output r e s u l t s l t 1
Opcode op 3 {

ADD 3 1 i 0 : opA i1 : opB o0 : r e s u l t
ADDU 1 1 i 0 : opA i1 : opB o0 : r e s u l t
SUB 0 1 i 0 : opA i1 : opB o0 : r e s u l t
SUBU 2 1 i 0 : opA i1 : opB o0 : r e s u l t
SLT 6 1 i 0 : opA i1 : opB o0 : r e s u l t s l t
SLTU 4 1 i 0 : opA i1 : opB o0 : r e s u l t s l t

}
c l k
r e s e tn

}

Module s e r i a l a l u {
F i l e s e r i a l a l u . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output r e s u l t 32
Output s h i f t c o un t 6
Opcode op 4 en s t a r t {

ADD 6 −1 i 0 : opA i1 : opB o0 : r e s u l t
ADDU 4 −1 i 0 : opA i1 : opB o0 : r e s u l t
SUB 14 −1 i 0 : opA i1 : opB o0 : r e s u l t
SUBU 12 −1 i 0 : opA i1 : opB o0 : r e s u l t
SLT 15 −1 i 0 : opA i1 : opB o0 : r e s u l t
SLTU 13 −1 i 0 : opA i1 : opB o0 : r e s u l t
AND 0 −1 i 0 : opA i1 : opB o0 : r e s u l t
OR 1 −1 i 0 : opA i1 : opB o0 : r e s u l t
XOR 2 −1 i 0 : opA i1 : opB o0 : r e s u l t
NOR 3 −1 i 0 : opA i1 : opB o0 : r e s u l t
SHIFTLEFT 9 −1 i 0 : opB i1 : opA o0 : r e s u l t
SHIFTRIGHTLOGIC 8 −1 i 0 : opB i1 : opA o0 : r e s u l t
SHIFTRIGHTARITH 10 −1 i 0 : opB i1 : opA o0 : r e s u l t

}
c l k
r e s e tn
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}

Module s h i f t e r b a r r e l {
F i l e s h i f t e r b a r r e l . v

Parameter WIDTH 32
Input opB 32
Input sa 5
Output r e s u l t 32
Opcode op 2 {

SHIFTLEFT 0 0 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTLOGIC 1 0 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTARITH 3 0 i 0 : opB i1 : sa o0 : r e s u l t

}
}

Module s h i f t e r b a r r e l 1 {
F i l e s h i f t e r b a r r e l 1 . v

Parameter WIDTH 32
Input opB 32
Input sa 5
Output r e s u l t 32
Opcode op 2 {

SHIFTLEFT 0 1 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTLOGIC 1 1 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTARITH 3 1 i 0 : opB i1 : sa o0 : r e s u l t

}
c l k
r e s e tn

}

Module s h i f t e r b a r r e l p i p e 1 {
F i l e s h i f t e r b a r r e l p i p e 1 . v

Parameter WIDTH 32
Input opB 32
Input sa 5
Output r e s u l t 32
Opcode op 2 {

SHIFTLEFT 0 1 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTLOGIC 1 1 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTARITH 3 1 i 0 : opB i1 : sa o0 : r e s u l t

}
c l k
r e s e tn

}

Module s h i f t e r p e r b i t p i p e {
F i l e s h i f t e r p e r b i t p i p e . v

Parameter WIDTH 32
Input opB 32
Input sa 5
Input dst 5
Output r e s u l t 32
Opcode op 2 en s t a r t {

SHIFTLEFT 0 −2 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTLOGIC 1 −2 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTARITH 3 −2 i 0 : opB i1 : sa o0 : r e s u l t

}
c l k
r e s e tn
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}

Module s h i f t e r p e r b i t {
F i l e s h i f t e r p e r b i t . v

Parameter WIDTH 32
Input opB 32
Input sa 5
Output r e s u l t 32
Opcode op 2 en s t a r t {

SHIFTLEFT 0 −1 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTLOGIC 1 −1 i 0 : opB i1 : sa o0 : r e s u l t
SHIFTRIGHTARITH 3 −1 i 0 : opB i1 : sa o0 : r e s u l t

}
c l k
r e s e tn

}

Module l o g i c u n i t {
F i l e l o g i c u n i t . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output r e s u l t 32
Opcode op 2 {

AND 0 0 i 0 : opA i1 : opB o0 : r e s u l t
OR 1 0 i 0 : opA i1 : opB o0 : r e s u l t
XOR 2 0 i 0 : opA i1 : opB o0 : r e s u l t
NOR 3 0 i 0 : opA i1 : opB o0 : r e s u l t

}
}

Module mul 3 {
F i l e mul 3 . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output h i 32
Output l o 32
Opcode op 1 {

MULT 1 3 i 0 : opA i1 : opB o0 : l o o1 : h i
MULTU 0 3 i 0 : opA i1 : opB o0 : l o o1 : h i

}
c l k
r e s e tn

}

Module mul 1 {
F i l e mul 1 . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output h i 32
Output l o 32
Opcode op 1 {

MULT 1 1 i 0 : opA i1 : opB o0 : l o o1 : h i
MULTU 0 1 i 0 : opA i1 : opB o0 : l o o1 : h i

}
c l k
r e s e tn
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}

Module mul {
F i l e mul . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Output h i 32
Output l o 32
Opcode op 1 {

MULT 1 0 i 0 : opA i1 : opB o0 : l o o1 : h i
MULTU 0 0 i 0 : opA i1 : opB o0 : l o o1 : h i

}
}

Module mu l sh i f t {
F i l e mu l s h i f t . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Input sa 5
Output h i 32
Output l o 32
Output s h i f t r e s u l t 32
Opcode op 3 {

MULT 6 0 i 0 : opA i1 : opB o0 : l o o1 : h i
MULTU 4 0 i 0 : opA i1 : opB o0 : l o o1 : h i
SHIFTLEFT 0 0 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTLOGIC 1 0 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTARITH 3 0 i 0 : opA i1 : sa o0 : s h i f t r e s u l t

}
}

Module m u l s h i f t s t a l l {
F i l e m u l s h i f t s t a l l . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Input dst 5
Input sa 5
Output h i 32
Output l o 32
Output s h i f t r e s u l t 32
Opcode op 3 en s t a r t {

MULT 6 −2 i 0 : opA i1 : opB o0 : l o o1 : h i
MULTU 4 −2 i 0 : opA i1 : opB o0 : l o o1 : h i
SHIFTLEFT 0 −2 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTLOGIC 1 −2 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTARITH 3 −2 i 0 : opA i1 : sa o0 : s h i f t r e s u l t

}
c l k
r e s e tn

}

Module mu l sh i f t 1 {
F i l e mu l sh i f t 1 . v

Parameter WIDTH 32
Input opA 32
Input opB 32



Appendix A. SPREE System Details 126

Input sa 5
Output h i 32
Output l o 32
Output s h i f t r e s u l t 32
Opcode op 3 {

MULT 6 1 i 0 : opA i1 : opB o0 : l o o1 : h i
MULTU 4 1 i 0 : opA i1 : opB o0 : l o o1 : h i
SHIFTLEFT 0 1 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTLOGIC 1 1 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTARITH 3 1 i 0 : opA i1 : sa o0 : s h i f t r e s u l t

}
c l k
r e s e tn

}

Module mu l s h i f t p i p e 1 {
F i l e mu l s h i f t p i p e 1 . v

Parameter WIDTH 32
Input opA 32
Input opB 32
Input sa 5
Output h i 32
Output l o 32
Output s h i f t r e s u l t 32
Opcode op 3 {

MULT 6 1 i 0 : opA i1 : opB o0 : l o o1 : h i
MULTU 4 1 i 0 : opA i1 : opB o0 : l o o1 : h i
SHIFTLEFT 0 1 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTLOGIC 1 1 i 0 : opA i1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTARITH 3 1 i 0 : opA i1 : sa o0 : s h i f t r e s u l t

}
c l k
r e s e tn

}

Module s i gnext16 {
F i l e s i gnext16 . v

Input in 16
Output out 32
Opcode op 0 {

SIGNEXT16 0 0 i 0 : in o0 : out
}

}
Module merge26lo {

F i l e merge26lo . v
Input in1 32
Input in2 26
Output out 32
Opcode op 0 {

MERGE26LO 0 0 i 0 : in1 i 1 : in2 o0 : out
}

}
Module branchre so lve {

F i l e branchre so lve . v
Parameter WIDTH 32
Input r s 32
Input r t 32
Output eq 1
Output ne 1
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Output l t z 1
Output l e z 1
Output gtz 1
Output gez 1
Output eqz 1
Opcode op 0 en en {

BRANCHRESOLVE 0 0 i 0 : r s i 1 : r t o0 : eq o1 : ne o2 : l t z o3 : l e z o4 : gtz o5 : gez o6 : eqz
}

}

Module h i r e g 1 {
F i l e h i r e g . v

Parameter WIDTH 32
Input d 32
Output q 32
Opcode op 0 {

HIREAD 0 1 o0 : q
}
Opcode op2 0 en en {

HIWRITE 0 0 i 0 : d
}

c l k
r e s e tn

}

Module l o r e g 1 {
F i l e l o r e g . v

Parameter WIDTH 32
Input d 32
Output q 32
Opcode op 0 {

LOREAD 0 1 o0 : q
}
Opcode op2 0 en en {

LOWRITE 0 0 i 0 : d
}

c l k
r e s e tn

}

Module h i r e g {
F i l e h i r e g . v

Parameter WIDTH 32
Input d 32
Output q 32
Opcode op 0 {

HIREAD 0 0 o0 : q
}
Opcode op2 0 en en {

HIWRITE 0 0 i 0 : d
}

c l k
r e s e tn

}

Module l o r e g {
F i l e l o r e g . v

Parameter WIDTH 32
Input d 32
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Output q 32
Opcode op 0 {

LOREAD 0 0 o0 : q
}
Opcode op2 0 en en {

LOWRITE 0 0 i 0 : d
}

c l k
r e s e tn

}

Module register {
F i l e components . v

Parameter WIDTH 32
Input d WIDTH
Output q WIDTH
Opcode op 0 en en {

NOP 0 1 i 0 : d o0 : q
}
c l k
r e s e tn

}

Module p ipe reg {
F i l e components . v

Parameter WIDTH 32
Input d WIDTH
Output q WIDTH
Opcode op 0 en en squashn squashn {

NOP 0 1 i 0 : d o0 : q
}
c l k
r e s e tn

}

Module p ipede l ay r eg {
F i l e components . v

Parameter WIDTH 32
Input d WIDTH
Input dst 5
Output q WIDTH
Opcode op 0 en en squashn squashn {

NOP 0 −2 i 0 : d o0 : q
}
c l k
r e s e tn

}

Module de lay {
F i l e de lay . v

Parameter WIDTH 32
Input d WIDTH
Output q WIDTH
Opcode op 0 {

NOP 0 1 i 0 : d o0 : q
}

c l k
r e s e tn

}
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Module f akede l ay {
F i l e components . v

Parameter WIDTH 32
Input d WIDTH
Output q WIDTH
Opcode op 0 {

NOP 0 1 i 0 : d o0 : q
}

c l k
}

Module z e r o e r {
F i l e components . v

Parameter WIDTH 32
Input d WIDTH
Output q WIDTH
Opcode en 1 {

NOP 1 0 i 0 : d o0 : q
}

}

Module nop {
F i l e components . v

Parameter WIDTH 32
Input d WIDTH
Output q WIDTH
Opcode op 0 {

NOP 0 0 i 0 : d o0 : q
}

}

Module const {
F i l e components . v

Parameter VAL 16
Parameter WIDTH 32
Output out 32
Opcode op 0 {

CONST 0 0 o0 : out
}

}

Module branch detec to r {
F i l e components . v

Input opcode 6
Input func 6
Output i s b ranch 1
Opcode op 0 {

NOP 0 0 i 0 : opcode o0 : i s b ranch
}

}

Module data mem {
F i l e data mem . v

Input d wr i t edata 32
Input d addres s 32
Output d l o ad r e s u l t 32
Opcode op 4 en en {

LOADBYTE 7 1 i 0 : d addres s o0 : d l o ad r e s u l t
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LOADHALF 5 1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADWORD 0 1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADBYTEU 3 1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADHALFU 1 1 i 0 : d addres s o0 : d l o ad r e s u l t
STOREBYTE 11 1 i 1 : d addres s i 0 : d wr i t edata
STOREHALF 9 1 i 1 : d addres s i 0 : d wr i t edata
STOREWORD 8 1 i 1 : d addres s i 0 : d wr i t edata

}
c l k
r e s e tn

boot data
}

Module data mem dp {
F i l e data mem dp . v

Input d wr i t edata 32
Input d addres s 32
Output d l o ad r e s u l t 32
Opcode op 4 en en {

LOADBYTE 7 1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADHALF 5 1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADWORD 0 1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADBYTEU 3 1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADHALFU 1 1 i 0 : d addres s o0 : d l o ad r e s u l t
STOREBYTE 11 1 i 1 : d addres s i 0 : d wr i t edata
STOREHALF 9 1 i 1 : d addres s i 0 : d wr i t edata
STOREWORD 8 1 i 1 : d addres s i 0 : d wr i t edata

}
c l k
r e s e tn

}

Module s h i f t e r s e r i a l d a t amem {
F i l e s h i f t e r s e r i a l d a t amem . v

Input d wr i t edata 32
Input d addres s 32
Input sa 5
Output d l o ad r e s u l t 32
Output s h i f t r e s u l t 32
Opcode op 4 en s t a r t {

LOADBYTE 7 −1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADHALF 5 −1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADWORD 0 −1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADBYTEU 3 −1 i 0 : d addres s o0 : d l o ad r e s u l t
LOADHALFU 1 −1 i 0 : d addres s o0 : d l o ad r e s u l t
STOREBYTE 11 −1 i 1 : d addres s i 0 : d wr i t edata
STOREHALF 9 −1 i 1 : d addres s i 0 : d wr i t edata
STOREWORD 8 −1 i 1 : d addres s i 0 : d wr i t edata
SHIFTLEFT 12 −1 i 0 : d wr i t edata i 1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTLOGIC 14 −1 i 0 : d wr i t edata i 1 : sa o0 : s h i f t r e s u l t
SHIFTRIGHTARITH 15 −1 i 0 : d wr i t edata i 1 : sa o0 : s h i f t r e s u l t

}
c l k
r e s e tn

}
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Exploration Result Details

B.1 CAD Settings

Listing B.1: Base Settings common for all compiles

s e t g l oba l a s s i gnmen t −name FAMILY St r a t i x
s e t g l oba l a s s i gnmen t −name DEVICE EP1S40F780C5
s e t g l oba l a s s i gnmen t −name FITTER EFFORT ”STANDARD FIT”

s e t g l oba l a s s i gnmen t −name AUTO ROM RECOGNITION OFF
se t g l oba l a s s i gnmen t −name AUTO RAM RECOGNITION OFF

Listing B.2: Area-focussed Optimization Settings

# Analys i s & Synthe s i s Assignments
# ================================
se t g l oba l a s s i gnmen t −name STRATIX OPTIMIZATION TECHNIQUE AREA
se t g l oba l a s s i gnmen t −name MUXRESTRUCTURE ON
se t g l oba l a s s i gnmen t −name STATE MACHINE PROCESSING AUTO
se t g l oba l a s s i gnmen t −name ADV NETLIST OPT SYNTH WYSIWYG REMAP OFF
se t g l oba l a s s i gnmen t −name ADV NETLIST OPT SYNTH GATE RETIME OFF

# F i t t e r Assignments
# ==================
se t g l oba l a s s i gnmen t −name AUTO PACKED REGISTERS STRATIX ”MINIMIZE AREA”
s e t g l oba l a s s i gnmen t −name PHYSICAL SYNTHESIS COMBO LOGIC OFF
se t g l oba l a s s i gnmen t −name PHYSICAL SYNTHESIS REGISTER DUPLICATION OFF
se t g l oba l a s s i gnmen t −name PHYSICAL SYNTHESIS REGISTER RETIMING OFF

Listing B.3: Speed-focussed Optimization Settings

# Analys i s & Synthe s i s Assignments
# ================================

131
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s e t g l oba l a s s i gnmen t −name STRATIX OPTIMIZATION TECHNIQUE SPEED
se t g l oba l a s s i gnmen t −name MUXRESTRUCTURE OFF
se t g l oba l a s s i gnmen t −name STATE MACHINE PROCESSING AUTO
se t g l oba l a s s i gnmen t −name ADV NETLIST OPT SYNTH WYSIWYG REMAP ON
se t g l oba l a s s i gnmen t −name ADV NETLIST OPT SYNTH GATE RETIME ON

# F i t t e r Assignments
# ==================
se t g l oba l a s s i gnmen t −name AUTO PACKED REGISTERS STRATIX OFF
se t g l oba l a s s i gnmen t −name PHYSICAL SYNTHESIS COMBO LOGIC ON
se t g l oba l a s s i gnmen t −name PHYSICAL SYNTHESIS REGISTER DUPLICATION ON
se t g l oba l a s s i gnmen t −name PHYSICAL SYNTHESIS REGISTER RETIMING ON
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B.2 Data from exploration

B.2.1 Shifter Implementation, Multiply Support, and Pipeline Depth

Table B.1: Data for hardware multiply support over different shifters and pipelines.
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5
1
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3
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2
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0
2
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5
2
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5
1
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3
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1
1
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9
1
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1
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8
1
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7
F
F
T

M
I

4
.8

5
2
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3
2
.4

3
3
.6

8
1
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6
1
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0
3
.7

4
1
.5

3
1
.3

7
d
ijk

stra
3
.6

6
2
.8

5
2
.8

5
2
.3

2
1
.7

8
1
.6

6
2
.3

9
1
.8

5
1
.7

3
p
a
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3
.6

5
2
.7

7
2
.7

7
2
.3

5
1
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9
1
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2
2
.4

7
1
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1
1
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4
g
o
l

6
.1

6
2
.7

4
2
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4
4
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1
1
.6

7
1
.5

3
4
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1
1
.7

7
1
.6

3
d
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5
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0
2
.5

8
2
.5

8
3
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0
1
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4
1
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6
3
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8
1
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1
1
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4
d
h
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3
.5

9
2
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4
2
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4
2
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7
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.5

9
1
.5

3
2
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8
1
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0
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4
A
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E
R

A
G

E
4
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4
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4
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4
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1
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2
1
.4

8
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9
1
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0
1
.5
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Table B.2: Data for hardware multiply support over different shifters and pipelines (cont’d).

P
ip

e
d
ep

th
5
-sta

g
e

7
-sta

g
e

S
h
ifter

S
eria

l
M

u
ltip

lier
L
U

T
-b

a
sed

S
eria

l
M

u
ltip

lier
L
U

T
-b

a
sed

C
A

D
fl
o
w

d
efa

u
lt

A
rea

(L
E

s)
1
0
8
2

1
1
9
0

1
3
4
0

1
2
8
3

1
3
3
8

1
4
9
3

S
p
eed

(M
H

z)
9
2
.6

3
9
1
.0

1
9
1
.5

4
1
0
3
.7

6
9
8
.1

9
1
0
5
.8

0
E

n
erg

y
(n

J
/
cy

cle)
1
.3

4
1
.6

4
1
.6

3
1
.1

0
1
.3

2
1
.1

4
E

n
erg

y
(n

J
/
in

str)
4
.7

1
3
.1

5
2
.9

3
4
.8

1
3
.5

1
3
.0

4
W

a
ll

clo
ck

tim
e

(u
s)

2
9
0
3

1
6
1
4

1
4
9
7

3
2
2
8

2
0
7
6

1
9
2
7

C
A

D
fl
o
w

a
rea

A
rea

(L
E

s)
1
0
8
1

1
1
8
7

1
3
3
6

1
2
8
2

1
3
2
0

1
4
8
9

S
p
eed

(M
H

z)
9
3
.1

2
9
1
.3

6
8
9
.5

7
1
0
2
.1

7
9
4
.9

2
1
0
5
.8

6

C
A

D
fl
o
w
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A
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E
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1
3
1
2

1
4
6
3

1
8
4
5

1
5
0
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1
5
6
3

1
7
7
3

S
p
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H

z)
9
6
.0

4
9
3
.3

2
9
1
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4
1
0
2
.0

7
1
0
3
.2

5
1
0
7
.3

1

C
P

I
b
u
b
b
le

so
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1
.8

5
1
.8

1
1
.8

1
2
.7

3
2
.6

9
2
.6

9
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8
.2

8
2
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0
2
.1

4
9
.5

0
3
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3
3
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3
d
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3
.3
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1
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1
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3
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1
1
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1
1
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7
1
.9
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1
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3
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.6

6
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.6
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1
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3
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3
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.6

2
2
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1
2
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0
2
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0
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u
a
n
t

4
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8
2
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1
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9
5
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9
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.9

0
2
.9

0
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u
a
n
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a
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1
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3
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4
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6
2
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6
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1
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9
1
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7
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5
3
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2
.8

8
2
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8
F
F
T

M
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3
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9
1
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8
1
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2
4
.5

3
2
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2
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7
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2
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6
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3
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3
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4
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a
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o
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2
6
.1

2
2
.8

4
2
.8

4
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4
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6
1
.5

9
4
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3
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0
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0
d
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2
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E
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2
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9
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8
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7
2
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Table B.3: Data for software multiply support over different shifters and pipelines.

P
ip

e
d
ep

th
2
-sta

g
e

3
-sta

g
e

4
-sta

g
e

S
h
ifter

S
eria

l
M

u
ltip

lier
L
U

T
-b

a
sed

S
eria

l
M

u
ltip

lier
L
U

T
-b

a
sed

S
eria

l
M

u
ltip

lier
L
U

T
-b

a
sed

C
A

D
fl
o
w

d
efa

u
lt

A
rea

(L
E

s)
6
6
6

8
6
2

8
9
3

7
7
2

9
7
8

1
0
4
6

8
3
5

1
0
5
1

1
1
1
6

S
p
eed

(M
H

z)
6
8
.8

9
6
7
.0

2
6
4
.0

1
7
8
.3

1
7
5
.8

8
7
1
.2

4
9
0
.5

2
7
8
.3

4
7
2
.0

8

C
P

I
b
u
b
b
le

so
rt

2
.8

2
2
.6

7
2
.6

7
1
.6

4
1
.6

1
1
.6

0
1
.6

5
1
.6

2
1
.6

2
crc

8
.7

1
2
.5

0
2
.5

0
7
.8

6
2
.0
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1
.6

4
7
.8

6
2
.0

0
1
.6

4
d
es

4
.4

9
2
.3

7
2
.3

7
3
.3

8
1
.4

7
1
.2

7
3
.3

9
1
.4

8
1
.2

8
ff
t

2
3
.2

3
1
7
.7

5
1
7
.7

5
1
4
.7

9
1
1
.6

0
9
.3

5
1
5
.9

6
1
2
.7

7
1
0
.5

2
fi
r

3
.6

3
3
.2

9
3
.2

9
2
.1

7
1
.9

8
1
.8

9
2
.4

0
2
.2

2
2
.1

3
q
u
a
n
t

1
6
.8

4
1
1
.5

6
1
1
.5

6
1
1
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9
8
.0

2
6
.4

6
1
2
.4

9
8
.8

2
7
.2

7
iq

u
a
n
t

2
3
.6

7
1
8
.6

9
1
8
.6

9
1
4
.7

0
1
2
.1

7
9
.7

9
1
5
.9

0
1
3
.3

7
1
0
.9

9
tu

rb
o

7
.1

5
2
.3

6
2
.3

6
6
.2

5
1
.7

6
1
.4

7
6
.2

7
1
.7

8
1
.4

9
v
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6
.0

7
2
.5

6
2
.5

6
4
.8

9
1
.6

4
1
.4

0
4
.9

5
1
.7

0
1
.4

6
b
itcn
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3
.7

4
2
.2

3
2
.2

3
2
.7

5
1
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7
1
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4
2
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8
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1
1
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2
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M
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1
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6
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7
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9
4
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1
3
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4
7
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4
4
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6
3
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9
d
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3
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1
2
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9
2
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9
2
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4
1
.8
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1
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2
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2
1
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8
1
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6
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a
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3
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5
2
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7
2
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7
2
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5
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9
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2
2
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7
1
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1
1
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o
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6
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4
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4
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1
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3
4
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7
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4
7
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4
8
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1
4
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0
4
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0
8
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4
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2
4
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3
d
h
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3
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8
2
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2
2
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2
2
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3
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Table B.4: Data for software multiply support over different shifters and pipelines (cont’d).

P
ip

e
d
ep

th
5
-sta

g
e

7
-sta

g
e

S
h
ifter

S
eria

l
M

u
ltip

lier
L
U

T
-b

a
sed

S
eria

l
M

u
ltip

lier
L
U

T
-b

a
sed

C
A

D
fl
o
w

d
efa

u
lt

A
rea

(L
E

s)
8
4
6

1
0
9
8

1
1
1
1

1
0
5
5

1
2
4
3

1
2
6
1

S
p
eed

(M
H

z)
9
1
.9

2
9
1
.7

5
9
2
.4

5
1
0
4
.2

1
1
0
1
.2

1
1
0
6
.4

2

C
P

I
b
u
b
b
le

so
rt

1
.8

5
1
.8

1
1
.8

1
2
.7

3
2
.6

9
2
.6

9
crc

8
.2

8
2
.5

0
2
.1

4
9
.5

0
3
.4

3
3
.4

3
d
es

3
.3

9
1
.4

8
1
.2

7
3
.8

2
1
.7

1
1
.7

1
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t

1
8
.1

0
1
4
.9

2
1
2
.6

7
2
4
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7
1
8
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5
1
8
.8

5
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r

2
.5

3
2
.3

4
2
.2

5
3
.4

1
3
.1

4
3
.1

4
q
u
a
n
t

1
4
.0

1
1
0
.3

9
8
.8

3
1
8
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4
1
3
.1

1
1
3
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1
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u
a
n
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1
8
.4

2
1
5
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3
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2
5
.0

4
2
0
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3
2
0
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3
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o

6
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2
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1
.9
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7
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2
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2
2
.9

2
v
lc

5
.0

9
1
.8

8
1
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4
5
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8
2
.4

9
2
.4

9
b
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3
.0

2
1
.6

3
1
.5

0
3
.6

9
2
.2

0
2
.2

0
C

R
C

3
2

2
.6

0
2
.6

0
2
.6

0
4
.0

0
4
.0

0
4
.0

0
q
so

rt
1
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2
1
.7

7
1
.7

3
2
.5

8
2
.4

9
2
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9
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a
3
.6

7
1
.7

3
1
.6

1
4
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1
2
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6
2
.3

6
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g
sea
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1
.9

9
1
.8

7
1
.8

5
3
.0

2
2
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8
2
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8
F
F
T

M
I
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5
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4
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0
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6
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6
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B.2.2 Forwarding

Table B.5: Measurements of pipelines with forwarding.

p
ip

e3
m

u
lsh

ift
p
ip

e4
m

u
lsh

ift
p
ip

e5
b
a
rrelsh

ift
p
ip

e7
b
a
rrelsh

ift
F
o
rw

a
rd

in
g

n
o
n
e

rs
rt

rs&
rt

n
o
n
e

rs
rt

rs&
rt

n
o
n
e

rs
rt

rs&
rt

n
o
n
e

rs
rt

rs&
rt

A
rea

(L
E

s)
1
0
8
3

1
1
4
9

1
1
4
9

1
1
7
5

1
1
3
5

1
2
0
0

1
2
0
0

1
2
3
3

1
3
4
0

1
4
2
7

1
4
2
7

1
4
6
6

1
4
9
3

1
5
5
5

1
5
2
2

1
5
5
8

S
p
eed

(M
H

z)
7
6
.3

5
7
6
.7

0
7
7
.4

9
7
7
.9

9
7
4
.1

4
7
3
.4

0
7
5
.4

8
7
3
.9

3
9
1
.5

4
8
7
.5

1
8
8
.0

2
8
8
.8

1
1
0
5
.8

0
1
0
4
.9

4
1
0
2
.9

5
1
0
6
.6

3
E

n
erg

y
(n

J
/
cy

cle)
2
.0

4
2
.1

3
1
.9

4
2
.0

1
1
.9

4
2
.0

6
1
.8

7
2
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4
1
.6

3
1
.7

2
1
.6

4
1
.7

7
1
.1

4
1
.3

7
1
.3

8
1
.4

1
(n

J
/
in

str)
3
.3

0
3
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5
2
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9
2
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3
3
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1
3
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0
3
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6
3
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2
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3
2
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9
2
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8
2
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6
3
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4
3
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9
3
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3
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9
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P
I

b
u
b
b
le
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1
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1
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3
1
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1
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1
1
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1
2
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1
1
.6

0
1
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1
1
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2
2
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2
1
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2
2
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9
2
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4
2
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9
2
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4
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0
1
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1
1
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9
1
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2
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1
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2
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1
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2
.1

4
1
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2
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1
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4
3
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3
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3
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4
2
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9
d
es

1
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7
1
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2
1
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4
1
.3

9
1
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4
1
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0
1
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1
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7
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1
1
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2
1
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8
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8
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9
ff
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3
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3
1
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6
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6
1
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1
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1
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B.2.3 Minimizing Area Processors

Table B.6: Measurements of processors which minimize area
serialalu serialalu fastclock serialshift memalign share

Area (LEs) 836 869.4 883
Speed (MHz) 88.444 119.129 69.108
CPI bubble sort 29.68 31.53 3.57

crc 29.14 30.57 9.86
des 31.95 33.47 6.01
fft 25.56 27.19 4.40
fir 25.89 27.46 2.77
quant 22.18 23.69 6.11
iquant 26.10 27.67 4.41
turbo 26.24 27.34 7.33
vlc 27.80 29.39 9.04
bitcnts 29.05 30.34 5.22
CRC32 24.60 26.40 6.00
qsort 28.28 29.90 4.47
sha 32.51 34.07 6.12
stringsearch 29.98 31.27 3.24
FFT MI 29.55 30.93 5.29
dijkstra 28.98 30.76 4.48
patricia 29.60 31.38 4.89
gol 29.62 31.14 9.47
dct 29.42 30.95 5.65
dhry 30.08 31.98 5.88
AVERAGE 28.31 29.87 5.71

Wall clock time (us) 24458 19159 6314
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B.2.4 Subsetted Processors

Table B.7: ISA subsetting data on processors with full hardware multiply support.
pipe2 barrelshift pipe3 mulshift stall pipe5 barrelshift

Area (LEs) Speed (MHz) Area (LEs) Speed (MHz) Area (LEs) Speed (MHz)
ORIGINAL 1151 55.89 1082 76.08 1339 91.47
bubble sort 455 68.88 746 78.98 743 97.42
crc 923 58.96 903 79.41 1047 101.15
des 950 56.31 926 79.21 1071 97.43
fft 874 58.42 909 74.84 1225 97.58
fir 468 69.36 844 80.50 927 99.03
quant 1003 56.37 1027 76.60 1330 95.41
iquant 977 58.06 1030 75.29 1326 94.43
turbo 1052 57.97 987 76.17 1147 92.35
vlc 1007 57.90 990 75.84 1137 92.29
bitcnts 801 60.36 924 75.45 1108 94.39
CRC32 488 66.67 805 79.49 781 98.35
qsort 1012 58.27 1029 73.83 1324 94.20
sha 961 58.78 940 77.87 1069 94.64
stringsearch 991 57.34 944 77.07 1114 94.70
FFT MI 958 57.99 958 74.67 1224 94.59
dijkstra 1041 57.74 1071 77.26 1349 91.80
patricia 946 57.55 951 76.78 1118 94.00
gol 902 57.47 926 75.18 1127 95.97
dct 1016 58.40 1019 75.87 1297 92.74
dhry 1083 58.08 1048 76.35 1346 93.51
AVERAGE 895 59.54 949 76.83 1140 95.30
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B.2.5 Nios II

Table B.8: Area and performance of Nios II.
Nios II/e Nios II/s Nios II/f

Area (LEs) 586 1279.9 1670
Speed (MHz) 159.26 119.73 134.87
CPI bubble sort 7.60 2.37 2.19

crc 12.78 2.21 1.80
des 8.90 2.39 2.33
fft 59.52 1.92 1.58
fir 10.78 1.59 2.13
quant 54.38 2.54 2.21
iquant 62.81 1.73 1.93
turbo 11.40 2.64 2.17
vlc 10.85 2.49 1.67
bitcnts 8.18 2.14 1.59
CRC32 4.60 1.15 1.31
qsort 8.98 3.11 2.42
sha 7.33 1.69 1.21
stringsearch 6.52 1.51 1.68
FFT 25.11 3.64 2.61
dijkstra 8.24 1.99 1.73
patricia 7.37 3.11 2.30
gol 16.75 2.72 1.94
dct 25.74 3.35 2.40
dhry 9.68 2.93 2.26
AVERAGE 18.38 2.36 1.97

Wall clock time (us) 8816 1507 1118
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