
FPGA-Based Soft Vector Processors

by

Peter Yiannacouras

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2009 by Peter Yiannacouras

Abstract

FPGA-Based Soft Vector Processors

Peter Yiannacouras

Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering

University of Toronto

2009

FPGAs are increasingly used to implement embedded digital systems because of their low

time-to-market and low costs compared to integrated circuit design, as well as their superior

performance and area over a general purpose microprocessor. However, the hardware design

necessary to achieve this superior performance and area is very difficult to perform causing

long design times and preventing wide-spread adoption of FPGA technology. The amount of

hardware design can be reduced by employing a microprocessor for less-critical computation in

the system. Often this microprocessor is implemented using the FPGA reprogrammable fabric

as a soft processor which can preserve the benefits of a single-chip FPGA solution without

specializing the device with dedicated hard processors. Current soft processors have simple

architectures that provide performance adequate for only the least-critical computations.

Our goal is to improve soft processors by scaling their performance and expanding their

suitability to more critical computation. To this end we focus on the data parallelism found

in many embedded applications and propose that soft processors be augmented with vector

extensions to exploit this parallelism. We support this proposal through experimentation with

a parameterized soft vector processor called VESPA (Vector Extended Soft Processor Archi-

tecture) which is designed, implemented, and evaluated on real FPGA hardware.

The scalability of VESPA combined with several other architectural parameters can be used

to finely span a large design space and derive a custom architecture for exactly matching the

ii

needs of an application. Such customization is a key advantage for soft processors since their

architectures can be easily reconfigured by the end-user. Specifically, customizations can be

made to the pipeline, functional units, and memory system within VESPA. In addition, general

purpose overheads can be automatically eliminated from VESPA.

Comparing VESPA to manual hardware design, we observe a 13x speed advantage for hard-

ware over our fastest VESPA, though this is significantly less than the 500x speed advantage

over scalar soft processors. The performance-per-area of VESPA is also observed to be sig-

nificantly higher than a scalar soft processor suggesting that the addition of vector extensions

makes more efficient use of silicon area for data parallel workloads.

iii

Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Research Goals . 4

1.2 Organization . 5

2 Background 6

2.1 Microprocessor Background . 6

2.2 Vector Processors . 7

2.2.1 Vector Instructions . 8

2.2.2 Vector Architecture . 9

2.2.3 Vector Lanes . 10

2.2.4 Vector Chaining . 11

2.2.5 The T0 Vector Processor . 12

2.2.6 The VIRAM Vector Processor . 12

2.2.7 SIMD Extensions . 15

2.3 Field-Programmable Gate Arrays (FPGAs) . 15

2.3.1 Block RAMs . 16

2.3.2 Multiply-Accumulate blocks . 16

2.3.3 Microprocessor Cores . 17

2.4 FPGA Design . 17

vi

2.4.1 Behavioural Synthesis . 18

2.4.2 Extensible Processors . 20

2.5 Soft Processors and Related Work . 21

2.5.1 Soft Single-Issue In-Order Pipelines . 22

2.5.2 Soft Multi-Issue Pipelines . 22

2.5.3 Soft Multi-Threaded Pipelines . 23

2.5.4 Soft Multiprocessors . 25

2.5.5 Soft Vector Processors . 25

3 Experimental Framework 27

3.1 Overview . 27

3.2 Benchmarks . 28

3.3 Software Compilation Framework . 30

3.4 FPGA CAD Software . 30

3.4.1 Measuring Area . 31

3.4.2 Measuring Clock Frequency . 31

3.5 Hardware Platforms . 32

3.5.1 Transmogrifier-4 . 32

3.5.2 Terasic DE3 . 33

3.5.3 Measuring Wall Clock Time . 33

3.6 Measurement Error . 34

3.7 Verification . 35

3.7.1 Instruction Set Simulation . 35

3.7.2 Register Transfer Level (RTL) Simulation 36

3.7.3 In-Hardware Debugging . 37

3.8 Advantages of Hardware Execution . 37

3.9 Summary . 38

4 Performance Bottlenecks of Scalar Soft Processors 39

4.1 Integrating Scalar Soft Processors with Off-Chip Memory 39

vii

4.1.1 Scalar Soft Processor Area Breakdown . 41

4.1.2 Scalar Soft Processor Memory Latency . 42

4.2 Scaling Soft Processor Caches . 44

4.3 Soft vs Hard Processor Comparison . 46

4.4 Summary . 49

5 The VESPA Soft Vector Processor 50

5.1 Motivating Soft Vector Processors . 50

5.2 VESPA Design Goals . 51

5.3 VESPA . 53

5.3.1 MIPS-Based Scalar Processor . 54

5.3.2 VIRAM-Based Vector Instruction Set . 55

5.3.3 Vector Memory Architecture . 57

5.3.4 VESPA Pipelines . 59

5.4 Meeting the Design Goals . 60

5.4.1 VESPA Flexibility . 60

5.4.2 VESPA Portability . 62

5.5 FPGA Influences on VESPA Architecture . 63

5.6 Selecting a Maximum Vector Length (MVL) . 64

5.7 Summary . 68

6 Scalability of the VESPA Soft Vector Processor 69

6.1 Initial Scalability (L) . 69

6.1.1 Analyzing the Initial Design . 71

6.2 Improving the Memory System . 72

6.2.1 Cache Design Trade-Offs (DD and DW) 72

6.2.2 Impact of Data Prefetching (DPK and DPV) 77

6.2.3 Reduced Memory Bottleneck . 83

6.2.4 Impact of Instruction Cache (IW and ID) 84

6.3 Decoupling Vector and Control Pipelines . 85

viii

6.4 Improved VESPA Scalability . 87

6.4.1 Cycle Performance . 87

6.4.2 Clock Frequency . 89

6.4.3 Area . 90

6.5 Summary . 91

7 Expanding and Exploring the VESPA Design Space 92

7.1 Heterogeneous Lanes . 93

7.1.1 Supporting Heterogeneous Lanes . 93

7.1.2 Impact of Multiplier Lanes (X) . 94

7.1.3 Impact of Memory Crossbar (M) . 95

7.2 Vector Chaining in VESPA . 98

7.2.1 Supporting Vector Chaining . 99

7.2.2 Impact of Vector Chaining . 101

7.2.3 Vector Lanes and Powers of Two . 105

7.3 Exploring the VESPA Design Space . 105

7.3.1 Selecting and Pruning the Design Space 105

7.3.2 Exploring the Pruned Design Space . 108

7.3.3 Per-Application Analysis . 112

7.4 Eliminating Functionality . 116

7.4.1 Hardware Elimination Opportunities . 116

7.4.2 Impact of Vector Datapath Width Reduction (W) 118

7.4.3 Impact of Instruction Set Subsetting . 120

7.4.4 Impact of Combining Width Reduction and Instruction Set Subsetting . . 121

7.5 Summary . 123

8 Soft Vector Processors vs Manual FPGA Hardware Design 125

8.1 Designing Custom Hardware Circuits . 126

8.1.1 System-Level Design Constraints . 126

8.1.2 Simplifying Hardware Design Optimistically 127

ix

8.2 Evaluating Hardware Circuits . 130

8.2.1 Area Measurement . 131

8.2.2 Clock Frequency Measurement . 131

8.2.3 Cycle Count Measurement . 131

8.2.4 Area-Delay Product . 132

8.3 Implementing Hardware Circuits . 132

8.4 Comparing to Hardware . 133

8.4.1 Software vs Hardware: Area . 133

8.4.2 Software vs Hardware: Wall Clock Speed 137

8.4.3 Software vs Hardware: Area-Delay . 142

8.5 Effect of Subsetting and Width Reduction . 143

8.6 Summary . 145

9 Conclusions 146

9.1 Contributions . 147

9.2 Future Work . 150

A Measured Model Parameters 152

B Raw VESPA Data on DE3 Platform 155

C Instruction Disabling Using Verilog 168

Bibliography 171

x

List of Tables

3.1 Vectorized benchmark applications. 29

3.2 Benchmark execution speeds. 37

4.1 Memory latencies on soft and hard processor systems. 43

5.1 VIRAM instructions supported . 55

5.2 Configurable parameters for VESPA. 60

6.1 Clock frequency of different cache line sizes for a 16-lane VESPA. 74

6.2 Performance of VESPA varying lanes from 1 to 32. 88

7.1 Explored parameters in VESPA. 106

7.2 Pareto optimal VESPA configurations. 110

7.3 Configurations with best wall clock performance for each benchmark. 113

7.4 Configurations with best performance-per-area for each benchmark. 114

7.5 Hardware elimination opportunites across all benchmarks. 117

7.6 Area after width reduction across benchmarks normalized to 32-bit width. 119

8.1 Hardware circuit area and performance. 133

8.2 Area advantage for hardware over various processors 134

8.3 Speed advantage for hardware over various processors. 135

8.4 Hardware advantages over fastest VESPA. 140

A.1 Load frequency and miss rates across cache size for EEMBC benchmarks. 153

A.2 Store frequency and miss rates across cache size for EEMBC benchmarks. 154

xi

B.1 Area of VESPA system without the vector coprocessor. 155

B.2 Area of VESPA system without the vector coprocessor. 155

B.3 System area of pareto optimal VESPA configurations. 156

B.4 Performance of pareto optimal VESPA configurations. 157

B.5 Performance of pareto optimal VESPA configurations (cont’d). 158

B.6 System area after customizing to autcor. 159

B.7 System area after customizing to conven. 160

B.8 System area after customizing to rgbcmyk. 161

B.9 System area after customizing to rgbyiq. 162

B.10 System area after customizing to ip checksum. 163

B.11 System area after customizing to imgblend. 164

B.12 System area after customizing to filt3x3. 165

B.13 System area after customizing to fbital. 166

B.14 System area after customizing to viterb. 167

xii

List of Figures

2.1 Vector processing and vector chaining in space/time. 10

2.2 VIRAM processor state. 14

3.1 Overview of measurement infrastructure. 28

4.1 Area breakdown of scalar SPREE processor with off-chip memory system. 41

4.2 Memory latency breakdown on TM4. 42

4.3 Average speedup of various direct-mapped data cache sizes. 45

4.4 Performance of IBM PPC 750GX versus SPREE. 47

5.1 Application space targeted by VESPA. 52

5.2 VESPA processor system block diagram. 53

5.3 VESPA memory system diagram. 56

5.4 The VESPA memory unit. 57

5.5 The VESPA pipelines. 59

5.6 Area of the vector coprocessor across different MVL and lane configurations. . . 66

5.7 Cycle speedup measured when MVL is increased from 32 to 256. 67

6.1 Performance scalability of inital VESPA design. 70

6.2 Average wall clock speedup of various cache configurations. 73

6.3 Wall clock speedup of various cache configurations for viterb. 74

6.4 System area of different cache configurations. 75

6.5 A wide cache assembled from multiple narrow block RAMs. 76

xiii

6.6 Average speedup for different prefetching triggers. 80

6.7 Speedup of prefetching fixed number of cache lines. 81

6.8 Speedup of vector length prefetcher. 82

6.9 Analysis of memory and miss cycles before/after cache and prefetcher. 83

6.10 Average cycle performance across various icache configurations. 84

6.11 Performance improvement after decoupling the vector control pipeline. 86

6.12 Performance scalability of improved VESPA. 87

6.13 Performance/area design space of 1-32 lane VESPA. 90

7.1 Performance impact of varying X. 94

7.2 Cycle performance of various memory crossbar configurations. 96

7.3 Cycle performance versus area for various memory crossbar configurations. . . . 97

7.4 Wall clock performance of various memory crossbar configurations. 98

7.5 Element-partitioned vector register file banks shown for 2 banks. 100

7.6 Vector chaining support for a 1-lane VESPA processor with 2 banks. 100

7.7 Cycle performance of different banking configurations. 102

7.8 Average cycle performance for different chaining configurations. 103

7.9 Performance/area space of varying chaining and lane configurations. 104

7.10 Average normalized wall clock time and area VESPA design space. 107

7.11 Average normalized cycle count and area VESPA design space after pruning. . . 109

7.12 Average wall clock time and area of pruned VESPA design space. 111

7.13 Area of width-reduced VESPA processors. 119

7.14 Area of the vector coprocessor after instruction set subsetting. 120

7.15 Area of the vector coprocessor after subsetting and width reduction. 121

7.16 Normalized clock frequency of VESPA after subsetting and width reduction. . . . 122

8.1 Hardware circuit implemented for ip checksum. 130

8.2 Area-performance design space of scalar and pareto-optimal VESPAs. 138

8.3 Area-delay product of VESPA versus hardware. 142

8.4 Area-performance design space after subsetting and width reduction. 144

xiv

8.5 Area-delay product versus hardware after subsetting and width reduction. 144

xv

Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) are commonly used to implement embedded

systems because of their low cost and fast time-to-market relative to the creation of fully-

fabricated VLSI chips. FPGAs also provide superior speed/area/power compared to a

microprocessor, although the hardware design necessary to achieve this is cumbersome

and requires specialized knowledge making it difficult for average programmers to adopt

FPGAs. Specifically, the detailed cycle-to-cycle description necessary for design in a

hardware description language (HDL) requires programmers to comprehend both their

application and hardware substrate with very low-level detail. In addition, hardware

design is accompanied with very limited-scope debugging and complexities such as circuit

timing and clock domains. To enable rapid and easy access to this better-performing

FPGA technology, we are motivated to simplify the design of FPGA-based systems by

leveraging the high-level programming languages and single-step debugging features of

software design.

Most FPGA-based systems include a microprocessor at the heart of the system, and

approximately 25% contain a processor implemented using the FPGA reprogrammable

fabric itself [3], such as the Altera Nios II [5] or Xilinx Microblaze [67]. These soft proces-

sors are inefficient compared to their hard counterparts but have some key advantages.

Compared to using both an FPGA and a separate microprocessor chip, soft processors

1

Chapter 1. Introduction 2

preserve a single-chip solution and avoid the increased board real estate, latency, cost,

and power of using a second chip. An alternative approach to addressing these issues is

to embed hard microprocessors and FPGA fabric on a single device such as the Xilinx

Virtex II Pro [68]. But this specializes the device resulting in multiple device families

for meeting the needs of designers who may want varying numbers of processors or even

specific architectural features. Maintaining these device families as well as the design

and/or licensing of the processor core itself contribute to increasing the cost of FPGA

devices. A soft processor avoids these increased costs while maintaining the benefits of a

single-chip solution.

The software design environment provided by soft processors can be used for quickly

implementing system components which do not require highly-optimized hardware im-

plementations, and can instead be implemented with less effort in software executing on

a soft processor. In this thesis, we leverage the inherent configurability of a soft processor

to adapt its architecture and match the properties found in the application to achieve

better performance and area. These improved soft processors can better compete with

the efficiencies gained through hardware design and be used to implement non-critical

computations in software rather than through laborious hardware design. As more com-

putations within a digital system are implemented in software on a soft processor, the

overall time required to implement the digital system is reduced hence achieving our goal

of making FPGAs more easily programmable.

Simplifying hardware design is a goal analogous to that of behavioural synthesis which

aims to automatically compile applications described in a high-level programming lan-

guage to a custom hardware circuit. However pursuing this goal within a processor

framework provides several advantages. First it provides a more fluid design method-

ology allowing designers to manually optimize the algorithm, code, compiler, assembly

output, and architecture. Behavioural synthesis tools combine these into one black box

tool which outputs a single result with few options for navigating the immense design

space along each of these axes. Second, the intractable complexities in behavioural syn-

Chapter 1. Introduction 3

thesis can result in poor results that may be improved from the knowledge gained by

customizing within a processor framework. Third, processors provide single-step debug-

ging infrastructure making it far easier to diagnose problems within the system. Fourth,

processors provide compiled libraries for easily sharing software and maintaining opti-

mization effort. In contrast, the output from behavioural synthesis depends heavily on

surrounding components making a given synthesized task questionably portable. Finally,

a processor provides full support for ANSI C while behavioural synthesis typically do

not. Overall, processors provide a fluid and portable framework that can be immediately

leveraged by soft processors to simplify FPGA design.

The architecture of current commercial soft processors are based on simple single-

issue pipelines with few variations, limiting their use to predominantly system control

tasks. To support more compute-intensive tasks on soft processors, they must be able

to scale up performance by using increased FPGA resources. While this problem has

been thoroughly studied in traditional hard processors [28], an FPGA substrate leads

to different trade-offs and conclusions. In addition, traditional processor architecture

research favoured features that benefit a large application domain, while in a soft pro-

cessor we can appreciate features which benefit only a few applications since each soft

processor can be configured to exactly match the application it is executing. These key

differences motivate new research into scaling the performance of existing soft processors

while considering the configurability and internal architecture of FPGAs.

Recent research has considered several options for increasing soft processor perfor-

mance. One option is to modify the amount and organization of the pipelining in existing

single-issue soft processors [70, 71] which provide limited performance gains. A second

option is to pursue VLIW [31] or superscalar [12] pipelines which are limited due to the

few ports in FPGA block RAMs and the available instruction-level parallelism within

an application. A third option is multi-threaded pipelines [16, 21, 38] and multiproces-

sors [55, 62] which exploit thread-level parallelism but require complicated parallelization

of the software. In this thesis we propose and explore vector extensions for soft proces-

Chapter 1. Introduction 4

sors which can be relatively easily programmed to allow a single vector instruction to

command multiple datapaths. An FPGA designer can then scale the number of these

datapaths, referred to as vector lanes, in their design to convert the data parallelism in

an application to increased performance.

1.1 Research Goals

The goal of this research is to simplify FPGA design by making soft processors more

competitive with manual hardware design. This thesis proposes that soft vector proces-

sors are an effective means of doing so for data parallel workloads, which we aim to prove

by setting the following goals:

1. To efficiently implement a soft vector processor on an FPGA.

2. To evaluate the performance gains achievable on real embedded applications. FP-

GAs are frequently used in the embedded domain so this application-class is well-

suited for our purposes.

3. To provide a broad area/performance design space with fine-grain resolution allow-

ing an FPGA designer to select a soft vector processor architecture that meets their

needs.

4. To support automatic customization of soft vector processors to a specific applica-

tion, by enabling the removal of general purpose area overheads.

5. To quantify the area and speed advantages of manual hardware design versus a soft

vector processor and a scalar soft processor.

To satisfy the first goal we implement a full soft vector processor called VESPA (Vector

Extended Soft Processor Architecture) and demonstrate its scalability in real hardware.

For the second goal we execute industry-standard benchmarks on several VESPA configu-

rations. For the third goal we extend VESPA with parameterizable architectural options

Chapter 1. Introduction 5

that can be used to further match an application’s data-level parallelism, memory access

pattern, and instruction mix. For the fourth we enhance VESPA with the capability to

remove hardware for unused instructions and datapath bit-widths. Finally for the last

goal, we compare VESPA to manually designed hardware and show it can significantly

reduce the performance gap over scalar soft processors, hence luring more designers into

using soft processors and avoiding laborious hardware design.

1.2 Organization

This thesis is organized as follows: Chapter 2 provides necessary background and sum-

marizes related work. Chapter 3 describes the infrastructure components used in this

thesis. Chapter 4 analyzes bottlenecks in current scalar soft processor architectures and

motivates the need for additional computational power. Chapter 5 describes the VESPA

processor. Chapter 6 shows that with accompanying architectural improvements, VESPA

can scale within a large performance/area design space. Chapter 7 explores the VESPA

design space by implementing heterogeneous lanes, vector chaining, and automatic re-

moval of unused hardware. Chapter 8 compares VESPA to a scalar soft processor and to

manual hardware design, quantifying the area and performance gaps and demonstrating

how significant strides are made towards the performance of manual hardware design

over scalar soft processors. Finally, Chapter 9 concludes and suggests future avenues for

research.

Chapter 2

Background

This chapter provides necessary background on microprocessors, vector processors, and

FPGAs. It also describes soft processors and summarizes research related to this thesis.

2.1 Microprocessor Background

Microprocessors have radically changed the world we live in and are integral parts of

the semiconductor industry. Compared to chip design, they provide a low cost path to

silicon by serving multiple applications with a single general purpose device which can

be easily programmed using a simple sequential programming model. Microprocessor

improvements have been achieved by primarily two methods: (i) shrinking the minimum

width of manufacturable transistors which increases the processor clock rate and reduces

its size; and (ii) improving the architecture of microprocessors by adding structures for

supporting faster execution. In this thesis we focus only on the latter approach.

Many architectural variants and enhancements have been thoroughly studied [28]

in conventional microprocessors. Architectural improvements such as branch predictors

alleviate pipeline inefficiencies, but scalable performance gains are achievable only by

executing operations spatially rather than temporally over the processor datapath. The

parallelism necessary for spatial computation comes in three forms:

• Instruction Level Parallelism (ILP): When an instruction produces a result not

6

Chapter 2. Background 7

used by a later instruction in the same instruction stream, those two instructions

exhibit instruction level parallelism which allows them to be executed concurrently.

• Data Level Parallelism (DLP): When the same operation is performed over

multiple data elements allowing all operations to be performed concurrently.

• Thread Level Parallelism (TLP): When multiple instruction streams exist they

can be executed concurrently except for memory operations which may access data

shared between both instruction streams.

ILP has been heavily leveraged in creating aggressive out-of-order superscalar mi-

croprocessors, until three factors combined to prevent further improvements using this

approach: the complexity involved in exploiting this ILP, the growing performance gap

between processors and memory (known as the memory wall) [66], and most recently, the

limited power density that can be dissipated by semiconductor chips (known as the power

wall) [20]. Since then the microprocessor industry has turned to solving the parallel pro-

gramming problem in hopes of simplifying the extraction of TLP. With multiple threads

an architect can build a more efficient multithreaded processor which time-multiplexes

the different threads onto a single datapath. Additionally multiple processors, or mul-

tiprocessors, can be used to scale performance by simultaneously executing threads on

dedicated processor cores. Presently all mainstream processors now provide 4 or 8 cores

such as the Intel Core i7 family [29]. Exploiting either ILP and TLP can be used to

scale performance in soft processors; later in this chapter we discuss related work in that

area as well as its suitability to FPGA architectures. This thesis focuses primarily on

exploiting the DLP found in many of the embedded applications in which FPGAs are

employed.

2.2 Vector Processors

DLP has been historically exploited through a vector processor which is designed for effi-

cient execution of DLP workloads [28]. Vector processors have existed in supercomputers

Chapter 2. Background 8

Listing 2.1: C code of array sum.

int a [1 6] , b [1 6] , c [1 6] ;
. . .
for (int i =0; i <16; i++)

c [i]=a [i]+b [i] ;

since the 1960s and were the highest-performing processors for decades. The fundamen-

tal concept behind vector processors is to accept and process vector instructions which

communicate some variable number of homogeneous operations to be performed. This

concept and its advantages are discussed below in the context of an example.

2.2.1 Vector Instructions

Vector processors provide direct instruction set support for operations on whole vectors—

i.e., on multiple data elements rather than on a single scalar value. These instructions

can be used to exploit the DLP in an application to essentially execute multiple loop

iterations simultaneously. Listing 2.1 shows an example of a data parallel loop that sums

two 16 element arrays. The assembly instructions necessary to execute this loop on a

scalar processor is shown in Listing 2.2. Tracing through this code shows that a total of

148 machine instructions need to be executed, with 80 of them responsible for managing

the loop and advancing pointers to the next element.

With support for vector instructions, a vector processor can execute the same loop

with just the 8 instructions shown in Listing 2.3. After initializing the pointers, the

current vector length is set to 16 since the loop operates on 16-element arrays. Following

this, the vector instructions for loading, adding, and storing the resulting 16-element

array back to memory are executed. Note that due to finite hardware resources, a vector

processor exposes its internal maximum vector length MVL in a special readable register.

In this code we assume MVL is greater than or equal to 16, otherwise the loop must be

strip-mined into multiple iterations of MVL sized vectors. Nonetheless, the savings in

executed instructions is dramatic due to: (i) the multiple operations encapsulated in a

Chapter 2. Background 9

Listing 2.2: Pseudo-MIPS assembly of array sum. Destination registers are on the left.

move r1 , a
move r2 , b
move r3 , c
move r7 , 0

loop add :
load .w r4 , (r1)
load .w r5 , (r2)
add r6 , r4 , r5
s t o r .w r6 , (r3)
add r7 , r7 , 1 # Loop overhead
add r1 , r1 , r7 # Advance po in t e r
add r2 , r2 , r7 # Advance po in t e r
add r3 , r3 , r7 # Advance po in t e r
b l t r7 , 1 6 , loop add # Loop overhead

Listing 2.3: Vectorized assembly of array sum. For simplicity it is assumed the maximum vector
length is greater than or equal to 16.

move vbase1 , a
move vbase2 , b
move vbase3 , c
move vl , 16 #Set vec tor l ength to 16
vload .w vr4 , (vbase1)
vload .w vr5 , (vbase2)
vadd vr6 , vr4 , vr5
vs to r .w vr6 , (vbase3)

single vector instruction; and (ii) the savings in loop overheads and pointer advancing.

Listing 2.3 shows the use of one possible vector instruction set. Many different vector

instruction sets have been extensively researched, including in modern processors [24].

Simultaneous research into the architectures that supports these vector instructions was

also thoroughly performed and is described next.

2.2.2 Vector Architecture

The vector architecture is responsible for accepting a stream of variable-lengthed vector

instructions and completing their associated operations as quickly as possible. We now

describe several architectural modifications that can be used to achieve this; a more

comprehensive summary can be found in [28].

Chapter 2. Background 10

time

time

time

space

space

vload

a) Base Vector Processor

vmul

vadd

vload

vadd

vmul

space

vload

vadd

vmul

c) Base Vector Processor with Chaining

b) Base Vector Processor with Lanes Doubled

Figure 2.1: Comparing vector execution of doubling lanes (b) and chaining (c) against a base
vector processor (a). The area of the boxes represents the amount of work for each instruction.
The base vector processor in (a) waits for each vector instruction to complete before executing
the next. In (b), doubling the number of lanes allows more of the work to be computed spatially
on the additional lanes, this makes the instructions twice as tall in space and half as long in
time. Chaining allows the work to be overlapped with the work of other instructions as seen
in (c). The execution is staggered so that at any point in time each instruction is executing on
different element groups.

2.2.3 Vector Lanes

The most important architectural feature of a vector processor is the number of vector

datapaths or vector lanes. A single lane can operate on a single element of the vector at a

time in a pipelined fashion; with more vector lanes a vector processor can perform more

of the element operations in parallel hence increasing performance. For example, the

vadd instruction in Listing 2.3 encodes 16 additions to be performed across 16 elements.

A vector processor with 8 lanes can then execute 8 element operations at a time—we

refer to this group of elements as an element group. After the first element group with

Chapter 2. Background 11

indices 0-7 is processed, the next element group with indices 8-15 is processed and the

vadd instruction completes in two cycles.

Figure 2.1 shows a visual depiction of the effect of doubling lanes on vector instruction

execution. Compared to (a), doubling the number of lanes in (b) results in twice as much

spatial execution of the vector instructions, resulting in half as much execution time.

The number of lanes is a powerful parameter for trading silicon area (used for spatial

execution on the vector lanes) and performance (the time needed to complete the vector

instruction). Note that the number of lanes is always a power of two, otherwise accessing

an arbitrary element requires division and modulo operations to be performed.

2.2.4 Vector Chaining

Vector chaining provides another axis of scaling performance in addition to increasing

the number of lanes. Chaining allows multiple vector instructions to be executed simul-

taneously; the concept was first presented in the Cray-1 [56]. Using Listing 2.3 as an

example, the first element group of the vadd instruction does not need to wait for the

vload instruction preceding it to complete in its entirety. Rather, after the vload has

loaded the first element group into vr5, the vadd can execute its first element group since

its data is ready. Similarly the first element group for the stor can be stored as soon as

the vadd completes that element group. With this concept the throughput of the vector

processor can scale beyond the available number of lanes.

Figure 2.1 c) shows the effect of chaining compared to part a) of the same figure.

After an initial set of element groups have been processed, the next instruction can

execute alongside the previous. A continuous supply of vector instructions can lead to a

steady-state of multiple vector instructions in flight. However successful vector chaining

requires (i) available functional units, (ii) read/write access to multiple vector element

groups, and (iii) vector lengths long enough to access multiple element groups. The

first is achieved by replicating functional units, specifically the arithmetic and logic unit

(ALU). The second can be achieved by implementing many read/write ports to the vector

Chapter 2. Background 12

register file or many register banks each with their own read/write ports. Historically

vector supercomputers used the latter approach, while research in more modern single-

chip implementations of vector architectures have resorted to the former [6] as discussed

below. Finally the third requires applications with enough DLP to use vector lengths

longer than the number of lanes.

2.2.5 The T0 Vector Processor

While traditional vector supercomputers spanned multiple processor and memory chips,

Asanovic et. al. proposed harnessing advances in CMOS technologies to implement vec-

tor processors on a single chip with the aim of including them as add-ons to existing

scalar microprocessors [6, 7]. The 8-lane T0 vector processor was implemented with up

to 3-way chaining for a peak of 24 operations per cycle while issuing only one vector

instruction per cycle. A key contribution was in the reduction of the large delays histori-

cally associated with starting and completing a vector instruction. These delays require a

high-degree of data parallelism to be amortized, but with the shorter electrical delays of

a single-chip design, the delays were greatly reduced enabling new application classes to

exploit vector architectures. The T0 also first realized the area efficiency gains of using a

many-ported vector register file to support chaining rather than a many-banked register

file. Finally, while caches were not typically used in traditional vector supercomputers,

they are further motivated in the T0 which connects to DRAM instead of SRAM.

2.2.6 The VIRAM Vector Processor

The IRAM project [1] investigated placing memory and microprocessors on the same chip,

which lead to the design of a processor architecture that can best utilize the resulting high-

bandwidth low-latency access to memory. The group selected a vector processor based on

the T0, but optimized it for this memory system and for the embedded application domain

creating VIRAM [32, 33, 34, 35, 60]. The VIRAM vector processor was shown to provide

faster performance across several EEMBC industry-standard benchmarks compared to

Chapter 2. Background 13

superscalar and out-of-order processors while consuming less energy. The vector unit is

attached as a coprocessor to a scalar MIPS processor with both connected to the on-chip

DRAM. The complete system is manufactured in a 180nm CMOS process. The VIRAM

vector processor has 4 lanes each 64-bits wide but can be reconfigured into as many as

16 16-bit vector lanes. The architecture is massively pipelined with 15 stages in each

vector lane to tolerate the worst case on-chip memory latency. With this pipelining and

the low-latency on-chip DRAM, no cache is used in VIRAM. The soft vector processor

implemented in this thesis is based on the VIRAM instruction set which is described in

more detail below.

2.2.6.1 VIRAM Instruction Set

VIRAM supports a full range of integer and floating-point vector operations including

absolute value, and min/max instructions. Fixed-point operations are directly supported

by the instruction set as well, providing automatic scaling and saturation hardware.

VIRAM also supports predication, meaning each element operation in a vector instruction

has a corresponding flag indicating whether the operation is to be performed or not. This

allows loops with if/else constructs to be vectorized. Finally VIRAM has memory

instructions for describing consecutive, strided, and indexed memory access patterns.

The latter can be used to perform scatter/gather operations albeit with significantly less

performance than consecutive accesses.

Figure 2.2 shows the vector state in VIRAM consisting of the 32 vector vr registers,

the 32 flag vf registers, the 64 control vc registers, and the 32 vs scalar registers. The

vector registers are used to store the vectors being operated on, while the flag registers

store the masks used for predication. The control registers are each used for dedicated

purposes throughout various parts of the vector pipeline. For example vc0, also referred

to as vl, holds the vector length of the current vector instruction, while vc24 or mvl is

used to specify the maximum vector length of the processor (and hence this register is

read-only). The vc1 or vpw register stores the width of each element used to determine

Chapter 2. Background 14

vc56 vstride0
vc55 vinc7

...

vs0
vs1

vs31

64−bits

Sc
al

ar
 R

eg
is

te
rs

vr0
vr1

vr31

MVL10
Element

V
ec

to
r

R
eg

is
te

rs

64−bits

...

...

...

...

vf0
vf1

vf31

Element

F
la

g
R

eg
is

te
rs

0 1

...

...

...

...
MVL

1−bit

C
on

tr
ol

 R
eg

is
te

rs

64−bits

vc31

vc1
vc0 vl

...

...
mvlvc24

64−bits

vc63

...

vc32
vc33

vbase0
vbase1

vstride7

...

...

vc48 vinc0
vc47 vbase15

vpw

Figure 2.2: Processor state of VIRAM vector coprocessor consisting of vector registers, flag
registers, control registers, and scalar registers. Our VESPA soft vector processor uses this
same state though with widths of 32 bits instead of 64 bits.

the datapath width of the vector lanes. As seen in the figure, this is normally 64-bits,

but can be modified to create narrower elements down to 16-bits which is automatically

accompanied by a corresponding 4x increase to mvl.

The control registers also include dedicated registers for memory operations. The

vbase0-15 registers can store any base address which can be auto-incremented by the

value stored in the vinc0-7 registers. The vstride0-7 registers can store different

constant strides for specifying strided memory accesses. For example, if vl was 16 and

the instruction vld.w vr0,vbase1,vstride2,vinc5 was executed, the vector processor

would load the 16 elements starting at vbase1 each separated by vstride2 words, store

Chapter 2. Background 15

them in vr0, and finally update vbase1 by adding vinc5 to it. More detailed information

can be found in the VIRAM instruction set manual [60]. Note the implementation of

VIRAM used in VESPA uses exactly the same vector state as in Figure 2.2 except that

it is 32-bits instead of 64-bits, and without supporting the width reconfiguration using

vpw.

2.2.7 SIMD Extensions

Modern microprocessors exploit data-level parallelism via SIMD (single-instruction, multiple-

data) support, including IBM’s Altivec, AMD’s 3DNow!, MIPS’s MDMX, and Intel’s

MMX/SSE/AVX. SIMD support is very similar to vector support except that it is typi-

cally limited to a fixed and small number of elements which is exposed to the application

programmer. In contrast, true vector processing abstracts from the software the actual

number of hardware vector lanes, instead providing a machine-readable MVL parameter

(discussed below) for limiting vector lengths. This is partly due to the longer vector

lengths typically used in vector processing which are permitted to exceed the amount

of hardware resources so that future vector architectures could add hardware resources

to exploit the DLP without software modification. In addition, vector processors are

typically equipped with a wider range of vector memory instructions that can explic-

itly describe different memory access patterns. These features make vector processing

appealing for current microprocessors instead of the SIMD extensions used to date [24].

2.3 Field-Programmable Gate Arrays (FPGAs)

Field-Programmable Gate Arrays are prefabricated programmable logic devices often

composed of lookup table based programmable logic blocks connected by a programmable

routing network. Using these elements an FPGA can implement any digital logic circuit

making them (originally) useful for implementing miscellaneous glue logic. As FPGAs

have grown in capacity they have become capable of implementing complete embedded

Chapter 2. Background 16

systems. To augment their area efficiency and speed for certain operations, FPGA ven-

dors have included dedicated circuits for better implementing certain operations that are

typical in an embedded system. These dedicated circuits presently include flip flops, ran-

dom access memory (RAM), multiply-accumulate logic, and microprocessor cores [36].

We describe these in more detail below since they are used extensively in soft processors,

or in the case of the microprocessor cores, as an alternative to soft processors.

2.3.1 Block RAMs

The block RAMs in FPGAs provide efficient large storage structures which would oth-

erwise require large amounts of lookup tables and flip flops to implement. While the

capacity of a given block RAM is fixed, multiple block RAMs can be connected to form

larger capacity RAM storage. Additional flexibility is available in the width and depth

of the block RAMs allowing them to be configured as deep and narrow 1-bit memories,

or shallow and wide 32-bit memories. A key limitation of block RAMs is they have only

two access ports allowing just two simultaneous reads or writes to occur. This limitation

inhibits soft processor architectures which require many-ported register files to sustain

multiple instructions in flight. As a result most soft processor research has been on

single-issue pipelines or multiprocessors.

2.3.2 Multiply-Accumulate blocks

The multiply-accumulate blocks, referred to also as DSP blocks, have dedicated circuitry

for performing multiply and accumulate operations. The smallest such blocks are 9 or

18 bits wide and can be combined to perform multiply-accumulate for larger inputs. In

this work we use the multiply-accumulate blocks to efficiently implement the multiplier

functional units in a processor, which we also use to perform shift operations since barrel

shifters are inefficient when built out of lookup tables.

Chapter 2. Background 17

2.3.3 Microprocessor Cores

Some FPGAs include one or two microprocessor cores implemented directly in silicon

with the FPGA programmable fabric surrounding it [4, 68]. These hard processors pro-

vide superior performance relative to a soft processor but also have many disadvantages:

(i) the number of hard processors on an FPGA may be insufficient or too many resulting

in wasted silicon; (ii) the architecture is fixed making it difficult to satisfy all application

domains; (iii) the cost of the FPGA is increased since vendors must design, build, and/or

license a processor core; and (iv) the FPGA is specialized often producing multiple fami-

lies of devices with/without processor cores which further increases design and inventory

costs. As a result soft processors have seen significant uptake by both vendors and FPGA

users, motivating research into improving soft processors.

2.4 FPGA Design

The typical FPGA design flow begins with an HDL language such as Verilog or VHDL

which describes the desired circuit. FPGA vendors provide computer-aided design (CAD)

tools for parsing this description and efficiently mapping the circuit onto the FPGA fabric.

This design process is far more difficult than the software-based flows of microprocessors.

An FPGA designer must specify the cycle-to-cycle behaviour of each component of the

system, and the interaction between these components creates many opportunities for

errors. Unlike the single-stepping debug infrastructure in a microprocessor, debugging a

hardware design is very difficult. A logic analyzer can be used to capture a snapshot of

a few signals at some event, but finding the erroneous event among its many symptoms

can involve weeks of effort. In addition, an FPGA designer must respect the timing

constraints of the system. Doing so requires pipelining, retiming, and other optimizations

which can create more state and hence increased opportunities for errors. Overall, the

biggest bottleneck of the FPGA design process is the design and verification of the desired

system. Unlike an ASIC, fabrication is performed in minutes to days depending on the

Chapter 2. Background 18

circuit size and the compilation time of the FPGA CAD tools.

2.4.1 Behavioural Synthesis

Many efforts have been made to simplify the FPGA design flow. One option adopted by

the FPGA vendors is to use processors (soft or hard) to implement less critical compo-

nents and system control tasks—where errors can be very difficult to find if implemented

in a hardware finite state machine (FSM). But another option which has been extensively

researched in both FPGAs and ASICs is to automatically derive hardware implementa-

tions from a C-like sequential program. This is referred to as behavioural synthesis and

its goal is aligned with our own goal of simplifying FPGA-design by using sequential

programming for soft processors instead. Some examples of behavioural synthesis tools

and languages include Handel-C [59], Catapult-C [43], Impulse C [52], and SystemC [51].

Altera has their own behavioural synthesis tool called C2H [40] which can convert C

functions into hardware accelerators attached to a Nios II soft processor. Previous work

has shown that soft vector processors can scale significantly better than C2H-generated

accelerators even when manual code-restructuring is performed to aid C2H [75]. The

state-of-the-art behavioural synthesis results in overheads due to the intractable nature

of the problem including the pointer aliasing problem. These complexities have limited

the quality of results available from behavioural synthesis tools.

We believe that customized processors will continue to be useful until and even after

high-quality behavioural synthesis tools exist because of the following advantages.

1. Fluid Design Methodology – Processors have well-defined intermediate steps

throughout the design flow. Each of these steps are taught to engineers at the

undergraduate level providing them with the knowledge to manually optimize the

algorithm, compiler, assembler output, and processor architecture. Behavioural

synthesis tools aim to reap the efficiency gains from not having a fixed architecture

structure or instruction set. As a result it is difficult for designers to manually

navigate the vastly different hardware implementations possible.

Chapter 2. Background 19

2. Libraries – For a processor, compiled output can be packaged and shared very

easily between software designers. This same idea has failed to gain traction in

hardware design because of differing speed/area constraints and non-standardized

interfaces. In contrast, software is decoupled from the hardware implementation

allowing it to be designed primarily for speed. Moreover, libraries can preserve

manual optimization of the compiled software.

3. Debug Support – Processors provide single-step debug capability. While this

can be emulated to some degree by hardware simulators, the parallel nature of

hardware can make it confusing. In addition, hardware simulators can not precisely

model the behaviour of the hardware itself because of external stimuli and hardware

imperfections. Inevitably this means some bugs will manifest only in the hardware

implementation where they are difficult to find and fix.

4. Intractable Complexities – The complexities in deriving a high-quality hardware

implementation of a system has made it a holy grail for many decades. Until high-

quality behavioural synthesis exists, designers can instead utilize the customization

opportunities in microprocessor systems. The knowledge gained through this re-

search can also be used for improving behavioural synthesis tools.

5. ANSI C Support – Overcoming the complexities in behavioural synthesis most

often leads to limited support for the full ANSI C standard or radically different

programming models. Some examples of these are summarized below, however

the willingness of FPGA designers to adopt new C variants or programming models

casts doubt on the future adoption of behavioural synthesis. In contrast a processor

can easily support full ANSI C which provides a familiar programming interface.

One of the largest hurdles to supporting full ANSI C in behavioural synthesis is the

global memory model used in high-level programming languages. While arithmetic oper-

ations can be literally converted to hardware circuits, a literal conversion of this memory

model would result in many processing elements being sequenced to preserve memory

Chapter 2. Background 20

consistency but at the same time competing over the single memory. The CHiMPS [54]

project aims to support traditional memory models by providing caches for many pro-

cessing elements. Compiler analysis determines regions of memory safe for caching by

analyzing dependencies in scientific computing applications which rarely have complex

memory aliasing. Additionally, traditional memory models can be preserved with multi-

threaded and/or multi-processor systems but programming these systems requires facing

the difficult parallel programming problem. The implementation of these systems onto

FPGAs leads to soft processor research which is summarized in Section 2.5.3 and Sec-

tion 2.5.4.

Most behavioural synthesis compilers modify or restrict the memory model to facili-

tate better quality hardware implementations. The SA-C [17] compiler prohibits the use

of pointers and recursion and forces all variables to be single-assignment. While these

restrictions impose difficulties on the programmer, the resulting application code can be

more easily converted to hardware. The streaming programming paradigm has also been

researched as a means of programming FPGAs. For example the Streams-C [25] language

allows a programmer to express their computation in a consume-compute-produce model.

Data and task level parallelism can be extracted and used to build parallel hardware for

faster execution. Similar work was done using the Brook stream language [53] and also

using regular C file I/O streams for the PACT behavioural synthesis tool [48] [30].

2.4.2 Extensible Processors

Behavioural synthesis aims to convert whole programs into hardware, but other ap-

proaches are premised on the common characteristic that a small computation is largely

responsible for overall performance. The Warp [42] processing project derives on-the-

fly hardware accelerators for a simplified FPGA fabric. This allows an application to

be programmed in C and executed on a generic microprocessor which will automati-

cally accelerate critical computations. The eMIPS [44] project converts blocks of binary

MIPS instructions to hardware that can be dynamically configured onto an FPGA. The

Chapter 2. Background 21

instructions are then replaced with an invocation of the hardware accelerator. These

dynamically extensible processors can be used to accelerate software and avoid custom

hardware design similar to our own goals. However they are accompanied with significant

overhead in synthesizing and configuring hardware accelerators and are hence critically

dependent on correctly identifying computation to accelerate. This decision depends on

how amenable the computation is to hardware acceleration and also depends on its overall

contribution to system performance. As the system is improved and computation is more

balanced across different kernels, it becomes increasingly difficult to select a computation

which can amortize the dynamic configuration overheads.

2.5 Soft Processors and Related Work

Soft processors are processors designed for a reprogrammable fabric such as an FPGA.

The two key attributes of soft processors are (i) the ease with which they can be cus-

tomized and subsequently implemented in hardware, and (ii) that they are designed to

target the fixed resources available on a reprogrammable fabric. This distinguishes soft

processors from hard processors which are extremely difficult to customize due to the high

cost and long design and fabrication times of full-custom VLSI design. Also, soft proces-

sors are distinct from parameterized processor cores which are pre-designed synthesizable

RTL implementations not necessarily targeting efficient FPGA implementation.

The Actel Cortex-M1 [2], Altera Nios II [5], Lattice Micro32 [39], and Xilinx Microb-

laze [67] are widely used soft processors with scalar in-order single-issue architectures that

are either unpipelined or have between 3 and 5 pipeline stages. While this is sufficient

for system coordination tasks and least-critical computations, significant performance

improvements are necessary for soft processors to replace the hardware designs of more

important system components. Research in this direction is recent and ongoing, and

summarized below.

Chapter 2. Background 22

2.5.1 Soft Single-Issue In-Order Pipelines

The SPREE (Soft Processor Rapid Exploration Environment) system was developed to

explore the architectural space of current soft processors in our previous research [69,

70, 71]. SPREE can automatically generate a Verilog hardware implementation of a pro-

cessor from a higher-level description of the datapath and instruction set. The tool was

used to explore the implementation and latencies of functional units as well as the depth

and organization of pipeline stages creating a thorough space of soft processor design

points that were competitive with the slower and mid-range Altera Nios II commercial

soft processors. We found diminishing returns with deeper pipelining which required

more advanced architectural features to avoid pipeline stalls. While this work succeeded

in exploring the space and finding processor configurations superior to a mid-speed com-

mercial soft processor, it failed to extend the space, specifically with faster soft processors.

In this thesis, we continue to use SPREE by choosing the best overall generated design

and manually adding vector extensions to the architecture and compiler infrastructure.

Numerous other works created parameterized scalar soft processors aimed at cus-

tomization. The LEON [23] is a parameterized VHDL description of a SPARC processor

targetted for both FPGAs and ASICS with several customization options including cache

configuration and functional unit support. LEON is heavily focussed on system-level fea-

tures fully supporting exceptions, virtual memory, and multiprocessors. No scalable per-

formance options exist other than multiprocessing which requires parallelized code. Sim-

ilarly the XiRisc [41] is a parameterized core written in VHDL supporting 2-way VLIW,

16/32-bit datapaths, and optional shifter, multiplier, divider, and multiply-accumulate

units. While these options provide some performance improvements it cannot scale to

compete with manual hardware design. Other VLIW processors are discussed below.

2.5.2 Soft Multi-Issue Pipelines

The idea of using VLIW (Very Long Instruction Word) processors in which batches of

independent instructions are submitted to the processor pipeline has been explored as

Chapter 2. Background 23

a way of increasing soft processor performance without the complexities of hardware

scheduling. Saghir et. al. implemented a soft VLIW processor using a register file with

2 banks replicated 4 times to achieve the 4 read ports and 2 write ports necessary to

sustain two instructions per cycle [57]. For an fir benchmark this configuration achieved

up to 2.55x speedup with 3 data write ports and 2 address write ports over 1 data write

port and 1 address write port. Bank conflicts and limits to instruction level parallelism

limit the performance scaling possible on soft VLIW processors, moreover the increasing

register file replication necessary would quickly become overwhelming. Jones et. al.

implemented a 4-way VLIW processor by implementing the register file in logic instead

of block RAMs [31]. This 4-way parallelism averaged only 29% speedup over single-issue,

suggesting that the technique cannot easily scale performance.

A superscalar processor can issue multiple instructions concurrently, but unlike VLIW

processors, a superscalar automatically identifies and schedules independent instructions

in hardware. While this approach is popular in hard processors, there is presently no

soft superscalar architectures in existence likely due to their complexity. Also, the large

associative circuit structures and many-ported register file required to build a superscalar

are not efficiently implementable in FPGAs. Carli designed an out-of-order single-issue

soft MIPS processor that implements Tomasulo’s algorithm and discusses the infeasibility

of superscalar issue with respect to his architecture [12]. The soft MIPS was found to be

up to twice as big as a Xilinx Microblaze and between 3x and 12x slower.

2.5.3 Soft Multi-Threaded Pipelines

A potentially promising method of scaling soft processor performance is to leverage multi-

ple threads. Research into exploiting multiple threads in soft processors will only become

more fruitful as advancements in parallel programming are made in the microprocessor in-

dustry. Nonetheless, auto-vectorization is a significantly simpler problem which exploits

predominantly fine-grain data parallelism and is hence supported in many compilers in-

cluding GCC.

Chapter 2. Background 24

The advanced architectural features needed to keep a pipeline fully utilized can be

avoided by instead having multiple independent instruction streams (threads), which

can also be used to hide system latencies. Fort et. al. showed that a multithreaded

soft processor can save significant area while hiding memory latencies and performing as

fast as a multiprocessor system when both use an uncached latent memory system [21].

Labrecque et. al. showed that multithreading can save logic by eliminating branch

handling and data dependency hardware [37]. They also showed that with an off-chip

DRAM memory system the amount of hardware threads, cache configuration, cache

topology, and number of cores can be varied to achieve maximum throughput from the

memory system [38]. Moussali [47] built a multi-threaded version of the Xilinx Microblaze

and showed that 1.1x to 5x performance can be gained by hiding the latency caused by

custom instructions and custom computation blocks.

The CUSTARD [15, 16] customizable threaded soft processor is an FPGA implemen-

tation of a parameterizable core supporting the following options: different number of

hardware threads and types, custom instructions, branch delay slot, load delay slot, for-

warding, and register file size. The primary purpose of the design was to be used with

a tool for automatic custom instruction generation. However its uses as a parameterized

soft processor is more applicable to our own work. While the available architectural axes

are interesting the results show some overheads in the processor design: clock speed var-

ied only between 30 and 50 MHz on the XC2V2000 FPGA (on which the Microblaze soft

processor is clocked at 100 MHz), and overall performance is 6-61% worse than Microb-

laze. Also the single-threaded base processor consumed 1800 slices while the commercial

Microblaze typically consumes less than 1000 slices on the same device. Nonetheless

4-way multi-threading can be added for only 28% more area but was shown to gain only

10% in performance.

Chapter 2. Background 25

2.5.4 Soft Multiprocessors

Unnikrishnan et. al. created a tool for automating the parallelization of streaming code

and making application-specific customizations to the targetted soft multiprocessor sys-

tem [62]. The individual cores could be customized to their software eliminating unused

hardware using our SPREE framework and achieving significant area savings. With 16

processors up to 5x increased performance can be achieved using this tool. Similarly,

Plavec et. al. [53] developed a tool to generate a streaming architecture comprised of

multiple processor cores from a streaming program. The Altera C2H behavioural syn-

thesis tool is leveraged to convert processor nodes to custom hardware achieving further

speed improvements. The generated and optimized streaming architecture can perform

up to 8.9x faster than execution on a single soft processor, as well as 4.3x faster than using

C2H on the entire benchmark kernel. Similar to our own work, these stream-based design

flows can provide scalable soft processor performance if streaming languages are adopted

by embedded system designers. An auto-vectorizing compiler or vectorized library could

provide this scalability with minimal disruption to current design flows.

Ravindran et. al. built a soft multiprocessor system dedicated to IPv4 packet for-

warding [55]. The 14-processor system was able to achieve a throughput of 1.8Gbps,

which when normalized to area is 2.6x slower than the Intel IXP-2800 network proces-

sor. This case study show the potential of FPGA-based multiprocessors to compete

with highly optimized and specialized commercial hard multiprocessors. Rigorous man-

ual parallelization was required and the multiprocessor topology was customized, but

customizing each individual core was not performed as the authors used standard Xilinx

Microblaze cores. More aggressive customization would require extensive software and

hardware labour, but can perhaps be automated in the future.

2.5.5 Soft Vector Processors

Yu et. al. [75] first demonstrated the potential for vector processing as a simple-to-use

and scalable accelerator for soft processors. In particular, through performance mod-

Chapter 2. Background 26

elling the authors show that (i) a vector processor can potentially accelerate data paral-

lel benchmarks with performance scaling better than Altera’s C2H behavioural synthesis

tool (even after manual code restructuring to aid C2H), and (ii) how FPGA architectural

features can be exploited to provide efficient support for some vector operations. For

example, the multiply-accumulate blocks internally sum multiple partial products from

narrow multiplier circuits to implement wider multiplication operations. This same ac-

cumulator circuitry is used by Yu to efficiently perform vector reductions which sum all

vector elements and produce a single scalar value. Also the block RAMs can be used as

small lane-local memories for efficiently implementing table lookups and scatter/gather

operations.

The work of Yu et. al. was done in parallel with our own development of VESPA and

its infrastructure, but it left many avenues unexplored. Its memory system consisted of

only the fast on-chip block RAMs—latent memory systems were never explored. Without

this and without real execution of benchmarks, the scalability of soft vector processors

remains unproven. Also few customization opportunities in soft vector processors were

examined beyond the number of lanes and the maximum vector length: the width of

the lanes, multiplier, and memory were parameterized and were individually set for each

benchmark. Finally more sophisticated vector pipelines features such as vector chain-

ing were never considered. Beyond the work of Yu, in this thesis, we offer a full and

verified hardware implementation of a soft vector processor called VESPA, connected

to off-chip memory, with GNU assembler vector support, and evaluation on vectorized

industry-standard benchmarks. This thesis more thoroughly explores the scalability,

customizability, and architecture of soft vector processors. In addition, we explore the

design space of VESPA configurations and show how competitive it can be versus manual

hardware design in Chapter 8.

Chapter 3

Experimental Framework

Our goal of improving soft processors to be more competitive with hardware requires a

measurement infrastructure for accurately and thoroughly evaluating enhancements to

soft processors. In this chapter we describe the infrastructure used for executing, verify-

ing, and evaluating soft processors. Specifically, we describe the benchmarks, compiler,

CAD software, hardware platforms, measurement methodology, measurement error, and

verification process.

3.1 Overview

We employ a real and complete measurement infrastructure which implements soft pro-

cessors in hardware executing benchmarks on real FPGA devices. An overview of the

infrastructure is illustrated in Figure 3.1. Benchmark software programs are compiled

with standard compilers and simulated at the instruction-level to verify their correctness.

Architectural ideas are augmented into a complete Verilog design of a soft processor and

simulated at the register transfer level (RTL) using an RTL simulator. Once the correct-

ness of the architecture is verified, the design is synthesized using FPGA computer-aided

design (CAD) software which emit hardware characteristics such as the area and clock

frequency of the design. The soft processor is then configured onto a real FPGA and

executes each benchmark from off-chip DRAM—at the end of each execution the to-

27

Chapter 3. Experimental Framework 28

Verilog

Object
Code

Instruction
Set

Simulation

EEMBC
Benchmarks

RTL
Simulation

SOFTWARE HARDWARE

Architectural Idea

FPGA
CAD

Software

(cycles)

(area, clock
frequency)

GCC
Compiler

(verification) (verification)

FPGA
DRAM

Figure 3.1: Overview of measurement infrastructure.

tal number of cycles are reported. The individual components of the infrastructure are

discussed in detail in the remainder of this chapter.

3.2 Benchmarks

The benchmarks used in this study are predominantly from the industry-standard EEMBC

(Embedded Microprocessor Benchmark Consortium) benchmark collection [18]. This

EEMBC consortium is a non-profit corporation aiming to standardize embedded bench-

marks and aid designers in selecting an appropriate embedded processor. The bench-

marks are widely used in the embedded systems domain and since FPGAs are also used

in the embedded domain, the EEMBC benchmarks are appropriate for evaluating soft

processors. The benchmarks used in this study are selected from the Automotive 1.1, Of-

fice Automation 1.1, Telecom 1.1, Networking 2.0, and Digital Entertainment 1.0 suites.

Our infrastructure is capable of compiling and executing all EEMBC benchmarks un-

Chapter 3. Experimental Framework 29

Table 3.1: Vectorized benchmark applications.
EEMBC Input Output Num

Benchmark Description Source Suite (Dataset) size (B) size (B) Loops

autcor auto correlation EEMBC/VIRAM Telecom (2) 1024 64 1
conven convolution encoder EEMBC/VIRAM Telecom (1) 522 1024 1

rgbcmyk rgb filter EEMBC/VIRAM Digital Ent. (5) 1628973 2171964 1
rgbyiq rgb filter EEMBC/VIRAM Digital Ent. (6) 1156800 1156800 1
fbital bit allocation EEMBC/VIRAM Telecom (2) 1536 512 2
viterb viterbi encoder EEMBC/VIRAM Telecom (2) 688 44 5

ip checksum checksum EEMBC (kernel) Net (handmade) 40960 40 1

imgblend combine two images VIRAM (handmade) 153600 76800 1
filt3x3 image filter VIRAM (handmade) 76800 76800 1

compromised and with the complete test harness allowing us to report official EEMBC

scores.

Our work on soft vector processors requires benchmarks with adequate data paral-

lelism, so we assembled a subset of benchmarks for that purpose shown in Table 3.1. The

top six are uncompromised EEMBC benchmarks vectorized in assembly and provided to

us by Kozyrakis who used them during his work on the VIRAM processor [33] discussed

in Section 2.2.6. Some debugging was subsequently performed on those benchmarks,

which were also re-coded to eliminate dependencies to the original VIRAM processor

configuration. The fifth benchmark is a kernel we extracted and hand-vectorized from

the EEMBC ip pktcheck benchmark. Since execution of this benchmark is indepen-

dent of the data set values, we provide a hand-made data set of 10 arbitrarily filled 4KB

packets. Similarly the last two benchmarks also execute independent of data set values,

so we provide two arbitrarily filled 320x240 images (one byte per pixel) for filt3x3 and

one of those images for imgblend. These two benchmarks were provided to us from

the VIRAM group as well. The last three columns of Table 3.1 show the input data

size, output data size, and total number of loops not including nested loops. All loops

were vectorized except for one loop in both the fbital and viterb benchmarks. Finally

note that all benchmarks were written to be independent of the maximum vector length

supported in the vector processor; no benchmark modifications were made nor required

for any of our experiments.

Chapter 3. Experimental Framework 30

3.3 Software Compilation Framework

Benchmarks are compiled using GNU GCC 4.2.0 ported to MIPS to match the MIPS-

based SPREE scalar processors used throughout this work. Benchmarks are compiled

with -O3 optimization level. GCC has internal support for auto-vectorization potentially

enabling soft vector processors to be employed without manual software changes. How-

ever, experiments with this feature showed that it failed to vectorize all key loops in the

EEMBC benchmarks above. Using GCC 4.3.3 only the autcor benchmark was success-

fully vectorized. We expect this technology to better incorporated in GCC in the future.

Commercial compilers such as the Intel C Compiler likely have better auto-vectorization

support but is closed-source making it impossible to port to our VIRAM vector instruc-

tion set. Instead of relying on auto-vectorization, we ported the GNU assembler found

in binutils version 2.1.6 to support our VIRAM vector instruction set, allowing us to

hand-vectorize loops in assembly, compile it into a regular application binary, as well as

disassemble the compiled result.

3.4 FPGA CAD Software

A key value of performing FPGA-based processor research directly on an FPGA is the

ability to attain high quality measurements of the area consumed and the clock frequency

achieved—these are provided by the FPGA CAD software. In this research we use Altera

Quartus II version 8.1. There are many settings and optimizations that one can enable

within the software, creating a wide range of synthesis results. In our work the settings

used are those suggested in previous research [69] which identified them as a good area,

clock frequency, and runtime tradeoff. First, we request that the CAD tool attempt to

attain a 200 MHz clock frequency despite the fact that our soft processors are incapable

of reaching such a high clock frequency. By doing this the CAD software thoroughly

optimizes the clock frequency of the design. Second, we enable the optimizations for

register retiming and register duplication as suggested. All other settings are left at their

Chapter 3. Experimental Framework 31

default values.

3.4.1 Measuring Area

Area is comprised mostly of the FPGA programmable logic blocks described in Sec-

tion 2.3. Throughout this work two generations of FPGAs are used: the Stratix I

and Stratix III on which the programmable logic blocks are respectively referred to as

Logic Elements (LEs) and Adaptive Logic Modules (ALMs). Soft processors also make

use of memory blocks and multiply-accumulate blocks in their designs creating a multi-

dimensional area measurement, which we reduce to a single scalar measurement of the

total silicon area used by all the occupied FPGA resources. The silicon areas of each

FPGA resource relative to a single programmable logic block including its routing was

provided to us from Altera [13] for the Stratix I and Stratix II. The relative silicon areas

are proprietary and hence cannot be released in this document. We used these numbers

for the Stratix I and extrapolated them for the Stratix III and measured the total silicon

area consumed. We report the areas for the Stratix I and Stratix III respectively in units

of equivalent LEs and equivalent ALMs.

3.4.2 Measuring Clock Frequency

The clock frequency of a synthesized design is reported by the timing analysis tool in

the FPGA CAD software. In addition to the settings described above, the actual device

targeted can affect these results because of differing architecture, circuit design, and IC

fabrication process used in creating the FPGA. Rather than targeting the FPGA devices

used in this work (which are slower mid-speed devices as described in the next section),

we instead measure clock frequency by targeting a Stratix III EP3SL340H1152C2 which

is a faster device than those on our hardware platforms. Doing this accurately reflects

the speeds achievable on state-of-the-art FPGAs rather than limiting our results to the

devices available to us.

Chapter 3. Experimental Framework 32

3.5 Hardware Platforms

All soft processors explored in this work are fully synthesized using the CAD flow de-

scribed above and implemented in hardware on an FPGA system. A hardware implemen-

tation is necessary to quickly benchmark a soft processor—an analysis of the execution

speeds of hardware over software simulation is presented in Section 3.8. Benchmarks

are executed in hardware and report the precise number of clock cycles required to

complete execution. The majority of this work was done on the University of Toronto

Transmogrifier-4 board, but prior to writing, we ported some of our work to the new

Altera DE3 board. We describe each of these hardware platforms below and specify in

our results which was used in the corresponding experiments.

3.5.1 Transmogrifier-4

The Transmogrifier-4 [19] is a multi-FPGA platform with four Altera Stratix 1S80F1508C6

devices on it (a high-end large-capacity FPGA device fabricated in 130nm technology).

This system was developed at the University of Toronto until completed in 2005 and was

intended for graphics and other compute-intensive streaming applications. It is equipped

with many peripherals such as video and Firewire connections, but the most important

non-FPGA component for our purposes is the two 1GB DIMMs of DDR-266 SDRAM

available for each of the four FPGAs. Only one Stratix I FPGA is used to host a soft

processor design and one of the connected DIMMs is used to store the instruction and

data for an application. The memory system is clocked at 133 MHz (266 MHz dual data

rate).

The TM4 was selected for our studies of soft processor design for a few reasons. First,

it provides a communication layer between user-designs on the FPGA(s) to a host Linux

computer simplifying the design of an I/O subsystem. This communication package is

referred to as the TM4 Ports Package. Second, it has a pre-verified memory controller

design available. And finally, it has an abundance of DDR SDRAM on it whereas the

Chapter 3. Experimental Framework 33

FPGA development kits at that time had only SRAM or only 16MB of DRAM. We

believe it is important to use DRAM technology since the desktop market will continue

to commoditize it making DRAM the cost-effective choice for embedded designs.

3.5.2 Terasic DE3

The Terasic DE3 boards were released in 2008 offering more up-to-date FPGA and DRAM

technologies. We use the Terasic DE3-340 board equipped with a single Stratix III

EP3SL340H1152C3 which is one of the largest state-of-the-art FPGAs available at the

time this work was performed. The Stratix III is fabricated in a 65nm CMOS technology

process making it two generations more advanced than the Stratix I FPGAs on the TM4.

We also use a 1GB DDR2-533 MHz memory device for the storage of instructions and

data in a program. The Altera DDR2 memory controller connects the soft processor to

the DDR2 DIMM and is clocked at the full-rate of 266 MHz.

3.5.3 Measuring Wall Clock Time

The implementation onto a real FPGA hardware platform enables accurate measurement

of not just the execution cycles (which traditionally was only modelled in the computer

architecture community) but also the wall clock time for executing a benchmark. Wall

clock time considers both cycle performance and clock frequency of a processor. Measur-

ing wall clock time is ideally performed by clocking the design at its highest clock rate,

measuring the number of clock cycles to execute a benchmark, and then multiplying the

number of cycles by the clock period. To avoid complications that arise from clocking

each design at a custom rate, we clock all designs at one clock frequency. On the TM4

this is 50 MHz and on the DE3 it is 100 MHz. Thus our calculation of wall clock time is

given by

WCT = Ncycles@50or100MHz/fcpu (3.1)

where fcpu is the maximum clock frequency of the soft processor and Ncycles@50or100MHz

Chapter 3. Experimental Framework 34

is the number of cycles to complete the benchmark when clocked at 50 or 100 MHz

depending on the platform. Typically the soft processor can be clocked higher than

these frequencies, meaning we are underclocking the soft processors.

3.6 Measurement Error

Errors in our measurement methodology exist due to simplifications made, randomness in

the CAD software, and physical effects in our realistic infrastructure. These errors affect

the area, cycles, clock frequency, and wall clock time measurements and are detailed

below.

1. Area: Area measurements are subject to two sources of errors: (i) the synthesis

algorithms which can produce significantly different hardware implementations from

minor perturbations to the Verilog source; and (ii) the approximation of the silicon

areas of each resource on the Stratix III which we derived from the Stratix II. The

first is difficult to mitigate, the second cannot be discussed to protect the intellectual

property rights of the vendor.

2. Cycles: The number of cycles reported at the end of benchmark execution is

precisely measured, but certain events can randomly occur during execution altering

the measurement with each run. A DRAM refresh command is one such example,

as is settling times between signals crossing clock domains. In general this affected

only the least significant digit of cycle measurements while benchmarks executed

between thousands and millions of cycles. The error is hence ignored.

3. Clock Frequency: Clock frequency measurements can vary significantly from the

non-determinism in modern CAD algorithms which produce different clock frequen-

cies depending on an integer seed selected by the user. To filter out the noise caused

by this non-determinism, we select 8 different seeds and average the clock frequency

across the 8 runs as suggested in [69]. This averaging minimizes the amount of mea-

surement error in our methodology.

Chapter 3. Experimental Framework 35

4. Wall Clock Time: As mentioned previously, measuring the maximum clock fre-

quency of a design and achieving a design that can operate correctly at that fre-

quency introduces additional complications. These complications are avoided by

underclocking all designs at the same clock frequency and using Equation 3.1 which

leads to time dilation effects between the processor and memory. Underclocking

a processor design means fewer processor cycles are needed to match the memory

latency. Scaling those cycles by a faster clock rate falsely accelerates the memory

latency as well. In Chapter 4 we show that cache misses are not a major contributor

to scalar soft processors, and in Chapter 6 we show that prefetching can minimize

their impact on performance so we ignore these effects.

3.7 Verification

All soft processors were fully tested in hardware using the built-in verification encoded

into each EEMBC benchmark. At the end of each benchmark a checksum is computed

across the output data and compared to a built-in gold-standard value to determine if ex-

ecution completed successfully. If the verification fails, it can be extraordinarily difficult

to uncover and fix bugs given that manual modifications were made to the benchmarks,

the assembler, the simulator, and the hardware design. As a result, developing a pow-

erful test and debug infrastructure with multiple abstraction levels is imperative for

in-hardware exploration of architectures.

3.7.1 Instruction Set Simulation

One useful abstraction is simulation at the instruction-level which is performed inde-

pendent of any architecture. Instruction set simulation can verify the correctness of the

benchmark and assembler hence ruling out bugs in these components. However without

a pre-verified VIRAM simulator available, considerable time was spent augmenting an

existing simulator with VIRAM extensions and simultaneously debugging it with the

Chapter 3. Experimental Framework 36

benchmarks and assembler.

Our simulator is based on the MINT [64] MIPS simulator which is pre-verified and

can successfully execute the scalar MIPS code in our benchmarks. MINT models only

the MIPS state and parses instructions in the binary and appropriately updates the

state. We augmented this simulator with support for the VIRAM vector instruction set

modelling all the vector state described in Section 2.2.6. In addition we parse and execute

the vector instructions by correspondingly modifying the vector state. Once verified, the

augmented MINT simulator was used to verify the benchmarks and compiler, analyze

the instruction streams of the benchmarks, and even model caches and other processor

components to predict their effectiveness. The most important use of the the simulator

however is to generate traces of all modifications to the vector state which is used to

compare against by the RTL simulation described below.

3.7.2 Register Transfer Level (RTL) Simulation

RTL simulation is performed using Modelsim SE version 6.3c which can simulate the

Verilog design in software (avoiding hardware timing problems such as crossing a clock

domain). The complete system is simulated including the processor, bus, and even DDR

controller. The behaviour of the TM4 DDR DIMM is modelled in Verilog using a hand-

made memory model, as is the TM4 communication package which is stimulated with

bus transactions that emulate the TM4-to-host transactions. The DE3 DDR2 memory

is modelled with the Altera generated memory model. With this level of simulation we

can capture logic errors throughout the complete hardware system. Similar to MINT,

the RTL simulation emits a complete trace of all modifications made to the vector state.

By comparing this trace to that from MINT, we can identify: (i) the instruction which

triggered the error; (ii) the incorrect value computed; and (iii) the exact time in the

waveform the error occurred. This trace-guided debug infrastructure is used extensively

before implementing a design in hardware.

Chapter 3. Experimental Framework 37

Table 3.2: Benchmark execution speeds.
Platform Instructions/s Normalized Speedup

DE3 68970334 2383961
MINT 76458 2643

Modelsim 29 1

3.7.3 In-Hardware Debugging

Despite the simulation at the instruction and RTL level, inevitably some errors will

manifest only in the hardware implementation. In such a case the benchmark will either

report that it failed or execute indefinitely with no response. For either case the Altera

SignalTap II Logic Analyzer is used to examine the internal state of the system. SignalTap

inserts logic into the design allowing some signals to be sampled under some event and

transmitted to the FPGA CAD software over a JTAG link. This tool provides very

limited scope and debug features, highlighting the need to catch errors before the system

is implemented in hardware.

3.8 Advantages of Hardware Execution

RTL simulation in Modelsim could be used in place of actual hardware execution while

still achieving high-fidelity results. But execution in real hardware has the advantage

of rapid benchmark execution which is necessary for benchmarking large design spaces

using long-running applications. To quantify the advantages of hardware execution we

measured the actual execution rates across: (i) our DE3 hardware platform hosting a soft

processor; (ii) our MINT-based instruction set simulator which executes the benchmark

without cycle-accurate hardware detail; and (iii) RTL simulation in Modelsim of the

same soft processor. This was measured by executing the qsort benchmark from the

free MiBench [61] suite.

Table 3.2 lists the instruction execution rates and normalized speedup across the three

platforms. RTL simulation is by far the slowest since the exact cycle-to-cycle behaviour

of the processor is being emulated in software. The MINT simulator can execute 2643x

Chapter 3. Experimental Framework 38

faster than modelsim by emulating only instruction-level behaviour without any cycle-

level details. The hardware implementation on the DE3 can execute 2.4 million times

faster than Modelsim, and approximately 1000x faster than MINT. The benchmarking

speed available in hardware enables us to quickly execute large benchmarks across many

soft processor configurations, while capturing full and realistic hardware behaviour.

3.9 Summary

In this chapter we presented our infrastructure for evaluating soft processors in real

hardware. Using industry-standard benchmark applications compiled through standard

software toolchains and executed from DRAM on real FPGA devices we achieve bench-

marking accuracies never seen in traditional computer architecture research. In addition,

with accurate area and clock frequency measurements from the FPGA CAD software,

we achieve a more complete view of pertinent architectural metrics enabling us to draw

accurate conclusions about soft processor architecture.

Chapter 4

Performance Bottlenecks of Scalar

Soft Processors

A key goal of this research is to scale the performance of soft processors. This is best

achieved by targeting the bottlenecks of current soft processors, hence motivating analysis

of the bottlenecks in current soft processor systems under their typical workloads. For

example, if soft processors were memory bound a soft processor can customize its memory

system and scale performance with area costs less than adding vector extensions. The

subsequent sections implement a soft processor system with off-chip memory, analyze

that system, explore different cache configurations, and finally compare it to an IBM

PowerPC hard processor. The observations gained from this analysis will be used to

guide system-level scalability enhancements for soft processors.

4.1 Integrating Scalar Soft Processors with Off-Chip Memory

Our previous work with the SPREE soft processor generator [70, 71] used only on-chip

memory, where memory latency is not a concern since FPGA block-RAMs typically op-

erate at higher speeds than the soft processors that use them. However, our consultations

with both Xilinx and Altera revealed [8, 65]: (i) that commercial soft processors were

most often used in systems with off-chip memory which requires several processor clock

39

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 40

cycles to access—referred to as latent memory accesses; and (ii) that internally both

companies benchmark their processors with embedded systems benchmarks, believing

these represent typical soft processor workloads. The first suggests a disconnect between

the prior research and commercial uses of soft processors hence necessitating new studies

into soft processors with off-chip memory. The second confirms our benchmark selection,

yet motivates an off-chip memory system for supporting benchmarks with larger data

sets such as those from EEMBC as discussed in Chapter 3. Systems with only on-chip

memory have limited data and instruction memory available preventing them from exe-

cuting many of the EEMBC benchmarks (data set sizes for the vectorized benchmarks

are given in Chapter 3, Table 3.1). We therefore implemented a SPREE soft processor

on the TM4 using the DDR DRAM for memory.

The specific scalar processor design selected for our study was automatically generated

by the SPREE processor generator [70, 71]. We chose a 3-stage pipelined processor with

full forwarding and a 1-bit branch history table for branch prediction as we found it to be

the most area-efficient (good performance with low area). The processor suffers a single

pipeline stall on any branch misprediction or instance of a shift, multiply, load, or store

instruction. SPREE initially supported only on-chip memory, so we modified SPREE

to export an external memory bus allowing the connection of a memory subsystem and

hence allowing varying additional stalls for loads and stores depending on the response of

the memory subsystem. The DDR memory on the TM4 has 64 pins resulting in 128 bits

accessible per clock cycle since data is transmitted on both positive and negative edges

of the 133 MHz clock. To connect the processor and memory, we use instruction and

data caches to hide the memory latency. The caches have a 16-byte line size to match

the 128-bit interface of the DDR memory for simplicity. To fully utilize the Stratix I

block RAMs required to achieve this line size, we implement 4KB deep caches. The data

cache implements a write-back, write-allocate write policy.

Using the TM4 hardware platform, the processor and caches are clocked together

at 50 MHz while the DDR controller is clocked at 133 MHz as discussed in Chapter 3.

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 41

Processor
42%

4KB ICache
11%

Memory
Controller,

Peripherals,
TM4 Comm.

37%

4KB DCache
11%

Figure 4.1: Area breakdown of scalar SPREE processor with off-chip memory system.

There are three main reasons for the reduced clock speed of the processor and caches: i)

the original 3-stage pipelined processor with on-chip memory could only be clocked at

72 MHz on the slower speed grade Stratix I FPGAs on the TM4; ii) adding the caches

and bus handshaking further reduced the clock frequency to 64 MHz; and iii) to relax

the timing constraints when crossing clock domains, we chose a 20 ns clock period which

is a rational multiple of the 133 MHz (7.5 ns) DDR clock. Doing this means the worst

case offset between these two clock edges is 2.5ns. This large delay makes it easier for

the CAD tools to meet timing constraints.

4.1.1 Scalar Soft Processor Area Breakdown

Figure 4.1 shows the relative area of components in our soft processor system with off-chip

DDR memory. The areas were measured in terms of silicon area as described in Chapter 3.

The figure shows that the system is comprised of the processor core (42%), 4KB direct-

mapped L1 data cache (11%), 4KB direct-mapped L1 instruction cache (11%), and the

rest of the system including memory controller, peripherals, and communication logic

between the TM4 and Linux host (37%). Note that cache accounts for less than a

quarter of system area, despite the simplicity of the processor core. While this is quite

different from conventional processors whose silicon area is typically dominated by cache,

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 42

Controller
pipelining, 3

DRAM, 6

Single Edge
Conversion, 2

Phase re-
align, 3

Clock-
crossing, 4

Handshake, 3

Figure 4.2: Breakdown of the 21 cycle memory latency in TM4-based soft processor system
measured in clock cycles of the memory core clock (133 MHz).

it is expected in FPGA technology since caches are composed mostly of memory which

can be built efficiently using block RAMs. Similarly, in contrast with hard systems, cache

area is also dominated by area devoted to the memory controller and other peripherals.

4.1.2 Scalar Soft Processor Memory Latency

A load miss penalty of only 9 cycles exists on our system with a processor clock of 50MHz

and a memory system clock of 133MHz. In terms of the memory system clock, the latency

is 21 cycles and can be broken-down as seen in Figure 4.2. The processor uses a 3-cycle

handshaking scheme to communicate a memory request to the DDR controller. Pipelining

within the DDR controller and the row and column access latencies are responsible for

a 9-cycle delay before the data is available at the pins of the FPGA.1 Conversion from

the 64-bit dual-data-rate signal to a 128-bit wide single-edge signal requires 2 cycles,

followed by 3 cycles for phase realignment since data returns offset from the original

clock edge. Crossing back into the processor’s clock domain with some handshaking then

consumes an additional 4 cycles. This memory controller implementation can have its

latency further improved by: (i) tracking open DRAM pages and avoiding redundant row

access latencies; (ii) allowing multiple outstanding memory operations to be requested;

1Note the controller uses a closed-page policy meaning every request opens a DRAM row and then closes it.

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 43

and (iii) fusing the single edge conversion, phase re-alignment, and clock crossing which

together amount to a single clock crossing. Thus, we are confident the memory system

is not overly-optimized and hence is representative of the memory latencies typical in an

FPGA.

Table 4.1: Memory latencies on soft and hard processor systems.
SPREE on TM4 SPREE on DE3 Pentium 4 desktop

Processor Clock 50MHz 100MHz 2.8GHz
DRAM DDR DDR2 DDR
Memory Clock 133MHz 266MHz 160MHz
CAS Latency 2.5 4 2.5
Miss Penalty 9 11 325

Our first key observation is therefore that off-chip memory latency for FPGA-based

soft processors is not as significant as it is for ASICs and other hard processors, because

the clock frequency of typical soft processors is much slower as seen in Table 4.1. The

memory latency after missing in both the L1 and L2 caches on a 2.8GHz Pentium 4

(Northwood) processor with 160MHz DDR SDRAM was measured as 325 cycles using

the RightMark Memory Analyzer software [10]. This latency is 36 times higher than

the 9-cycle latency observed in our 50MHz soft processor on the TM4. Since the soft

processor is being underclocked as discussed earlier, the observed memory latency can

be higher with a faster processor clock frequency. But even with an optimistic 133MHz

processor clock, the 21 cycle latency is still very small compared to the 325 cycles on

the Pentium 4. Using the DE3 platform and DDR2 DRAM, the latency is increased to

11 cycles when the SPREE processor is clocked at 100 MHz. Clocking it optimistically

at 266MHz results in a 30 cycle latency which is still one-tenth of that on the Pentium

4 desktop system. These small memory latencies suggest that research into improved

memory systems for soft processors can be deferred until perhaps sometime in the future.

In this thesis we address the more immediate need for increased computational capability

by implementing vector extensions.

The increased latency observed on the DE3 platform over the TM4 is due to the

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 44

Altera DDR2 High Performance Memory Controller used, which is much more sophisti-

cated than the DDR controller we designed ourselves for the TM4. The Altera DDR2

controller supports multiple outstanding memory requests, though our soft processor

does not exploit this as it can service only one memory operation at a time. It also

tracks open DRAM pages, so that a cache misses to an already open page would exhibit

a shorter latency. Finally, the memory controller is aggressively pipelined since it must

satisfy timing constraints in many different designs on many different devices. After

two generations of CMOS technology improvements, this increased latency can at best

suggest a gradual worsening soft processor-memory performance gap. We expect that

going forward, soft processors will continue to observe memory latencies much smaller

than conventional microprocessors. Despite the small memory latencies, the memory

system may be a significant bottleneck in a scalar soft processor if the latency could not

be effectively hidden. This is explored in the subsequent section.

4.2 Scaling Soft Processor Caches

If the memory latency was a significant bottleneck, then hiding that latency would greatly

increase the performance of the system. In this section we explore the impact of cache

configuration on performance to measure the significance of memory latency in our scalar

soft processor system. We extrapolate our results and model an ideal memory system

(effectively on-chip memory) to determine an upper bound on the speedup that could be

achieved by eliminating the memory latency.

In this experiment we use the parameterized data cache depth in our scalar soft

processor to vary the capacity of the cache. This data was collected from an in-hardware

execution of the EEMBC benchmarks on the TM4. The measured line in Figure 4.3 shows

the geometric-mean speedup across our EEMBC benchmarks for varying direct-mapped

data-cache sizes, relative to a 4KB data cache. Compared to the 4KB data cache, an

enormous 256KB data cache provides only a 9% additional speedup at the cost of a

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 45

0.92

1.00

1.06
1.08 1.09

1.10
1.12

0.90

0.98

1.04

1.07
1.08

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

256B 1KB 4KB 16KB 64KB 256KB 1024KB Perfect

A
ve

ra
g

e
S

p
ee

d
u

p
 v

s
4K

B
 M

o
d

el
le

d

Data Cache Size

Modelled Speedup

Measured Speedup

Figure 4.3: Geometric mean speedup across our EEMBC benchmarks for varying direct-
mapped data-cache sizes, relative to a 4KB data cache. Speedup is both measured in real
hardware and modeled according to Equation 4.1, both with a 64KB instruction-cache. For the
modeled speedup, the perfect point shows the impact of a perfect data cache.

64-fold increase in area devoted to cache.

To extrapolate these results further, we used our hardware system and an instruction

set simulator to derive a model of the system. To model the impact of a given cache, we

use the equation:

Speedup = CPIperfect + (fldMldPld) + (fstMstPst) (4.1)

where CPIperfect is the cycles-per-instruction measured with a perfect memory system,

fld is the frequency of loads, Mld is the load miss rate, Pld is the load miss penalty

in processor cycles. The third term in the equation is analogous to the second and

uses equivalent parameters specifically for stores instead of loads. Using the CPI values

measured previously for our processors with only on-chip memory [70] as an estimate, the

frequency of memory references and miss rates measured using our instruction simulator

as seen in Appendix A, and miss penalties reported by the Altera SignalTap II Logic

Analyzer software, we plot the modelled speedup line shown in Figure 4.3. The figure

shows that the modelled speedup tracks the measured speedup very closely, with the

modelled speedup being slightly larger since it models neither instruction misses nor bus

contention. According to this model a perfect data cache improves performance only

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 46

12% over the 4KB data cache. Caches with increased associativity may be ineffective

at achieving this performance because they would increase the cache access latency.

The diminishing returns seen in the larger cache sizes and the idealized cache point out

that the memory system is not a significant bottleneck. While vector extensions can

also aid in relieving memory bottlenecks, soft processors are uniquely able to adapt to

their memory access patterns to effectively hide memory latency. In a memory bound

system it is likely that this would produce performance scaling with significantly less area

cost than a vector processor. Since soft processors are not presently memory bound we

forego this potentially large research topic and are hence motivated to explore a means

of translating additional area into improved performance other than increasing memory

system performance.

4.3 Soft vs Hard Processor Comparison

Recall that our goal is to use software-programmed soft processors to replace much of

the manual hardware design in an FPGA system. To enable greater capability in soft

processors we also seek performance scaling significantly beyond that achieved by improv-

ing the memory system. To provide a context for these goals, we compare soft processor

performance to hard processor performance. This allows us to approximate the large per-

formance losses associated with implementing a processor on an FPGA substrate. Note

it is not our goal to make FPGAs the desired substrate for all microprocessors, rather,

soft processors are already adequately motivated despite their lack of performance as

discussed below.

An FPGA design which includes a software component can execute that software

on (i) an off-chip hard processor, (ii) an on-chip hard processor such as the PPC 405

included on various Xilinx FPGAs, and (iii) on a soft processor. The first option requires

additional board space and power, the second option raises the costs of FPGAs, while

the soft processor option likely performs the worst. By leveraging the reprogrammability

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 47

92
51

95
34

84
75 77

15
3

88
77

55 57 56
64

94 97
64 59 60

15
8 16

8
40

54
45

14
7

40
70

81
73

61 61
51 58 57 49

17
46

69
36

65

0

25

50

75

100

125

150

175

ai
fft

r0
1

ai
fir

f0
1

ai
iff

t0
1

bi
tm

np
01

ca
ch

eb
01

ca
nr

dr
01

id
ct

rn
01

iir
flt

01
pu

w
m

od
01

rs
pe

ed
01

di
th

er
01

ro
ta

te
01

te
xt

01
au

tc
or

00
da

ta
_2

co
nv

en
00

da
ta

_1
fb

ita
l0

0d
at

a_
2

ff
t0

0d
at

a_
3

vi
te

rb
00

da
ta

_2
ip

_p
kt

ch
ec

kb
4m

ip
_r

ea
ss

em
bl

y
na

t
os

pf
v2 qo
s

ro
ut

el
oo

ku
p

tc
pm

ix
ed ae

s
cj

pe
gv

2d
at

a5 de
s

dj
pe

gv
2d

at
a6

hu
ffd

e
m

p2
de

co
dd

at
a1

m
p2

en
fix

da
ta

1
m

p3
pl

ay
er

fix
ed

da
ta

2
m

p4
de

co
de

d
at

a4
m

p4
en

co
de

d
at

a3
rg

bc
m

yk
v2

da
ta

5
rg

bh
pg

v2
da

ta
5

rg
by

iq
v2

da
ta

5
rs

a
G

E
O

M
E

A
N

S
p

ee
d

u
p

 o
f P

P
C

75
0G

X
 v

s
S

P
R

E
E

Figure 4.4: Speedup of IBM 750GX 1GHz laptop processor versus the 3-stage 50 MHz SPREE-
based processor system.

in soft processors to customize them to their application, we hope to improve their

performance and make them an effective vehicle for avoiding hardware design by making

software sufficient. Quantifying the performance gap between soft and hard processors

will suggest the magnitude of performance scaling necessary to make soft processors

significantly more useful in this regard. Using our SPREE processor with 3-stage pipeline,

full forwarding, 1-bit branch history, and separate 4KB L1 direct-mapped caches, we

measure the performance of the EEMBC benchmarks on the TM4. Since EEMBC scores

are listed on the EEMBC website [18], we can easily compare this SPREE processor to

a real hard processor implemented in the same 130nm CMOS technology used in our

Stratix 1S80 platform. However, the number of processors listed on the EEMBC website

are relatively few so we chose the IBM PowerPC 750GX based on its reputation, high-

performance, and 130nm design. Other options were not very well-known and had low

performance.

We used the complete EEMBC benchmark suite choosing the largest datasets for

each application, and eliminating any benchmarks dominated by floating point or integer

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 48

division operations as our processor did not have hardware support for these operations.

Certain benchmarks such as nat and iirflt01 still contain a significant amount of

division and hence additionally suffer in our system which performs division in software.

Figure 4.4 shows the performance of our SPREE processor against the IBM PowerPC

750GX which was used in laptop computers and greatly outperforms typical embedded

processors. The PPC750GX is a 1GHz out-of-order multi-issue processor with 32KB 4-

way set associative L1 caches, a shared 1MB L2 cache, and a 200 MHz memory bus clock.

On average, the PPC750GX performs 65x faster than our 50 MHz in-order single-issue

processor with separate 4KB direct-mapped caches and a 133-MHz memory clock with

9-cycle memory access latency. The rgbcmyk benchmark is executed only 17x faster

than our soft processor. This datum seems to be an anomaly, but without access to the

PPC750GX or its compiler further investigation is impeded. A likely cause of this are

the conditional statements within the small loop which cannot be accurately predicted

since they are data dependent. Our SPREE processor with its short pipeline is only

slightly affected by mispredicted branches, a more highly aggressive design such as the

PPC750GX may be more heavily impacted.

The large 65x performance gap is in part accounted for by the 20x faster processor

clock speed of the PPC750GX. Differing processor architecture, memory hierarchy, and

memory technology presumably contribute to the remainder of the gap. As we showed

in the last section, idealizing the complete memory system does not significantly increase

the performance of the soft processor. This suggests that soft processors need to be

equipped with far more powerful compute capabilities than currently available, and that

the order of performance gains necessary to truly make soft processors useful beyond

their current niche is in the 10-50x range. Our goal is to make significant progress in this

direction through the use of soft vector processors.

Chapter 4. Performance Bottlenecks of Scalar Soft Processors 49

4.4 Summary

In this chapter we investigated a system comprised of a commercially competitive scalar

soft processor connected to off-chip DDR RAM in real hardware. The observed memory

latency was only 9 cycles, significantly smaller than in traditional hard processors which

are clocked in the GHz range. We noted that the size of a 4KB data cache is just one

quarter the size of the soft processor. We also saw that expanding this cache to 256KB

provided only a 9% increase in performance as measured in hardware, and when we model

an ideal memory system, only 12% better performance is possible. Thus, the small 4KB

direct-mapped cache has largely solved the memory problem for current soft processors

running embedded benchmarks. Further increases to the computational capabilities of

soft processors are necessary to widen their adoption. Against a hard laptop processor

our commercially competitive soft processor was 65x slower with a 20x slower clock rate.

By reducing this gap we hope soft processors will provide a more affordable, simple,

and effective means of implementing computation in FPGAs. Rather than performing

incremental improvements to soft processors, the magnitude of the gap motivates research

into highly scalable soft processor architectures.

Chapter 5

The VESPA Soft Vector Processor

In this chapter we motivate, design, and build a soft vector processor called Vector

Extended Soft Processor Architecture or VESPA.

5.1 Motivating Soft Vector Processors

Recall that our goal is to scale the performance of soft processors so that they might be

used as an alternative to laborious hardware design. Since FPGAs are often used in em-

bedded systems, their workloads include telecommunication and multimedia applications

which are known to have ample data level parallelism [33]. Thus, to achieve our goal of

scaling the performance of soft processors, we are motivated to exploit this DLP so that

these workloads might be implemented more easily in software instead of hardware.

While DLP can be exploited in many ways, we chose a soft vector processor for a

number of reasons. First, supporting and using soft vector processors requires only ex-

tending the instruction set. Commercial soft processors already have infrastructures for

adding custom instructions, so vector extensions can be comfortably used by existing

FPGA designers. Second, vector processors provide a built-in abstraction between soft-

ware and hardware through the maximum vector length MVL parameter. This allows

the designer to vary the number of vector lanes and hence control the area/performance

trade-off without rewriting or re-compiling software. Third, auto-vectorization has been

50

Chapter 5. The VESPA Soft Vector Processor 51

thoroughly researched and already exists in compilers such as GCC [14] because detecting

the fine-grain data parallelism used by vector processors is far simpler than the gen-

eral parallelization problem. With high-quality auto-vectorization, soft vector processors

could be seamlessly used in a typical C-based design flow and the FPGA designer would

need only to choose the number of lanes depending on the space available on their device.

On going research in auto-vectorization algorithms [50] could help enable this seamless

design flow. Finally, the biggest reason is that a vector architecture is well-suited to

FPGA implementation. A vector processor with all lanes operating in lockstep requires

very little inter-lane coordination making the design scalable in hardware. Moreover, the

architecture does not require any large associative lookups, many ported register files, or

other structures that are inefficient to implement in FPGAs. Other architectures such as

superscalar processors could require such inefficient FPGA structures. For all these rea-

sons we believe soft vector processors can effectively exploit DLP on an FPGA and hence

promote simpler software implementations of components instead of manual hardware

design.

5.2 VESPA Design Goals

In deriving the design goals for VESPA, it is useful to target the computational tasks that

a soft vector processor is likely to be used for. The decision to use a soft vector processor

implementation depends not only on the amount of DLP in a computation, but also on

how critical the given computation is to the overall performance of the system. A digital

system is comprised of many components each implementing different computational

tasks which vary in both their DLP and their performance requirements (or criticality).

Computations with little or no DLP, as well as highly critical computations which justify

highly-optimized hardware design are unsuitable candidates for execution on a soft vector

processor. Thus, as shown in Figure 5.1, the class of computations targeted in this thesis

is low to medium critical computations with sufficient DLP. The benchmarks used in

Chapter 5. The VESPA Soft Vector Processor 52

Criticality

D
at

a
P

ar
al

le
lis

m

0

Figure 5.1: A view of the space of computations divided along the axes of DLP and performance
criticality. Computations with low DLP and criticality are near the origin and are likely candi-
dates for implementation on a scalar soft processor, while computations with sufficient DLP and
low to medium criticality are shown in grey and are targeted in this thesis for implementation
on a soft vector processor.

this thesis typically have very high DLP. Increased amounts of DLP motivate soft vector

processor implementations for more critical computations. As a result the design goals

for VESPA are as follows:

1. Scalability – The more VESPA can scale performance, the more likely it is to be

used for computation with higher criticalities. Since our goal is to reduce the amount

of hardware design, converting these more critical computations into software is key

for this thesis.

2. Flexibility – Aside from the number of lanes, there are several other parameters

that can dramatically affect the area and performance of a soft vector processor.

To exploit the unique ability of FPGAs to quickly implement custom hardware,

VESPA was designed with many architectural parameters which designers can use

to meet their area/performance needs.

3. Portability – Although less crucial than the first two goals, it is also important

that a soft vector processor can be easily ported to different FPGA architectures.

Chapter 5. The VESPA Soft Vector Processor 53

Scalar
MIPS

Vector
Issue

Lane 1
Lane 2

Lane L
…

Memory
Crossbar

Dcache

…

Icache

Prefetch

Arbiter

DRAM

Vector Coprocessor

Figure 5.2: VESPA processor system block diagram.

With this property, FPGA vendors and users are more likely to adopt soft vec-

tor processors since maintaining the design across their many FPGA families is

simplified.

To achieve these goals and verify the feasibility of soft vector processors on FPGAs

we implemented VESPA on the FPGA hardware platforms described in Chapter 3.

5.3 VESPA

The VESPA soft vector processor was designed to meet the aforementioned goals. VESPA

is composed of a scalar processor and an attached vector coprocessor. A diagram includ-

ing both components as well as their connection to memory is shown in Figure 5.2. The

figure shows the MIPS-based scalar and VIRAM-based vector coprocessor both fed by

one instruction stream read from the instruction cache. Both cores can execute out-

of-order with respect to each other except for communication and memory instructions

Chapter 5. The VESPA Soft Vector Processor 54

which are serialized to maintain sequential memory consistency. Vector instructions enter

the vector coprocessor, are decoded into element operations which are issued onto the

vector lanes and executed in lockstep. The vector coprocessor and scalar soft processor

share the same data cache and its data prefetcher though the prefetching strategy can

be separately configured for scalar and vector memory accesses. The four sections below

describe the scalar processor, the vector instruction set implemented by the vector co-

processor, the vector coprocessor memory architecture and the VESPA pipeline in more

detail.

5.3.1 MIPS-Based Scalar Processor

The instruction set architecture (ISA) used for our scalar processor core is a subset of

MIPS-I [46] which excludes floating-point, virtual memory, and exception-related instruc-

tions; floating point operations are supported through the use of software libraries. This

subset of MIPS is the set of instructions supported by the SPREE system [70, 71] which

is used to automatically generate our scalar soft processor FPGA implementation in syn-

thesizable Verilog HDL. The generated scalar processor is a 3-stage MIPS-I pipeline with

full forwarding and a 4Kx1-bit branch history table for branch prediction.

The SPREE framework was modified in two ways to better meet the needs of the

vector processor. First, an integer divider unit was added to the SPREE component li-

brary along with instruction support for MIPS divide instructions. This was necessary to

accommodate the fbital benchmark which requires scalar division. Second, to support

the vector coprocessor, the MIPS coprocessor interface instructions were implemented

in SPREE. These instructions allow the SPREE processor to send data to the copro-

cessor and vice versa. With these changes in place we can automatically generate new

scalar processor cores and attach them directly to the memory system and vector copro-

cessor without modification, allowing future studies to consider both scalar and vector

architectures in tandem.

Chapter 5. The VESPA Soft Vector Processor 55

Table 5.1: VIRAM instructions supported

Type Instruction
Vector vadd vadd.u vsub vsub.u vmulhi vmulhi.u vcmp.eq vcmp.ne

vcmp.lt vcmp.u.lt vcmp.le vcmp.u.le vmin vmin.u vmax
vmax.u vmullo vabs vand vor vxor vnor vsll vsrl vsra vsat.b
vsat.h vsat.w vsat.su.b vsat.su.h vsat.su.w vsat.su.l vsat.u.b
vsat.u.h vsat.u.w vsadd vsadd.u vssub vssub.u vsrr vsrr.u vsls
vsls.u vxumul vxumul.u vxlmul vxlmul.u

Vector Manipulation vins.vv vins.sv vext.vv vext.sv vext.u.sv vmerge vexthalf
vhalf

Flag vfand vfor vfxor vfnor vfclr vfset
Memory vld.b vld.h vld.w vld.l vld.u.b vld.u.h vld.u.w vlds.b vlds.h

vlds.w vlds.l vlds.u.b vlds.u.h vlds.u.w vldx.b vldx.h vldx.w
vldx.l vldx.u.b vldx.u.h vldx.u.w vst.b vst.h vst.w vst.l vsts.b
vsts.h vsts.w vsts.l vstx.b vstx.h vstx.w vstx.l vstxo.b vstxo.h
vstxo.w vstxo.l

Control vsatvl vmcts vmstc cfc2 ctc2 mtc2

5.3.2 VIRAM-Based Vector Instruction Set

While many vector processor implementations exist, we used an existing vector ISA

to leverage prior design effort, but implemented our architecture from scratch to take

advantage of FPGA-specific features. The instruction set architecture of the VESPA

vector coprocessor is based on the VIRAM [60] instruction set summarized in Chapter 2,

Section 2.2.6. The specifics of VESPA’s vector instruction set is described below.

The vector coprocessor implements all of the vector state of the VIRAM instruction

set which is shown in Chapter 2, Figure 2.2 (on page 14). While VIRAM implements 64-

bit vector elements and control/scalar registers, in VESPA this is reduced to 32-bits since

none of our vectorized benchmarks listed in Chapter 3, Table 3.1 (on page 29) require

64-bit processing. All of the state is efficiently implemented in FPGA block RAMs with

the vector and flag register files both having two copies of their state to provide the 2

read ports and 1 write port required by the vector pipeline. Since block RAMs have only

two access ports, we replicate the register files and broadcast writes to both copies of the

register file while each copy provides its own read access port.

The vector coprocessor supports most of the integer, fixed-point, flag, and vector

Chapter 5. The VESPA Soft Vector Processor 56

Data
Cache

Write
Crossbar

Scalar
Processor

Read
Crossbar

…

MUX

…

DRAM

From Vector Lanes

To Vector Lanes

Figure 5.3: The VESPA memory architecture shares the data cache between the scalar processor
and vector coprocessor. The memory crossbar maps individual requests from the vector lanes
to the appropriate byte(s) in the cache line.

manipulation instructions in the VIRAM instruction set, as listed in Table 5.1. Some

instruction exclusions were necessary to better accommodate an FPGA implementation:

for example, the VIRAM multiply-accumulate instructions (which require 3 reads and 1

write) were eliminated since they would require further register file replication, banking,

or a faster register file clock speed to overcome the 2-port limitations on FPGA block

RAMs. Floating-point instructions are not implemented since they are generally not

used in embedded applications as seen in our benchmarks; also we do not support virtual

memory since it is not implemented in SPREE. Unlike the scalar processor, the vector

coprocessor does not support integer division and modulo instructions since they do not

appear in our benchmarks in vectorized form. Finally there is no support for exceptions—

no vector instruction causes an exception and all vector state must either be saved or

remain unmodified during exception processing.

Chapter 5. The VESPA Soft Vector Processor 57

Dcache

base

stride*0

index0

+
M
U
X

...

stride*1

index1

+
M
U
X +

M
U
X

Memory
Request
Queue

Read
Crossbar

Memory
Lanes=4

rddata0
rddata1
rddataL-1

wrdata0
wrdata1

wrdataL-1
...

Write
Crossbar

Memory
Write

QueueWrite Data

Read
Data

stride*(L-1)

indexL-1

Figure 5.4: The VESPA memory unit buffers all memory requests from each lane and satisfies
up to M requests a time from a single cache access. In this example M=4. The black bars shows
pipeline stages, the grey bars show cycle delays which require pipeline stalls.

5.3.3 Vector Memory Architecture

Figure 5.3 shows the VESPA memory architecture. Each vector lane can request its own

memory address but only one cache line can be accessed at a time which is determined

by the requesting lane with the lowest lane identification number. For example, lane

1 will request its address from the cache then each byte in the accessed cache line can

be simultaneously routed to any lane through the memory crossbar. Thus, the spatial

locality of lane requests is key for fast memory performance since it reduces the number

of cache accesses required to satisfy all lanes. The original VIRAM processor [34] had a

memory crossbar for connecting the lanes to different banks of the on-chip memory. We

use the same concept for connecting the lanes to different words in a cache line. There

is one such crossbar for reads and another for writes; we treat both as one and refer to

the pair as the memory crossbar (with the bidirectionality assumed). This crossbar is

the least scalable structure in the vector processor design but should be configured to

sustain the performance of the memory system it is connected to.

Figure 5.4 shows the vector memory unit in more detail. The black bars indicate

pipeline stages while the grey bars show registers which require pipeline stalls. In the

first stage the addresses being accessed by each lane is computed and loaded into the

Chapter 5. The VESPA Soft Vector Processor 58

Memory Request Queue. The memory unit will then attempt to satisfy up to M of these

lane requests at a time from a single cache access. When all M requests have been satisfied

the Memory Request Queue shifts all its contents up by M. If the instruction is a vector

store, the Memory Write Queue duplicates this behaviour. When the Memory Request

Queue is empty the vector memory unit de-asserts its stall signal and is ready to accept

a new memory operation.

Many options exist for connecting the vector coprocessor to memory, including though

a cache shared with the scalar processor, a separate cache, or no cache. The original VI-

RAM processor used the last approach and was connected directly to its on-chip memory

without a cache. However for off-chip memories caches are more likely required to hide

the memory latencies. While this may not be true for heavily streaming benchmarks, in

some cases the cache may be so important that the vector coprocessor requires its own

separate data cache to avoid competing for cache space with the scalar core. This range

of different memory system configurations could be interesting to explore in the future,

but for this work a shared data cache is used primarily to avoid memory consistency

issues which complicate the design. The decision is further supported for the following

reasons: (i) its low area cost as seen in Section 4.1.1 provides little motivation to avoid

using a cache; (ii) it is certainly required for the scalar core which the vector coprocessor

can “piggyback” on, especially since (iii) there is very little competition for cache space

between the scalar and vector cores in our applications. This decision may need to be

revisited for applications with significant interaction between the scalar and vector cores,

but most of our benchmarks have only a small amount of supportive scalar operations.

The data cache blocks on any access, stalling execution until the transaction has been

completed. The memory controller for the TM4 also blocks on any memory access, while

the Altera DDR2 memory controller for the DE3 allows multiple outstanding requests.

VESPA was not improved to take advantage of this feature since the memory bus used

in commercial soft processors does not support it. In the future more scalable vector

architectures could take advantage of non-blocking memory systems.

Chapter 5. The VESPA Soft Vector Processor 59

Scalar
Pipeline

Vector
Control
Pipeline

Vector
Pipeline

Icache Dcache

Decode RF
A
L
U

M
U
X WB

VC
RF

VS
RF

VC
WB

VS
WB

Logic

Decode
Repli-
cate

Hazard
check

VR
RF A

L
U

x & satur.

VR
WB

M
U
X

Satu-
rate

Rshift

VR
RF A

L
U

x & satur.

VR
WB

M
U
X

Satu-
rate

Rshift

Mem
Unit

Figure 5.5: The VESPA architecture with 2 lanes. The black vertical bars indicate pipeline
stages, the darker blocks indicate logic, and the light boxes indicate storage elements for the
caches as well as the scalar, vector control (vc), vector scalar (vs), and vector (vr) register files.

5.3.4 VESPA Pipelines

Figure 5.5 shows the VESPA pipelines with each stage separated by black vertical bars.

The topmost pipeline is the 3-stage scalar MIPS processor discussed earlier. The middle

pipeline is a simple 3-stage pipeline for accessing vector control registers and communi-

cating between the scalar processor and vector coprocessor. The instructions listed in

the last row of Table 5.1 are executed in this pipeline while the rest of the vector in-

structions are executed in the longer 7-stage pipeline at the bottom of Figure 5.5. Vector

instructions are first decoded and proceed to the replicate pipeline stage which divides

the elements of work requested by the vector instruction into smaller groups that are

mapped onto the available lanes; in the figure only two lanes are shown. The hazard

check stage observes hazards for the vector and flag register files and stalls if necessary

(note the flag register file and processing units are not shown in the figure). Since there

are two lanes, the pipeline reads out two adjacent elements for each operand, referred

to as an element group, and sends them to the appropriate functional unit. Execution

occurs in the next two stages (or three stages for multiply instructions) after which re-

sults are written back to the register file. The added stage for multiplication is due to

Chapter 5. The VESPA Soft Vector Processor 60

Table 5.2: Configurable parameters for VESPA.
Parameter Symbol Value Range

C
om

pu
te

Vector Lanes L 1,2,4,8,16,. . .
Memory Crossbar Lanes M 1,2,4,8,. . . L
Multiplier Lanes X 1,2,4,8,. . . L
Register File Banks B 1,2,4,. . .
ALU per Bank APB true/false

IS
A

Maximum Vector Length MVL 2,4,8,16,. . .
Vector Lane Bit-Width W 1,2,3,4,. . . , 32
Each Vector Instruction - on/off

M
em

or
y

ICache Depth (KB) ID 4,8,. . .
ICache Line Size (B) IW 16,32,64,. . .
DCache Depth (KB) DD 4,8,. . .
DCache Line Size (B) DW 16,32,64,. . .
DCache Miss Prefetch DPK 1,2,3,. . .
Vector Miss Prefetch DPV 1,2,3,. . .

the fixed-point support which performs a right shift after multiplication. The multiplier

and barrel shifter necessary to do so require an extra stage of processing compared to

the ALU.

5.4 Meeting the Design Goals

Recall that the design goals for VESPA were for it to be scalable, flexible, and portable.

The scalability of VESPA is explored in the next chapter, while its flexibility and porta-

bility are discussed in this section beginning with the former.

5.4.1 VESPA Flexibility

VESPA is a highly parameterized design enabling a large design space of possible vector

processor configurations as seen in Chapter 7. These parameters can modify the VESPA

compute architecture (pipeline and functional units), instruction set architecture, and

memory system. All parameters are built-in to the Verilog design so a user need only

modify the parameter value and have the correct configuration synthesized with no addi-

tional source modifications. Each of these parameters are explored in detail in subsequent

chapters, but we concisely describe them below.

Table 5.2 lists all the configurable parameters and their acceptable value ranges—

Chapter 5. The VESPA Soft Vector Processor 61

many integer parameters are limited to powers of two to reduce hardware complexity.

The number of vector lanes (L) determines the number of elements that can be processed

in parallel; this parameter is the most powerful means of scaling the processing power

of VESPA. The width of each vector lane (W) can be adjusted to match the maximum

element size required by the application: by default all lanes are 32-bits wide, but for

some applications 16-bit or even 1-bit wide elements are sufficient. The maximum vector

length (MVL) determines the capacity of the vector register file; hence larger MVL values

allow software to specify greater parallelism in fewer vector instructions, but increases

the register file capacity required in the vector processor.

The number of memory crossbar lanes (M) determines the number of lane memory

requests that can be satisfied concurrently, where 1 < M < L. For example, if M is half

of L, then in Figure 5.3, this means the crossbar connects to half the lanes in one cycle,

and the other half in the next cycle. M is independent of L for two reasons: (i) a crossbar

imposes heavy limitations on the scalability of the design, especially in FPGAs where

the multiplexing used to build the crossbar is comparatively more expensive than for

conventional IC design; and (ii) the cache line size limits the number of lane memory

requests that can be satisfied concurrently. Thus we may not need a full memory crossbar

which routes to all L lanes, rather the parameter M allows the designer to choose a subset

of lanes to route to in a single cycle. This trade-off is explored in Chapter 7, Section 7.1.3.

The user can similarly conserve multiply-accumulate blocks by choosing a subset of

lanes to support multiplication using the X parameter. The B and APB parameters control

the amount of vector chaining VESPA can perform as seen in Chapter 7, Section 7.2.

Also each vector instruction can be individually disabled thereby eliminating the control

logic and datapath support for it as seen in Chapter 7, Section 7.4.

The memory system includes an instruction cache, a data cache, and a data prefetcher.

The instruction cache is direct-mapped with depth ID and cache line size IW. Similarly,

the data cache is direct-mapped with depth DD and cache line size DW. The prefetcher can

be configured with a variety of prefetching schemes which respond to any data access

Chapter 5. The VESPA Soft Vector Processor 62

using DP or exclusively to vector memory operations using DPV. All these memory system

parameters are explored in Chapter 6.

As seen in Chapter 7, the parameters in Table 5.2 provide a large design space for

selecting a custom configuration which best matches the needs of an application. Since

soft processors are readily customizable, we require only software for automatically se-

lecting a configuration for an application. The development of this software is beyond

the scope of this thesis and is hence left as future work.

5.4.2 VESPA Portability

The portability of soft vector processors is a major factor in whether FPGA vendors will

adopt them in the future. Since FPGA vendors have many different FPGA devices and

families, a non-portable hardware IP core would require more design effort to support

across all these devices. The discussion below describes our attempts to minimize the

porting effort.

VESPA is fully implemented in synthesizable Verilog but was purposefully designed to

have no dependencies to a particular FPGA device or family. In fact we ported VESPA

from the Stratix 1S80 on the TM4 to the Stratix III 3S340 on the DE3 and required

zero source modifications. Although we do not port VESPA across different vendors or

families, we instead explain that the FPGA structures needed to efficiently build a soft

vector processor exist in most modern FPGA devices.

To maintain device portability in VESPA, the architected design makes very few

device-specific assumptions. First, it assumes the presence of a full-width multiply oper-

ation which is supported in virtually all modern day FPGA devices and does not assume

any built-in multiply-accumulate or fracturability support since the presence of these

features can vary from device to device. Second, with respect to block RAMs, VESPA

assumes no specific sizes or aspect ratios, nor any particular behaviour for read-during-

write operations on either same or different ports. VESPA only uses one read port and

one write port for any RAM hence limiting the need for bi-directional dual-port RAMs.

Chapter 5. The VESPA Soft Vector Processor 63

These few assumptions allow the VESPA architecture to port to a broad range of FPGA

architectures without re-design. However, although VESPA was not aggressively de-

signed for high clock frequency, any timing decisions made are specific to the Stratix III

it was designed for, hence some device-specific retiming may be needed to achieve high

clock rates on other devices.

5.5 FPGA Influences on VESPA Architecture

Our goal of improving soft processors to compete with hardware design is largely pursued

by matching the architecture to the application. However, soft processors can also be

improved by matching their architectures to the FPGA substrate. Conventional notions

of processor architecture are based on CMOS design, but the tradeoffs on an FPGA sub-

strate can lead to different architectural conclusions. Several previous works considered

the influence of the FPGA substrate on the architecture of soft processors [26, 45, 49, 69].

These works often identify low-level circuit engineering differences but have not proposed

high-level architectural differences between soft and hard processors. Doing so is compli-

cated by two main factors: (i) designer effort and skill varies between academics, FPGA

vendors, and microprocessor companies; and (ii) the level of performance required varies

significantly between soft processors which are used largely as controllers and micropro-

cessors which are used for general purpose computation. As a result, it is difficult to

draw high-level conclusions about the architectures of soft processors since the perfor-

mance attainable on such an architecture is highly dependent on skill, effort, and desired

performance of the designer.

The VESPA architecture was influenced in a number of ways by the FPGA sub-

strate. These influences are discussed in more detail throughout this thesis in sections

devoted to the affected architectural component. We collect the key points and summa-

rize them here. First, the multiply-accumulate blocks are obvious choices for efficiently

implementing processor multipliers. This performance is still significantly less than an

Chapter 5. The VESPA Soft Vector Processor 64

FPGA adder circuit leading to accommodations in the pipeline similar to hard micro-

processors. However, the multipliers are also efficient [45] for implementing shifters since

multiplexers are relatively expensive on FPGAs. This shared multiplier/shifter func-

tional unit means vector chaining on soft vector processors exhibits different behaviour

than traditional vector processors since vector multiplies and vector shifts cannot be ex-

ecuted simultaneously. Second, the block RAMs provide relatively inexpensive storage

helping to motivate the existence of caches even when they are not strongly motivated

in our vectorized applications. The low area cost of storage also helps motivate vector

processors since the large vector register files required can be efficiently implemented.

Finally, the two ports on FPGA block RAMs also impose architectural differences from

traditional processors. For 3-operand instruction sets such as MIPS, the register file must

sustain 2 reads and 1 write per cycle. Since FPGA block RAMs have only two ports, a

common solution is to leverage the low area cost of block RAMs to duplicate them as

discussed in section 5.6. Additional ports are required to support multiple vector instruc-

tion execution. Chapter 7.2 describes how banking is performed to overcome the port

limitations. This approach is reminiscent of vector processors before VLSI design, and

marks a key architectural difference between VESPA and modern vector processors such

as the T0 [7] and VIRAM [34]. In general, the lack of ports and expensive multiplexing

logic make FPGAs less amenable to any architecture with multiple instructions in flight

such as traditional superscalar out-of-order architectures, though it may be possible for

clever circuit engineering by a skilled designer to make such architectures prevalent in

soft processors.

5.6 Selecting a Maximum Vector Length (MVL)

Before further evaluating VESPA we must determine an appropriate maximum vector

length (MVL). This parameter abstracts the number of hardware vector lanes from the

software vector length and hence affects both the hardware implementation of a vector

Chapter 5. The VESPA Soft Vector Processor 65

processor and the software implementation of vectorized code. It represents a contract

between the processor and programmer to support at the very least storage space for

MVL-number of elements, thereby allowing the programmer to use vector lengths up to

this length while leaving the processor free to implement between 1 and MVL vector lanes.

Note that all of our vectorized benchmarks are designed to use vectors with the full MVL

length and require no modification for changes to MVL or any other parameter.

Increasing the MVL allows a single vector instruction to encapsulate more element

operations, but also increases the vector register file size and hence the total number of

FPGA block RAMs required. This growth is potentially exacerbated by the fact that

the entire vector register file is replicated to achieve the three ports necessary (2-read

and 1-write), since current FPGAs have only dual-ported block RAMs. The performance

impact of varying the MVL results in an interesting tradeoff: higher MVL values result in

fewer loop iterations, in turn saving on loop overheads—but this savings comes with more

time-consuming vector reduction operations. For example, as MVL grows, the Log2(MVL)

loop iterations required to perform a tree reduction that adds all the elements in a vector

grows with it. We examine the resulting impact on both area and performance below on

the TM4 platform; the results are analogous for the DE3.

The area impact of increasing MVL increases some control logic due to the increased

sizes of register tags and element indices, but primarily affects the vector register file and

hence its FPGA block RAM usage. Because of the discrete sizes and aspect ratios of

those block RAMs, these results are specific to the FPGA device chosen. Given block

RAMs with maximum width WBRAM bits and total capacity (or depth) of DBRAM bits,

and using the parameters from Table 5.2, the number of block RAMs will be the greater

of Equations 5.1 and 5.2.

NBRAMs = �L · W · B/WBRAM� (5.1)

NBRAMs = �32MV L · W/DBRAM� (5.2)

Chapter 5. The VESPA Soft Vector Processor 66

0

5000

10000

15000

20000

25000

30000

35000

40000

1 Lane 2 Lanes 4 Lanes 8 Lanes 16 Lanes

A
re

a
(E

q
u

iv
al

en
t

L
E

s)

MVL=32
MVL=64
MVL=128
MVL=256

Figure 5.6: Area of the vector coprocessor across different MVL and lane configurations.

For example, the Stratix I M4K block RAM has DBRAM=4096 bits and can output

a maximum of WBRAM=32-bits in a single cycle, hence a 16-lane vector processor with

1 bank requires 16 of these M4Ks to output the 32-bit elements for each lane using

Equation 5.1. This results in 64Kbits being consumed which exactly matches the demand

of the MVL=64 case according to Equation 5.2. But when MVL=32 the block RAMs are

only half-utilized resulting only in wasted area instead of area savings. The Stratix III

has block RAMs which are twice as big, so this phenomenon would be observed between

MVL values of 64 and 128 for the 16-lane VESPA.

Figure 5.6 shows the area of the vector processor for different values of MVL and for

a varying number of lanes. The graph shows that increasing the MVL causes significant

growth when the number of lanes are few, but as the lanes grow and the functional

units dominate the vector coprocessor area, the growth in the register file becomes less

significant as seen in the 16 lane vector processor. Of particular interest is the identical

area between the 16 lane processors with MVL equal to 32 and 64. This is an artifact of

the discrete sizes and aspect ratios of FPGA block RAMs as previously described. At 16

lanes the vector processor demands such a wide register file that Equation 5.1 dominates.

As a result, the storage space for vector elements is distributed among these block RAMs

causing, in the MVL=32 case, only half of each block RAM’s capacity to be used. We

avoid this under-utilization by setting MVL to 64 and doubling it to 128 for 32 lanes. For

Chapter 5. The VESPA Soft Vector Processor 67

0

0.5

1

1.5

autcor conven fbital viterb rgbcmy rgbyiq

C
yc

le
 S

p
ee

d
u

p

1 Lane 2 Lanes
4 Lanes 8 Lanes
16 Lanes

Figure 5.7: Cycle speedup measured when MVL is increased from 32 to 256.

Stratix III which has block RAMs twice as deep, we also double the MVL. Note that in our

area measurements we count the entire silicon space of the block RAM used regardless of

the number of memory bits actually used. By doing so we accurately reflect the incentive

to fully utilize consumed FPGA resources.

Figure 5.7 shows the performance of a set of vector processors with varying numbers

of lanes and MVL=256, each normalized to an identically-configured vector processor with

MVL=32. The benchmarks autcor and fbital both have vector reduction operations

and hence show a decrease in performance caused by the extra cycles required to perform

these reductions. The performance degradation is more pronounced for low numbers of

lanes as the number of lanes increase the reduction operations themselves execute more

quickly, until finally the amortization of looping overheads dominates and results in

an overall benchmark speedup for 16 lanes. The remaining benchmarks do not contain

significant reduction operations and hence experience faster execution times for the longer

vectors when MVL=256. For conven, which performs vector operations based on some

scalar processing, increasing the MVL has a dramatic affect on performance as both the

loop overhead and this scalar processing is amortized. The speedup reaches up to 43%

for 16 lanes. The remaining benchmarks have larger loop bodies which already amortize

the loop overhead and hence have only very minor speedups.

Chapter 5. The VESPA Soft Vector Processor 68

5.7 Summary

This chapter described the VESPA soft vector processor which was built to evaluate the

concept of vector processors for FPGAs using off-chip memory systems on real FPGAs

and executing industry-standard embedded benchmarks. VESPA is a complete hardware

design of a scalar MIPS processor and a VIRAM vector coprocessor written in Verilog.

Only a portion of the VIRAM vector instruction set is supported by VESPA which is

described in this chapter. VESPA has many parameterized architectural parameters

briefly summarized here but more thoroughly explored in later chapters. The MVL is one

such parameter explored in this chapter.

Chapter 6

Scalability of the VESPA Soft

Vector Processor

The key goal of this work is to achieve performance significantly beyond current soft

processors to make it easier to leverage the computational power of FPGAs without

complicated hardware design. The scalability of a vector processor is potentially a pow-

erful method of doing so. In this chapter we evaluate whether this scalability holds true

on FPGAs and improve it by exploring the area and performance of several architectural

modifications.

6.1 Initial Scalability (L)

To highlight and quantify the importance of the architectural modifications subsequently

proposed in this research, we first measure the scalability of a base initial design which

lacks these features. Specifically, the initial VESPA design is identical to that described

in Chapter 5 but supported only parameterization of the number of lanes and the MVL

value (which is set to 64 for this scalability study). Its memory system was hard-coded

with two 4KB direct-mapped instruction and data caches each with 16B lines sizes. This

section evaluates the scalability of this design and presents those findings as measured

across the EEMBC benchmarks executed on the TM4 hardware platform. Note that the

69

Chapter 6. Scalability of the VESPA Soft Vector Processor 70

autcor conven rgbcmyk rgbyiq ip_checksum imgblend filt3x3 fbital viterb GEOMEAN

1 Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 Lanes 1.91 1.82 1.69 1.74 1.62 1.76 1.87 1.89 1.73 1.78

4 Lanes 3.49 3.09 2.29 2.77 2.34 2.84 3.27 3.34 2.49 2.85

8 Lanes 5.95 4.63 3.02 4.01 2.73 4.10 5.30 4.62 3.03 4.02

16 Lanes 8.31 5.89 3.59 4.98 3.13 4.74 7.32 6.79 3.47 5.08

0

1

2

3

4

5

6

7

8

9

C
y
c
le
 S
p
e
e
d
u
p

v
s
 1
 L
a
n
e

Figure 6.1: Cycle performance of increasing the number of lanes on the inital VESPA design
with 4KB data cache size and 16B cache line size.

TM4 is used only in this chapter because the improved VESPA which was ported to the

DE3 cannot be easily reverted to this initial design.

Figure 6.1 shows the cycle speedup (the speedup achieved when measuring only clock

cycles) attained by increasing the number of vector lanes. Speedup is measured relative

to the single-lane VESPA configuration executing the identical benchmark binary—we

do not compare against the non-vectorized benchmark here. Chapter 8 explores the

performance between VESPA and a scalar soft processor executing non-vectorized code.

The figure shows speedups ranging inclusively across all benchmarks from 1.6x to 8.3x.

On average the benchmarks experience a 1.8x speedup for 2 lanes, with a steady increase

to 5.1x for 16 lanes. We are unable to scale past 16 lanes because of the number of

multiply-accumulate blocks on the Stratix 1S80 on the TM4 (we later port the improved

VESPA design to the DE3 to overcome this limitation). The observed scaling may be

adequate, but for most of the benchmarks the performance gains appear linear despite

the exponential growth in lanes.

Since scalability is such an important aspect of a soft vector processor, we are mo-

tivated to pursue architectural improvements which enable greater performance scaling

than seen in Figure 6.1. The following section analyzes the scaling bottlenecks in the

system.

Chapter 6. Scalability of the VESPA Soft Vector Processor 71

6.1.1 Analyzing the Initial Design

Assuming a fully data parallel workload with a constant stream of vector instructions

(which closely represents many of our benchmarks), poor scaling can be caused by either

inefficiencies in the vector pipeline or the memory system. Since VESPA executes vector

ALU operations without any wasted cycles it is therefore the vector memory instructions

inhibiting the performance scaling. The vector memory unit stalls one cycle upon re-

ceiving any memory request and then stalls for each necessary cache access. In addition

cache misses result in cycle stalls for the duration of the memory access latency. In this

section we evaluate whether the memory system is indeed throttling the scalability in

VESPA.

The impact of the memory system is measured using cycle-accurate RTL simulation of

the complete VESPA system including the DDR memory controller for four of the bench-

marks1 using the Modelsim simulation infrastructure described in Chapter 3. Hardware

counters were inserted into the design to count the number of cycles the vector memory

unit is stalled, as well as the number of cycles it is stalled due specifically to a cache miss.

Our measurements demonstrate that this initial VESPA design with 16 lanes, 16B

data cache line size and 4KB depth spends approximately 67% of all cycles stalling in

the vector memory unit, and 45% of all cycles servicing data misses. This cache line

size was selected for the initial configuration because it matches the 128-bit width of the

DRAM interface—cache lines smaller than 16B would waste memory bandwidth. The

4KB depth is then selected to fully utilize the capacity of the block RAMs used to create

the 16B line size. Depths less than 4KB (for the Stratix I) would waste FPGA RAM

storage bits because of the discrete aspect ratios of the block RAMs. The large number

of cycles spent in the vector memory unit, and specifically the misses, suggests that the

memory system is significantly throttling VESPA’s performance.

1The other benchmarks are not included because their data sets are too large for simulation

Chapter 6. Scalability of the VESPA Soft Vector Processor 72

6.2 Improving the Memory System

Standard solutions for improving memory system performance include optimizing the

cache configuration and the implementation of an accurate data prefetching strategy. We

pursue these same solutions within VESPA but with an appreciation for the application-

dependence of these solutions since in a soft processor context, an FPGA designer can

select a cache and prefetcher to match their specific application. The data cache is hence

parameterized along its depth (or capacity) and its line size, while a data prefetcher is

implemented with parameterized prefetching strategies.

6.2.1 Cache Design Trade-Offs (DD and DW)

The most obvious approach to increasing memory system performance is to alter the

cache configuration to better hide the memory latency. In this section we parameterize

and explore the speed/area trade-offs for different data cache configurations for direct-

mapped caches. Set-associative caches require multiplexing between the entries in a set,

which is expensive especially in an FPGA and hence deters us from including this option

in our initial exploration. Also, banking the cache was not explored since all of our

benchmarks use mostly contiguous memory accesses. We vary data cache depth from

4KB to 64KB and the cache line size from 16B to 128B. Note, our system experiences

some timing problems caused by the large size of the memory crossbar on the TM4 for a

cache line size of 128B which limits the measurements we can make for that configuration

and cache lines greater than 128B.

Some conclusions from this study can be hypothesized with further examination of the

benchmarks. Many of our vectorized benchmarks are streaming in nature with little data

re-use. For such benchmarks we anticipate that cache depth will not impact performance

significantly while widening the cache line and hence increasing the likelihood of finding

needed data in a single cache access may considerably improve performance. In addition,

the longer cache lines provide some inherent prefetching by caching larger blocks of

Chapter 6. Scalability of the VESPA Soft Vector Processor 73

2.11
2.14

1.84 1.89

1.45 1.47

1.00 1.00

0.5

1

1.5

2

2.5

4KB 8KB 16KB 32KB 64KB

W
al

l C
lo

ck
 S

p
ee

d
u

p
 v

s
4K

B
,1

6B

Cache Depth

128B

64B

32B

16B

Figure 6.2: Average wall clock speedup (excluding viterb benchmark) attained for a 16-lane
VESPA with different cache depths and cache line sizes, relative to the 4KB cache with 16B
line size. Each line in the graph depicts a different cache line size.

contiguous memory on a miss.

Figure 6.2 shows the average wall clock speedup across all our benchmarks except

viterb for each data cache configuration normalized against the 4KB cache with a 16B

cache line size. We first note that as predicted, the streaming nature of these benchmarks

makes cache depth affect performance only slightly. For the 16B cache line configuration

the performance is flat across a 16-fold increase in cache depth, while for the 128B

cache line this 16-fold growth in depth increases performance from 2.11x to 2.14x. In

terms of improving our baseline 4KB deep 16B line size default configuration for these

benchmarks, the cache line size plays a far more influential role on performance. Each

doubling of line size provides a significant leap in performance reaching up to 128B with

an average of more than double the performance of the 16B line size.

Figure 6.3 shows the wall clock speedup for just the viterb benchmark across the

same cache configurations. The viterb benchmark is significantly different than the

other benchmarks: it passes through multiple phases which have varying amounts of data

parallelism and in some cases none at all. Because of this, cache conflicts appear to be an

issue. The figure shows that once the cache depth reaches 16KB the performance plateaus

for all cache line configurations and results similar to the rest of the benchmarks are

observed where only increases to cache line provide significant performance boosts. For

Chapter 6. Scalability of the VESPA Soft Vector Processor 74

0.5

1

1.5

2

2.5

4KB 8KB 16KB 32KB 64KB

W
al

l C
lo

ck
 S

p
ee

d
u

p
 v

s
4K

B
,1

6B

Cache Depth

128B

64B

32B

16B

Figure 6.3: Wall clock speedup of viterb benchmark attained for a 16-lane VESPA with
different cache depths and cache line sizes, relative to the 4KB cache with 16B line size. Each
line in the graph depicts a different cache line size.

Table 6.1: Clock frequency of different cache line sizes for a 16-lane VESPA.
Cache Line Size (B) Clock Frequency (MHz)

16B 128 MHz
32B 127 MHz
64B 123 MHz
128B 122 MHz

4KB cache depths, increasing the cache line size past 32B actually decreases performance.

For an 8KB cache the same phenomenon occurs at 64B instead. In both cases the cause is

increased conflicts since with constant depth, a wider cache line size creates fewer cache

sets. Unlike the other benchmarks, viterb has significant data re-use and capturing

that working set in a 16KB cache is imperative before applying further memory system

improvements.

In contrast with the scalar soft processors shown in Chapter 4, the increase in com-

putational power via multiple lanes in the vector processor makes the memory system

more influential in determining overall performance. Chapter 4 demonstrated that the

impact of the memory system is limited to 12% additional performance for the scalar soft

processor, whereas in both Figure 6.2 and Figure 6.3 performance is more than doubled.

Table 6.1 shows that the clock frequency is slightly reduced as the cache line size

increases. This clock frequency degradation is due to the multiplexing needed to get data

Chapter 6. Scalability of the VESPA Soft Vector Processor 75

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

16B 32B 64B 128B

Cache Line Size

N
o

rm
al

iz
ed

 S
ys

te
m

 A
re

a

4KB
8KB
16KB
32KB
64KB

Figure 6.4: System area of different cache configurations on a 16-lane VESPA normalized
against the 4KB cache with 16B line size. Each coloured bar in the graph depicts a different
cache depth.

words out of the large cache lines and into the vector lanes via the memory crossbar.

In other words, by doubling the cache line size, the memory crossbar is also doubled in

size and is responsible for the frequency degradation. Further logic design effort through

pipelining and retiming can mitigate these effects, resulting in slightly more pronounced

benefits for the longer cache lines.

Figure 6.4 shows the silicon area of the VESPA system normalized against that of

the 4KB cache with 16B line size. The area cost can be quite significant, in the worst

case almost doubling the system area. However, the area trends are quite different than

what one would expect with traditional hard processors. We discuss the effect on area

of cache depth and cache line size below.

Increases in cache depth have a minimal effect on area and in many cases are hidden

by the noise in the synthesis algorithms: for example, the 4KB cache with 64B line size

is larger than its 8KB counterpart. This is a synthesis anomaly since the number of

block RAMs and multiply-accumulate blocks is the same for both designs, yet the 4KB

configuration consumes 900 additional LEs. In fact all caches with a 64B line size have

the same number of block RAMs except for the 64KB depth configuration, in which case

the added block RAMs for cache depth does not contribute significantly more area than

Chapter 6. Scalability of the VESPA Soft Vector Processor 76

16

bits
4096

bits
16

bits
4096

bits
16

bits
4096

bits
16

bits
4096

bits
16

bits
4096

bits
16

bits
4096

bits
16

bits
4096

bits
16

bits
4096

bits

128 bit cache line size

4KB cache depth

Figure 6.5: Multiple block RAMs are needed to create the width necessary for 16B cache lines,
and the cache depth should be 4KB to fully-utilize the capacity of those block RAMs.

the rest of the 64B configurations. Such results are expected for an FPGA since cache

depth only affects the block-RAM storage required, which is more efficiently implemented

relative to programmable logic.

Increasing the cache line size can also increase the number of block RAMs consumed.

Certainly the largest contributor to the increased area with cache line size is the multi-

plexers in the vector memory crossbar which routes each byte to each vector lane; however

it is also due to the increase in FPGA block RAMs being used, a phenomenon unique

to FPGAs. In their current configuration, the block RAMs are limited to a maximum

of 16-bit wide data ports: to create a cache with 16B (128-bit) line sizes we require at

least 8 such FPGA block RAMs in parallel, as shown in Figure 6.5, hence consuming all

8 of those block RAMs and their associated silicon area. Any increases in cache line sizes

will result in corresponding increases in the number of used block RAMs and with it an

automatic increase of physical storage bits used (whether they are logically used by the

design or not). Therefore we generally choose the depth to fill the capacity of the fewest

number of block RAMs required to satisfy the line size.

In terms of supporting VESPA configurations with many lanes, such as the 16-lane

configuration used throughout this section, we believe the 40% additional area is worth

the performance increase of a data cache with 64 byte line size and 16KB depth to fill the

used block RAMs. The two factors that contribute to these performance improvements

are: (i) wider cache lines require fewer cache accesses to satisfy memory requests from

all the lanes; and (ii) wider cache lines bring larger blocks of neighbouring data into

Chapter 6. Scalability of the VESPA Soft Vector Processor 77

the cache on a miss providing effective prefetching for our streaming benchmarks which

access data sequentially. Of course, the latter benefit can be achieved through hardware

prefetching which comes without significant area cost.

6.2.2 Impact of Data Prefetching (DPK and DPV)

Due to the predictable memory access patterns in our benchmarks, we can automatically

prefetch data needed by the application before the data is requested. We hence augment

VESPA by supporting hardware data prefetching where a cache miss translates into a

request for the missing cache line as well as additional cache lines that are predicted

to soon be accessed. This section describes the data prefetcher in VESPA as well as

evaluates its effect across our benchmarks.

6.2.2.1 Prefetching Background

Data prefetching is a topic thoroughly studied in the computer architecture commu-

nity [63]. The simplest scheme, known as sequential prefetching, fetches the missed cache

line as well as the next K cache lines in memory. All our prefetching schemes are based

on sequential prefetching since this maps well to our many streaming benchmarks.

Fu and Patel had investigated prefetching particularly in the context of a vector

processor [22]. They limited prefetching to vector memory instructions with strides

less than or equal to cache line size and found that prefetching is generally useful for

up to 32 cache blocks. But in an FPGA context we can appreciate the application-

dependent nature of prefetching since the FPGA-system can be reconfigured with a

custom prefetcher configuration. We further experiment with a vector length prefetch

where the vector length is used to calculate the number of cache lines to prefetch.

6.2.2.2 Designing a Prefetcher

The data prefetcher is configured using the parameters DPK and DPV from Table 5.2.

DPK is the number of consecutive cache lines prefetched on any cache miss—note that

Chapter 6. Scalability of the VESPA Soft Vector Processor 78

prefetching is triggered for both scalar and vector instructions since both share the same

data cache and its prefetcher. To minimize cache pollution we introduce a copy of that

parameter, DPV, to prefetch specifically for vector instructions having strides within two

cache lines (as done by Fu and Patel [22]) which can be prefetched more aggressively since

they are known to access the cache sequentially. We refer to these misses as sequential

vector misses.

A key advantage of the data prefetcher is that it leverages the high bandwidth from

burst mode transfers; after an initial miss penalty, all cache lines including the prefetched

lines are streamed into the cache at the full DDR rate. This bandwidth is vital for

VESPA which processes batches of memory requests for each vector memory instruction.

Complications arise from handling such large memory transfers when the evicted cache

lines are dirty. To ensure that these dirty lines are properly written-back to memory we

must either drop the prefetched line, or else buffer the dirty cache lines and write them

back to memory later; this write back buffer approach is used in VESPA, and prefetching

is halted when the 2KB buffer is full. For simplicity, we also halted prefetching at the

end of the DRAM row that the miss initially accessed.

The prefetcher is currently limited to working only with cache lines greater than

or equal to 64B. With smaller cache lines the prefetcher has fewer cycles between the

loading of successive cache lines to probe the cache entries and decide whether to allow

the prefetch or not. For example if a cache entry is dirty and a prefetch request seeks

to replace it with a stale copy of its data from memory, that prefetch must be blocked.

As a result we use only 64B cache lines and 16KB depth to fully-utilize the block RAM

capacity. As mentioned previously, cache line sizes of 128B and larger are unstable in

our design so we are confined to evaluating prefetching on only the 64B line size.

6.2.2.3 Cache Line Size and Prefetching

As discussed in Section 6.2.1, in general we expect wider cache lines to perform some

inherent prefetching and hence reduce the impact of our hardware prefetcher. Conversely,

Chapter 6. Scalability of the VESPA Soft Vector Processor 79

hardware prefetching can have more impact on narrower cache lines. Hence, one can

reduce area by shrinking the cache line size (and with it the large memory crossbar)

while using hardware prefetching to explicitly perform the inherent data prefetching of

longer cache lines. However, the long cache lines are typically required to capture more

of the spatial locality that is used to satisfy multiple lane requests. Without it more

cache accesses (and hence cycles) are required to satisfy the lane requests.

6.2.2.4 Evaluating Prefetching

This section explores the impact of the different data prefetching configurations. The

aggressiveness of the prefetcher is increased by doubling the number of cache lines it

loads and is varied using both the DPK and DPV parameters from 0 (no prefetching) to

63 (enough prefetching to fill one quarter of the data cache). As discussed earlier, our

sequential prefetcher can be activated by either (i) any cache miss or (ii) only sequentially-

accessing vector memory instructions; however, our benchmarks generally use very few

scalar loads and stores, and generally have vector strides of less than a cache line, thus

nearly all memory operations are initiated by sequential vector instructions. We therefore

anticipate that both of these activation strategies will perform similarly.

Figure 6.6 shows the performance of prefetching on either any cache miss or sequen-

tial vector misses, both normalized against the performance without prefetching. Using

the same base vector architecture of 16 lanes and full memory crossbar, we configure the

data cache with 16KB depth and 64B line size and explore the impact of the different

data prefetching configurations. The figure shows that, as expected, whether prefetching

is performed on all cache misses or just on known sequential vector instructions, the per-

formance is very similar—they essentially overlap in the graph. The speedup achieved

is quite significant, almost reaching 30% average faster performance. As we increase the

number of cache lines prefetched, and hence the aggressiveness of the prefetcher, we see

diminishing returns on the performance gains until the cache pollution dominates, reduc-

ing the speedup at 63 cache line prefetches. Note that we found that the implementation

Chapter 6. Scalability of the VESPA Soft Vector Processor 80

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0 1 3 7 15 31 63

Number of Cache Lines Prefetched

S
p

ee
d

u
p

Any Cache Misses

Sequential Vector only

Figure 6.6: Average speedup, relative to no prefetching, of prefetching n cache lines using two
strategies: (i) on any data cache miss; (ii) on any miss from a sequentially-accessing vector
memory instruction (called sequential vector miss). While the number of prefetched cache lines
can be any integer, we selected prefetches such that the total number of cache lines fetched
including the missed cache line is a power of two.

of the prefetcher did not impact clock frequency.

Figure 6.7 shows the performance of each benchmark as the aggressiveness is increased

for prefetches triggered by any cache miss. The graph shows that four of the benchmarks,

autcor, conven, viterb, and fbital do not benefit significantly from prefetching,

while the other benchmarks achieve speedups as high as 2.2x. For large prefetches the

performance tapers off and then begins a downward trend as cache pollution begins to

dominate. In the case of conven and fbital the performance becomes worse than with

no prefetching. As long as the number of cache lines being prefetched is moderate, we

can speed up benchmarks that benefit from prefetching without slowing down bench-

marks that do not. On average we observe a peak 30% performance improvement when

prefetching 31 cache lines. Of course the benefit of using a soft vector processor is that

one can tune the amount of prefetching for each application. For example, 15 is often

the best number of cache lines to prefetch on average, but for imgblend prefetching 15

cache lines performs worse than many other configurations.

With respect to area, the cost of prefetching is relatively small requiring mostly control

logic for tracking and issuing multiple successive memory requests. But additional area

Chapter 6. Scalability of the VESPA Soft Vector Processor 81

0.5

1

1.5

2

2.5

0 1 3 7 15 31 63

Number of Cache Lines Prefetched

S
p

ee
d

u
p

 v
s

n
o

 P
re

fe
tc

h
in

g

autcor
conven
viterb
fbital
rgbcmyk
rgbyiq
ip_checksum
imgblend
filt3x3
GMEAN

Figure 6.7: Speedup when prefetching a constant number of consecutive cache lines on any data
cache miss, relative to no-prefetching.

is required by the writeback buffer which stores the evicted dirty cache lines. In general

the buffer needs to have the greater of DPK+1 or DPV+1 entries for the case where all

evicted lines are dirty. With prefetching disabled this cost is reduced to a single register,

but otherwise is generally implemented in FPGA block RAMs where the effect of discrete

aspect ratios as discussed in Figure 6.5 results in a constant 1.6% area cost if prefetching

is between 1 and 15 cache lines. For more than 15 cache lines this area cost doubles, but

there is little additional performance gain seen in our benchmarks to justify the added

area cost.

6.2.2.5 Vector Length Prefetching

Choosing a good value for the amount of prefetching, DPK, depends on the mix of vector

lengths used in the program. Recall each vector memory instruction instance explicitly

specifies its vector length providing a valuable hint for the number of cache lines to

prefetch. In this section our goal is to make use of this hint to achieve a high quality

prefetch configuration without requiring a brute force exploration. We therefore recast

DPK as DPV which is a multiplier of the current vector length. Note that the actual vector

Chapter 6. Scalability of the VESPA Soft Vector Processor 82

0.5

1

1.5

2

2.5

N
on

e

1*
V

L

2*
V

L

4*
V

L

8*
V

L

16
*V

L

32
*V

L

S
p

ee
d

u
p

Amount of Prefetching

autcor

conven

fbital

viterb

rgbcmyk

rgbyiq

ip_checksum

imgblend

filt3x3

GMEAN

Figure 6.8: Wall clock speedup achieved for different configurations of the vector length
prefetcher.

length used is the remaining vector length, which is the portion of the vector length not

yet processed after the miss which triggers the prefetch. For example, if the first eight

elements of a vector load were cache hits and a miss occurred on the ninth element of a

64 element vector, the prefetcher would use 55 as the vector length.

Figure 6.8 shows the performance of a range of vector length prefetchers. Prefetching

8 times the vector length (8V L) cache lines performs best achieving a maximum speedup

of 2.2x for ip checksum and 28% on average. Of specific interest is the 1V L configura-

tion which prefetches the remaining elements in a vector miss and hence has zero cache

pollution. This configuration has no speculation, it guarantees no more than one miss

per vector memory instruction and is ideal for heavily mixed scalar/vector applications,

but only achieves 20% speedup on average across our benchmarks. Greater performance

can be achieved by incorporating the right amount of speculation in the prefetching. The

figure shows that adding speculation gains performance, but too much can undo the per-

formance gains as seen in imgblend where large prefetches of the input stream conflicts

in the cache with the output stream causing thrashing between the two streams.

The area cost of the vector length prefetcher is essentially the same as that of the

constant number of cache lines prefetcher, but there is a slight additional area cost of

0.3% for computing the number of cache lines to prefetch. This computation includes a

multiply operation making the area cost non-negligible.

Chapter 6. Scalability of the VESPA Soft Vector Processor 83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16-byte line 64-byte line 64-byte line +
prefetch

F
ra

ct
io

n
 o

f
T

o
ta

l C
yc

le
s Memory Unit Stall Cycles

Miss Cycles

Figure 6.9: Average fraction of simulated cycles spent waiting in the vector memory unit or
servicing a miss for a 16-lane full memory crossbar VESPA processor when cache lines are
widened to 64B and prefetching is enabled for the next 15 cache lines.

The vector length prefetcher provides an important mechanism for capturing non-

speculative prefetches with the 1V L configuration. A good soft vector processor should

always perform this non-speculative prefetching but should also add some speculative

prefetching. With regard to a speculative prefetching strategy, the vector length prefetcher

does not quite reach the 30% performance gain from prefetching 15 cache lines using DPK

but comes very close at 28%. While several other speculative strategies can be considered,

the following section shows that prefetching 15 cache lines largely solves the problem of

cache misses.

6.2.3 Reduced Memory Bottleneck

With the parameterized data cache and prefetcher, the memory bottleneck is drastically

reduced. Recall that for the initial design the percentage of cycles spent in the vector

memory unit was 67% and the percentage of all cycles spent servicing misses in the

vector memory unit was 45%. This is shown in the first two bars of Figure 6.9. By

increasing the cache line size, and correspondingly the depth to fill the block RAMs,

these values are decreased to 47% and 25% respectively. With prefetching enabled for

Chapter 6. Scalability of the VESPA Soft Vector Processor 84

1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.02 1.02

0

0.2

0.4

0.6

0.8

1

1.2

4KB 8KB 16KB 4KB 8KB 16KB 4KB 8KB 16KB

16B Line 32B Line 64B Line

C
yc

le
 S

pe
ed

up

Instruction Cache Configuration

Figure 6.10: Average cycle performance across various icache configurations for a 16-lane
VESPA with 64B dcache line, 16KB dcache capacity, and data prefetching of 7 successive
cache lines.

the next 15 64B cache lines the fraction of time spent waiting on misses is reduced to just

4%. Thus prefetching appears to have largely solved the problem of miss cycles in our

benchmarks. The memory unit otherwise stalls to accommodate multiple cache accesses.

Further improvements could be made in the future to improve cache-to-lane throughput

by better integrating the cache into the pipeline and providing multiple cache ports.

6.2.4 Impact of Instruction Cache (IW and ID)

The analysis of the initial design assumed a constant stream of vector instructions, how-

ever this stream can be potentially interrupted by instruction cache misses. Since each

vector instruction communicates many cycles of computational work to be performed by

the vector processor, we generally do not anticipate that instruction cache misses would

be significant. In addition the loop-centric nature of our benchmarks would result in

few instruction cache misses. Since the data cache was parameterized, doing the same

to the instruction cache was trivial so in this section, we briefly explore the space of

instruction cache configurations. Using the TM4 platform we verify that the instruction

cache does not severely impact the execution of VESPA even for a 16-lane configuration

which processes vector instructions very quickly.

Figure 6.10 shows the effect of varying the instruction cache line size and depth for

Chapter 6. Scalability of the VESPA Soft Vector Processor 85

Listing 6.1: Vectorized ip checksum loop

LOOP:
vld . u . h vr0 , vbase0 , v inc1 # Vector
vadd . u vr1 , vr1 , vr0 # Vector
c tc2 r2 , v l # Vector Ctl
v s a tv l # Vector Ctl
sub r2 , r2 , r14 # Sca la r
bgtz r2 ,LOOP # Sca la r

a 16-lane VESPA with a 16KB data cache with 64B lines and hardware prefetching of

the 7 neighbouring cache lines. The results show at most 2% performance gain averaged

across our benchmarks. This is somewhat expected since many of the benchmarks are

streaming in nature and spend most of the execution time iterating in one or a few loops.

The system area cost of the largest 16KB-64B configuration is 10% greater than the

4KB-16B configuration. Although this cost is much smaller than seen in the data cache

(due to the memory crossbar which is not required for instructions), the performance

improvement is too small to justify this area cost. All configurations in this thesis use

the 4KB instruction cache with 16B line size.

6.3 Decoupling Vector and Control Pipelines

The assumption of a constant stream of vector instructions is also violated in practice

by the presence of scalar code and vector control instructions. The scalar pipeline was

decoupled from the vector coprocessor in the initial design meaning cycles spent pro-

cessing scalar code can be done while the vector coprocessor is busy processing vector

instructions. But the vector coprocessor must still stall for vector control instructions

to complete. As more lanes are added to VESPA, less time is spent processing vector

instructions causing these vector control operations to possibly become significant. In

this section we examine the effect of also decoupling the vector control pipeline allowing

out-of-order execution between all three pipelines shown in Chapter 5, Figure 5.5. This

optimization was motivated by visual inspection of the benchmark discussed below.

Chapter 6. Scalability of the VESPA Soft Vector Processor 86

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

au
tc

or

co
nv

en

rg
bc

m
yk

rg
by

iq

ip
_c

he
ck

su
m

im
gb

le
nd

fil
t3

x3

fb
ita

l

vi
te

rb

G
M

E
A

N

S
p

ee
d

u
p 1 Lane

2 Lanes

4 Lanes

8 Lanes

16 Lanes

Figure 6.11: Performance improvement of decoupling the vector control pipeline from the vector
pipeline, effectively supporting zero-overhead loops.

Listing 6.1 shows the vectorized kernel of the ip checksum benchmark which consists

of a vector load and vector add instruction, followed by two vector control instructions

for modifying the current vector length, then two scalar control instructions for handling

the branching. The loop overhead, consisting of the two scalar instructions and two

vector control instructions, is usually small in cycles compared to the vector load and

add instructions—but when VESPA is configured with a large number of lanes these

first two instructions are executed more quickly, making the control instructions more

significant.

The improved VESPA has decoupled the two vector coprocessor pipelines shown in

Chapter 5, Figure 5.5 allowing vector, vector control, and scalar instructions to execute

simultaneously and out-of-order with respect to each other. As long as the number of

cycles needed to compute the vector operations is greater than the cycles needed for the

vector control and scalar operations, a loop will have no overhead cycles. Before this

modification vector control operations and vector operations were serialized, but scalar

operations could be hidden by executing concurrently with any vector instruction.

Figure 6.11 shows the impact on performance from this decoupling for various VESPA

processors with 16KB data cache with 64B line size is shown. For 16 lanes, this technique

improves performance by 7% on average and by 17% in the best case, while the area cost

is negligible. Specifically, the benchmarks autcor, ip checksum, and viterb achieve

Chapter 6. Scalability of the VESPA Soft Vector Processor 87

0

5

10

15

20

25

30

C
y
c
le
 S
p
e
e
d
u
p
 v
s
 1
 L
a
n
e

1 Lane

2 Lanes

4 Lanes

8 Lanes

16 Lanes

32 Lanes

Figure 6.12: Performance scalability as the number of lanes are increased from 1 to 32 for a
fixed VESPA architecture with full memory support (full memory crossbar, 16KB data cache,
64B cache line, and prefetching enabled).

between 15-17% speedup in the 16-lane configuration. This improved VESPA was used

in all VESPA configurations presented in this thesis.

6.4 Improved VESPA Scalability

With all the above improvements we are motivated to re-evaluate the scalability of

VESPA previously seen in Section 6.1. Furthermore, we use the new DE3 platform

with its larger Stratix III FPGA to explore even larger 32-lane VESPA configurations

that were not possible on the TM4. With good scalability implemented on real FPGAs,

we hope to make a compelling case that soft vector processors are indeed attractive im-

plementation vehicles over manual hardware design for data parallel workloads. This

section thoroughly evaluates the improved scalability of VESPA.

6.4.1 Cycle Performance

Figure 6.12 shows the cycle performance improvement for each of our benchmarks as we

increase the number of lanes on an otherwise aggressive VESPA architecture with full

memory support (full memory crossbar, 16KB data cache with 64-byte cache lines and

hardware prefetching—while a variety of prefetching schemes are possible we prefetch

Chapter 6. Scalability of the VESPA Soft Vector Processor 88

Table 6.2: Performance measurements for VESPA with 1-32 lanes. Clock frequency is averaged
across 8 runs of the CAD tools targetting the Stratix III 3S340C2, speedups are geometric
means normalized to the 1-lane configuration.

1 Lane 2 Lanes 4 Lanes 8 Lanes 16 Lanes 32 Lanes
Clock Frequency (MHz) 131 129 128 123 117 96
Average Cycle Speedup 1.00 1.95 3.7 6.5 10.4 15.4

Average Wall Clock Speedup 1.00 1.96 3.6 6.3 9.3 11.3

the next 8×(current vector length) elements since this is reliable across our benchmarks

as seen in Section 6.2.2.4). The figure illustrates that impressive scaling is possible as

seen in the 27x speedup for filt3x3 executed on 32 lanes. The compute bound nature

of soft processors is also exemplified in the 2-lane configuration which performs 1.95x

faster on average than 1 lane. Had the processor been memory bound the performance

gains from adding twice as many processing lanes would be significantly less than 2x.

Overall we see that indeed a soft vector processor can scale cycle performance on average

from 1.95x for 2 lanes, to 10x for 16 lanes, to 15x for 32 lanes. The improved VESPA

achieves significantly better scaling than the initial VESPA design seen in Section 6.1

which achieved only 5.1x speedup for 16 lanes.

Ideally, the speedup would increase linearly with the number of vector lanes, but this

is prevented by a number of factors: (i) only the vectorizable portion of the code can

benefit from extra lanes, hence benchmarks such as conven that have a blend of scalar

and vector instructions are limited by the fraction of actual vector instructions in the

instruction stream; (ii) some applications do not contain the long vectors necessary to

scale performance, for example viterb executes predominantly with a vector length of

only 16; (iii) the movement of data becomes a limiting factor specifically for rgbcmyk,

and rgbyiq which access streams in a strided fashion requiring excessive cache accesses,

and fbital which uses an indexed load to access an arbitrary memory location from

each lane. Indexed vector memory operations are executed serially in VESPA, severely

limiting the scalability of workloads that use them.

Chapter 6. Scalability of the VESPA Soft Vector Processor 89

6.4.2 Clock Frequency

While the cycle performance was shown to be very scalable, in an FPGA context we

can verify that the processor clock speed degradation caused by instantiating more lanes

does not nullify or overwhelm the cycle improvements. In general as a hardware design

grows in size it becomes more challenging to architect and design the circuit to achieve

a high clock frequency. Our measurements of clock frequency on the VESPA architec-

ture demonstrate that a vector processor implemented on an FPGA can retain scalable

performance without whole design teams to optimize the architecture and circuit design.

Certainly VESPA could further benefit from such optimizations.

Table 6.2 shows the clock frequency for each configuration produced by the FPGA

CAD tools as described in Chapter 3. The clock frequency starts at 131 MHz for the

1 lane, decays to 123 MHz for 8 lanes, 117 MHz for 16 lanes, and finally 96 MHz for

32 lanes. The effect on wall clock time is moderate at 16 lanes reducing the 10x cycle

speedup to 9x in actual wall clock time speedup. At 32 lanes the clock frequency drops

significantly reducing the 15x cycle speedup to 11x in wall clock time. Despite these

clock frequency reductions, the average wall clock time across our benchmarks continues

to increase with more lanes. At 64 lanes the clock frequency is reduced to 80 MHz and

the performance is worse than the 32-lane configuration. Because of timing problems

with the 64-lane configuration, it cannot be accurately benchmarked and is hence not

shown in Table 6.2.

In both the 16 and 32 lane configurations, the critical path is in the memory crossbar

which routes all 64 bytes in a cache line to each of the lanes. The M parameter can be

used to reduce the size of the crossbar and raise the clock frequency, but the resultant loss

in average cycle performance often overwhelms this gain and produces a slower overall

processor as shown in Chapter 7, Section 7.1.3. The clock frequency reduction can instead

be addressed by pipelining the memory crossbar as well as additional engineering effort

in retiming these large designs. Ultimately scaling to larger lanes requires careful design

of a high-performing memory system, and may require a hierarchy of memory storage

Chapter 6. Scalability of the VESPA Soft Vector Processor 90

1 Lane

2 Lanes

4 Lanes

8 Lanes

16 Lanes

32 Lanes

0.0625

0.125

0.25

0.5

1

2048 4096 8192 16384 32768 65536

W
a
ll
 C
lo
ck
 T
im
e

Area

Figure 6.13: Performance/area design space of 1-32 lane VESPA cores with full memory sup-
port. Area measures just the vector coprocessor area.

units as seen in graphics processors. The following section shows that these many-lane

configurations consume such a large portion of resources that they are questionably useful

in many embedded systems application with tight constraints. Thus, we leave additional

research into higher memory throughput and clock frequency for these large designs as

future work likely better motivated in the high-performance computing domain.

6.4.3 Area

Figure 6.13 shows the area of each VESPA vector coprocessor (excluding the memory

controller, system bus, caches, and scalar processor) on the x-axis and the wall clock time

execution plotted on the y-axis. The initial cost of a vector coprocessor is considerable

costing 2900 ALMs of silicon area due to the decode/issue logic, 1 vector lane, and the

vector state with 64 elements in each vector (MVL=64). As the vector lanes are increased

a linear growth in area is eventually observed as the constant cost of the state and

decode/issue logic are dominated. This additional area cost becomes quite substantial,

for example growing from 8 to 16 lanes requires about 9000 ALMs worth of silicon. At

32 lanes one third of the resources on the Stratix III-340 are consumed, since this is the

largest currently available FPGA device, a 32-lane configuration seems beyond the grasp

of most embedded systems designs. Nonetheless performance scaling is still possible with

Chapter 6. Scalability of the VESPA Soft Vector Processor 91

32-lanes and likely beyond with additional processor design effort.

6.5 Summary

This chapter first demonstrated the modest scalability in a naive VESPA design. Mod-

ified caches, hardware prefetching, and decoupled pipelines were then added to achieve

significantly more scaling. Wider cache lines were the most significant improvement since

they provide some inherent prefetching and also allows a single cache access to satisfy

multiple lanes assuming spatial locality between the memory requests in the lanes. How-

ever the cost of increasing cache lines is large due to the growing memory crossbar.

Prefetching can provide drastically reduced miss rates for a very low area cost, but its

effectiveness is application-dependent. Finally the decoupled vector control pipeline al-

lowed vector control instructions to be executed in parallel with vectorized work. Overall,

the improved VESPA achieved significant scaling of up to 27x for 32 lanes and on average

15x. The next chapter will demonstrate that more thorough exploration of soft vector

processor architecture can yield an even larger and more fine-grain VESPA design space.

Chapter 7

Expanding and Exploring the

VESPA Design Space

One of the most compelling features of soft processors is their inherent reconfigurability.

An FPGA designer can ideally choose the exact soft processor architecture for their

application rather than be limited to a few off-the-shelf variants. If the application

changes, a designer can easily reconfigure a new soft processor onto the FPGA device. In

addition, the designer need not modify the software toolchain, which is often necessary

with the purchase of a new hard processor in an embedded system.

The previous chapter explored a variety of architectural parameters of the VESPA

soft vector processor including the number of lanes, the cache configurations, and the

prefetching strategy. All of these parameters can be tuned to match an application with

respect to its amount of data parallelism and memory access patterns. In this chapter we

explore the computational capability of VESPA, specifically the functional units in its

vector lanes. These functional units can significantly impact the performance of VESPA

and also account for a significant amount of overall area especially when multiple lanes

are present. Thus we explore architectural parameters that allow an FPGA designer to

tune the functional units to their application in three aspects: (i) reducing the number

of functional units in low demand hence creating heterogeneous lanes [74]; (ii) param-

92

Chapter 7. Expanding and Exploring the VESPA Design Space 93

eterizing the number of vector instructions that can be simultaneously executed using

vector chaining [74]; and (iii) eliminating hardware not required by the application [72].

All evaluation in this chapter is performed on the DE3 hardware platform.

7.1 Heterogeneous Lanes

In this section we examine the option of reducing the number of copies of a given func-

tional unit which is in low demand. For example, a benchmark with vector multiplication

operations will require the multiplier functional unit, but if the multiplies are infrequent

the application does not necessarily require a multiplier in every vector lane. In the

extreme case a 32-lane vector coprocessor can have just one lane with a multiplier and

have vector multiplication operations stall as the vector multiply is performed at a rate

of one operation per cycle. We use this idea to parameterize the hardware support for

vectorized multiplication and memory instructions as described below.

7.1.1 Supporting Heterogeneous Lanes

The VESPA vector datapath contains three functional units: (i) the ALU for addition,

subtraction, and logic operations; (ii) the multiplier for multiplication and shifting op-

erations; and (iii) the memory unit for load and store operations. Increasing the vector

lanes with the L parameter duplicates all of these functional units, so all vector lanes

are identical, or homogeneous. We provide greater flexibility by allowing the multiplier

units to appear in only some of the lanes specified with X. Similarly the number of lanes

attached to the memory crossbar can be selected using M. This allows for a heterogeneous

mix of lanes where not all lanes will have each of the three functional unit types. A user

can specify the number of lanes with ALUs using L, the number of lanes with multipliers

with X, and the number of lanes with access to the cache with M.

Some area overhead is required to buffer operands and time-multiplex operations into

the lanes which have the desired functional units, so the area savings from removing

Chapter 7. Expanding and Exploring the VESPA Design Space 94

0

0.2

0.4

0.6

0.8

1

1.2

C
y
c
le
 S
p
e
e
d
u
p

X=1 (Area=0.87)

X=2 (Area=0.87)

X=4 (Area=0.88)

X=8 (Area=0.9)

X=16 (Area=0.94)

X=32 (Area=1)

Figure 7.1: Performance impact of varying X for a VESPA with L=32, M=16, DW=64, DD=16K,
and DPV=8*VL, area and performance is normalized to the X=32 configuration.

multipliers and shrinking the crossbar must offset this. In place of the missing functional

units are shift registers for shifting input operands to the necessary lane and shifting

back the result. Because of the frequency of ALU operations across the benchmarks and

because of their relative size compare to the overhead, we do not support the elision of

ALUs. This is a reasonable limitation since the multipliers are generally scarce, and the

memory crossbar generally large, so reducing those units will have greater impact on area

savings while being more likely to only mildly affect performance.

7.1.2 Impact of Multiplier Lanes (X)

The X parameter determines the number of lanes with multiplier units. The effect of

varying X is evaluated on a 32-lane VESPA processor with 16 memory crossbar lanes

(halved to reduce its area dominance) and a prefetching 16KB data cache with 64B line

size. Each halving of X doubles the number of cycles needed to complete a vector multiply.

We measure the overall cycle performance and area and normalize it to the full X=32

configuration. Note that clock frequency was unaffected in these designs.

Figure 7.1 shows that in some benchmarks such as filt3x3 the performance degra-

dation is dramatic, while in other benchmarks such as conven there is no impact at all.

Chapter 7. Expanding and Exploring the VESPA Design Space 95

Programs with no vector multiplies can have multipliers removed completely with the

instruction-set subsetting technique explored in Section 7.4.3, but programs with just few

multiplies such as viterb can have its multipliers reduced saving 10% area and suffering

a small 3.1% performance penalty. The resulting saved area can then be used for other

architectural features or components of the system.

The area savings from reducing the multipliers is small starting at 6% for halving

the number of multipliers to 16, the savings asymptotically grow and saturate at 13%.

Since the multipliers are efficiently implemented in the FPGA as a dedicated block,

the contribution to the overall silicon area is small, and the additional overhead for

multiplexing operations into the few lanes with multipliers ultimately outweigh the area

savings. However, multipliers are often found in short supply, so a designer might be

willing to accept the performance penalty if another more critical computation could

benefit from using the multipliers.

7.1.3 Impact of Memory Crossbar (M)

A vector load/store instruction can perform as many memory requests in parallel as the

there are vector lanes, however the data cache can service only one cache line access per

clock cycle. Extracting the data in a cache line to/from each vector lane requires a full

and bidirectional crossbar between every byte in a cache line and every vector lane. Such

a circuit structure imposes heavy limitations on the scalability of the design, especially

within FPGAs where multiplexing logic is comparatively more expensive than in tradi-

tional IC design flows. Because of this, the idea of using heterogeneous lanes to limit the

number of lanes connected to the crossbar as described in Chapter 5, Section 5.3.3 can

be extremely powerful.

The parameter, M, controls the number of lanes the memory crossbar connects to

and hence directly controls the crossbar size and the amount of parallelism for memory

operations. For example, a 16-lane vector processor with M equal to 4 can complete 16 add

operations in parallel, but can only satisfy up to 4 vector loads/store operations provided

Chapter 7. Expanding and Exploring the VESPA Design Space 96

0

0.2

0.4

0.6

0.8

1

1.2

C
y
c
le
 P
e
rf
o
rm
a
n
c
e

M=1 (Area=0.63)

M=2 (Area=0.64)

M=4 (Area=0.68)

M=8 (Area=0.75)

M=16 (Area=0.85)

M=32 (Area=1)

Figure 7.2: Cycle performance of various memory crossbar configurations on a 32-lane vector
processor with 16KB data cache, 64B line size, and 8*VL prefetching. Performance is normal-
ized against the full M=32 configuration. Area is shown in parentheses and is also normalized
to the M=32 configuration.

all 4 were accessing the same cache line. Decreasing M reduces area and decreases cycle

performance of vector memory instructions. Also, clock frequency can be increased by

reducing M when the memory crossbar is the critical path in the design.

Figure 7.2 shows the effect on cycle performance and vector coprocessor area as the

memory crossbar size is varied on a 32-lane vector processor with 16KB data cache, 64B

line size, and 8*VL prefetching. Both cycle performance and area are normalized to

the full memory crossbar (M=32). For the smallest crossbar, where M=1 and memory

operations are serialized, average performance is reduced to one-fifth of the full memory

crossbar, but 37% of area is saved. For M=4 performance is halved and 32% of area is

saved. All configurations with M<=4 lose significantly more in performance than is gained

in area savings. For M=8 the tradeoff almost breaks even saving 25% of area and reducing

performance by an average of 26.6%. With a half-size memory crossbar at M=16 area

savings is 15% while average performance degradation is 9.8%. For some benchmarks

such as viterb and ip checksum there is no performance degradation between the

M=32 and M=16 configurations, meaning the 15% area reduction can be achieved for free.

In other cases such as fbital the performance degradation is small (only 4.3%). This

provides an effective lever for customizing the size of the crossbar to the memory demands

Chapter 7. Expanding and Exploring the VESPA Design Space 97

M=8

M=16

M=32

M=4

M=8

M=16

M=4

M=8

1

2

4

8192 16384 32768 65536

N
o
rm
a
li
ze
d
 C
y
c
le
 C
o
u
n
t

Area

32 Lanes

16 Lanes

8 Lanes

Figure 7.3: Average normalized cycle count versus area for various memory crossbar config-
urations on various numbers of lanes. All VESPA configuration have 16KB data cache, 64B
line size, and 8*VL prefetching. Cycles are normalized against the full M=32 configuration on
a 32-lane VESPA.

of the application, however it can also be used to mitigate clock frequency degradation

caused by the large crossbars.

Figure 7.3 highlights the area/speed tradeoff possible using the memory crossbar

reduction. The figure shows the average cycle count of an 8, 16, and 32 lane VESPA each

with full, half, and quarter-sized memory crossbars all normalized to the 32-lane VESPA

with full memory crossbar. The 16-lane VESPA with M=8 is a half-sized memory crossbar

providing a useful area/performance design point between the full memory crossbar 8-

lane VESPA and the full 16-lane VESPA. Similarly the half-sized crossbar for 32 lanes

provides a mid-point between the full memory crossbars of the 16 and 32-lane VESPA

configurations. The quarter-sized crossbar with M=4 and 16 lanes performs worse and is

larger than the 8-lane full memory crossbar. In general, half-sized memory crossbars are

useful design points, while the quarter-sized memory crossbars are dominated by the full

crossbars with half as many lanes.

Figure 7.4 shows the effect on wall clock performance and clock frequency across all

values of M (normalized to M=32) on a 32-lane VESPA with 16KB data cache, 64B line

size, and 8*VL prefetching. For such a large vector processor, the many lanes and the

full crossbar limits clock frequency to 98 MHz compared to the 131 MHz achievable on

Chapter 7. Expanding and Exploring the VESPA Design Space 98

0

0.2

0.4

0.6

0.8

1

1.2

W
a
ll
 C
lo
ck
 P
e
rf
o
rm
a
n
ce

M=1 (clk=1.14)

M=2 (clk=1.1)

M=4 (clk=1.1)

M=8 (clk=1.06)

M=16 (clk=1.04)

M=32 (clk=1)

Figure 7.4: Wall clock performance of various memory crossbar configurations on a 32-lane
vector processor with 16KB data cache, 64B line size, and 8*VL prefetching. Performance is
normalized against the full M=32 configuration. Clock frequency is shown in parentheses and
is also normalized to the M=32 configuration.

a 1-lane VESPA. Reducing the memory crossbar to M=1 raises the clock frequency to

110 MHz but still leaves overall wall clock time at one-fifth the performance of the full

memory crossbar. In the cases where no cycle degradation was observed such as M=16

for viterb and ip checksum, the wall clock performance is actually better than the

full memory crossbar because of the 4% gain in clock frequency. In fbital the clock

frequency gain makes M=16 and M=32 equal in wall clock performance and hence allows

a free 15% area savings. This clock frequency improvement phenomenon occurs because

the memory crossbar is the critical path of the design. For configurations with fewer

lanes, or for a more highly-pipelined and highly-optimized design we would expect clock

frequency to remain relatively constant.

7.2 Vector Chaining in VESPA

Our goal of scaling soft processor performance is largely met by instantiating multiple

vector lanes using a soft vector processor. However, additional performance can be gained

by leveraging a key feature of traditional vector processors: the ability to concurrently

execute multiple vector instructions via vector chaining, as discussed in Chapter 2, Sec-

Chapter 7. Expanding and Exploring the VESPA Design Space 99

tion 2.2.4. By simultaneously utilizing multiple functional units, VESPA can more closely

approach the performance and efficiency of a custom hardware design. In this section,

VESPA is augmented with parameterized support for chaining designed in a manner that

is amenable to FPGA architectures.

7.2.1 Supporting Vector Chaining

VESPA has three functional unit types: an ALU, a multiplier/shifter, and a memory

unit, but only one functional unit type can be active in a given clock cycle. Additional

parallelism can be exploited by noting that vector instructions operating on different

elements can be simultaneously dispatched onto the different functional unit types, hence

permitting more than one to be active at one time. Modern vector processors exploit this

using a large many-ported register file to feed operands to all functional units keeping

many of them busy simultaneously. This approach was shown to be more area-efficient

than using many banks and few ports as in historical vector supercomputers [7]. But

since FPGAs cannot efficiently implement a large many-ported register file, our solution

is to return to this historical approach and use multiple banks each with 2 read ports

and 1 write port. The three-port banks were created out of two-port block RAMs by

duplicating the register file as described in Chapter 5.

Figure 7.5 shows how we partition the vector elements among the different banks for

a vector processor with 2 banks, 4 lanes, and MVL=16. Each 4-element group is stored as

a single entry so all 4 lanes can each access their respective operand on a single access.

Element groups are interleaved across both banks so that elements 0-3 and 8-11 are in

bank 0, and elements 4-7 and 12-15 are in bank 1. As a result, sequentially accessing

all elements in a vector requires alternating between the two banks allowing instructions

operating on different element groups to each use a register bank to feed their respective

functional unit. The number of chained instructions is limited by the number of register

banks. In this example, with two banks at most two instructions can be dispatched.

Figure 7.6 shows an example of our implementation of vector chaining using two

Chapter 7. Expanding and Exploring the VESPA Design Space 100

15
14
13
12

11
10
9
8

3
2
1
0

7
6
5
4

Bank
1

Bank
0

vr0vr1

15
14
13
12

11
10
9
8

3
2
1
0

7
6
5
4

vr31

15
14
13
12

11
10
9
8

3
2
1
0

7
6
5
4

…

…

Figure 7.5: Element-partitioned vector register file banks shown for 2 banks, 4 lanes, and
maximum vector length 16. Note that accessing all elements in a vector requires oscillating
between both banks.

Bank 0
(even

elments) Mult/Shift

Mem
Unit

A
L
U

Bank 1
(odd

elments)

M
U
X

M
U
X

M
U
X

M
U
XM

U
X

M
U
X

Instr
Bank
Queue

Vector
Register

File

Figure 7.6: Vector chaining support for a 1-lane VESPA processor with 2 banks.

register banks to support a maximum of 2 vector instructions in flight for a 1-lane VESPA

processor. Once resource, read-after-write, and bank conflicts are resolved, instructions

will enter the Bank Queue and cycle between the even and odd element banks until

all element operations are completed. During that time another instruction can enter

the queue and rotate through the cyclical Bank Queue resulting in 2 element operations

being issued per cycle. As each operation completes the result is written back to the

appropriate register bank. Using a cyclical queue simplifies the control logic necessary

for assigning a bank to an element operation, but causes one or more cycle delays for the

few vector instructions which cannot start on an even element (most vector instructions

Chapter 7. Expanding and Exploring the VESPA Design Space 101

start with element 0).

The number of register banks, B, used to support vector chaining is parameterized and

must be a power of two. A value of 1 reduces VESPA to a single-issue vector processor

without vector chaining support eliminating the Bank Queue and associated multiplexing

illustrated in Figure 7.6. VESPA can potentially issue as many as B instructions at one

time, provided they each have available functional units. To increase the likelihood of

this, VESPA allows replication of the ALU for each bank, the APB parameter enables or

disables this feature. For example, with two banks and APB enabled, each vector lane

will have one ALU for each bank and in total two ALUs. Since multipliers are generally

scarce we do not support duplication for the multiply/shift unit, and we also do not

support multiple memory requests in-flight because of the system’s locking cache.

7.2.2 Impact of Vector Chaining

We measured the effect of the vector chaining implementation described above across our

benchmarks using an 8-lane vector processor with full memory support (16KB data cache,

64B cache line, and prefetching of 8*VL) implemented on the DE3 platform. We vary

the number of banks from 2 to 4 and for each toggle the ALU per bank APB parameter

and compare the resultant four designs to an analogous VESPA configuration without

vector chaining.

Figure 7.7 shows the cycle speedup of chaining across our benchmarks as well as the

area normalized to the 1 bank configuration. The area cost of banking is considerable,

starting at 27% for the second register bank and the expensive multiplexing logic needed

between the two banks. The average performance improvement of this 27% area invest-

ment is approximately 26%, and in the best case is 54%. Note that if instead of adding

a second bank, the designer opted to double the number of lanes to 16, the average

performance gain would be 49% for an area cost of 77%. Two banks provide half that

performance improvement at one third the area, and is hence a more fine-grain trade-off

than increasing lanes.

Chapter 7. Expanding and Exploring the VESPA Design Space 102

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
y
c
le
 S
p
e
e
d
u
p

4 Banks, 4 ALUs

(Area=1.92x)

4 Banks, 1 ALU

(Area=1.59x)

2 Banks, 2 ALUs

(Area=1.34x)

2 Banks, 1 ALU

(Area=1.27x)

Figure 7.7: Cycle performance of different banking configurations across our benchmarks on an
8-lane VESPA with full memory support. Area is shown in parentheses for each configuration.
Both cycle speedup and area area normalized to the same VESPA without vector chaining.

Replicating the ALUs for each of the 2 banks (2 banks, 2 ALUs) provides some

minor additional performance, except for fbital where the performance improvement is

significant. fbital executes many arithmetic operations per datum making demand for

the ALU high and hence benefiting significantly from increased ALUs and justifying the

additional 7% area. Similarly the 4 bank configuration with no ALU replication benefits

only few benchmarks, specifically rgbyiq, imgblend, filt3x3. These benchmarks

have a near equal blend of arithmetic, multiply/shifting, and memory operations and

thus benefit from the additional register file bandwidth of extra banks. However the area

cost of these four banks is significant at 59%. Finally, with 4 banks and 4 ALUs per lane

the area of VESPA is almost doubled exceeding the area of a VESPA configuration with

double the lanes and no chaining, which performs better than the 4 banks and 4 ALUs; as

a result we do not further study this inferior configuration. Though the peak performance

of the 4 bank configuration is 4x that of the 1 bank configuration, our benchmarks and

single-issue in-order pipeline with locking cache cannot exploit this peak performance.

Note that instruction scheduling in software could further improve the performance of

vector chaining, but in many of our benchmarks only very little rescheduling was either

necessary or possible, so we did not manually schedule instructions to exploit chaining.

Figure 7.8 shows that the speedup achieved from banking is reduced as the lanes

Chapter 7. Expanding and Exploring the VESPA Design Space 103

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 Lane 2 Lanes 4 Lanes 8 Lanes 16 Lanes

C
y
c
le
 S
p
e
e
d
u
p

4 Banks, 4 ALUs

4 Banks, 1 ALU

2 Banks, 2 ALUs

2 Banks, 1 ALU

Figure 7.8: Cycle performance averaged across our benchmarks for different chaining configu-
rations for a VESPA with varying number of lanes and all with full memory support. Cycle
speedup is normalized to that measured on the same VESPA without vector chaining.

are increased. Chaining allows multiple vector instructions to be executed if both the

appropriate functional unit and register bank are available. However, because only one

instruction is fetched per cycle, chaining is only effective when the vector instructions are

long enough to stall the vector pipeline, in other words, when the length of a vector is

greater than the number of lanes. As the number of lanes increases, vector instructions

are completed more quickly providing less opportunity for overlapping execution. In

the vector processors with one lane, speedups from banking can average as high as 60%

across our benchmarks, while in the fastest 16-lane configuration banking achieves only

23% speedup. The 1 lane vector processor represents an optimistic speedup achievable

on extremely long vector operations.

The area cost of chaining is due largely to the multiplexing between the banks, but

also to the increase in block RAM usage. The vector register file is comprised of many

FPGA block RAMs given by the greater of the two Equations 5.1 and 5.2 as discussed

in Chapter 5. For vector processors with few lanes there is no increase in the number

of block RAMs. However, for vector processors with many lanes, making Equation 5.1

greater, adding more banks proportionally increases the number of block RAMs used.

For example increasing from 1 to 4 banks with no ALU replication on a 16 lane VESPA

with MVL=128 adds 38% area just in block RAMs and 56% in total. For a system with

Chapter 7. Expanding and Exploring the VESPA Design Space 104

1 Lane

2 Lanes

4 Lanes

8 Lanes

16 Lanes

0.0625

0.125

0.25

0.5

1

1 2 4 8

W
a
ll
 C
lo
ck
 T
Im
e

Area

2 Banks, 2 ALUs

2 Banks, 1 ALU

1 Bank, 1 ALU

Figure 7.9: Performance/area space of 1-16 lane vector processors with no chaining (1 bank
with 1 ALU), and 2-way chaining (2 banks with 1 ALU and 2 banks with 2 ALUs). Area and
performance are normalized to the 1 lane, 1 bank, 1 ALU configuration.

many unused block RAMs this increase can be justified even though only a fraction of

the capacity of each block RAM may be used. In fact, the unused capacity of the block

RAMs can be fully utilized by the vector processor with a corresponding increase in MVL

as seen in Equation 5.2.

Figure 7.9 shows the wall clock time versus area space of the no chaining configurations

from 1 to 16 lanes (depicted with solid diamonds). We overlay two vector chaining

configurations on the same figure and observe that the points with 2 banks and no ALU

replication appear about one third of the way to the next solid diamond, illustrating that

chaining can trade area/performance at finer increments than doubling the number of

lanes. Adding ALU replication slightly increases the performance and area of the soft

vector processor. Note that the 4-bank configurations are omitted since the area cost is

significant and the additional performance is often modest compared to 2 banks. Since

we have complete measurement capabilities of the area and performance we are able to

identify that vector chaining in an FPGA context is indeed a trade-off and not a global

improvement (it did not move VESPA toward the origin of the figure).

Chapter 7. Expanding and Exploring the VESPA Design Space 105

7.2.3 Vector Lanes and Powers of Two

Another option for fine-grain area/performance trade-offs is to use lane configurations

that are not powers of two, resulting in cumbersome control logic which involves multi-

plication and division operations. For example the vext.sv instruction extracts a single

element given by its index value in the vector. If a 9-lane vector configuration is used,

determining the element group to load from the register file would require dividing the

index by 9. By using a power of two this operation reduces to shifting by a constant,

which is free in hardware. Since this extra logic can impact clock frequency, and the

additional area overhead can be significant, this approach would generate inferior config-

urations that, in terms of Figure 7.9, would form a curve further from the origin than the

processors with lanes that are powers of two. Chaining, on the other hand, is shown to

directly compete with these configurations, and in Section 7.3 is shown to even improve

performance per unit area.

7.3 Exploring the VESPA Design Space

Using VESPA we have shown soft vector processors can scale performance while providing

several architectural parameters for fine-tuning and customization. This customization

is especially compelling in an FPGA context where designers can easily implement an

application-specific configuration. In this section we explore this design space more fully

by measuring the area and performance of hundreds of VESPA processors generated by

varying almost all VESPA parameters and implementing each configuration on the DE3

platform.

7.3.1 Selecting and Pruning the Design Space

Our aim is to derive a design space that captures many interesting tradeoffs without

an overwhelming number of design points. Each design point must be synthesized nine

times (once for implementing on the DE3, and 8 times across different seeds to average

Chapter 7. Expanding and Exploring the VESPA Design Space 106

Table 7.1: Explored parameters in VESPA.
Parameter Symbol Value Range Explored

C
om

pu
te

Vector Lanes L 1,2,4,8,16,. . . 1,2,4,8,16,32
Memory Crossbar Lanes M 1,2,4,8,. . . L L, L/2
Multiplier Lanes X 1,2,4,8,. . . L L, L/2
Register File Banks B 1,2,4,. . . 1,2,4
ALU per Bank APB true/false true/false

IS
A

Maximum Vector Length MVL 2,4,8,16,. . . L*4,128,512
Vector Lane Bit-Width W 1,2,3,4,. . . , 32 -
Each Vector Instruction - on/off -

M
em

or
y

ICache Depth (KB) ID 4,8,. . . -
ICache Line Size (B) IW 16,32,64,. . . -
DCache Depth (KB) DD 4,8,. . . 8, 32
DCache Line Size (B) DW 16,32,64,. . . 16, 64
DCache Miss Prefetch DPK 1,2,3,. . . -
Vector Miss Prefetch DPV 1,2,3,. . . off, 7, 8*VL

out the non-determinism in FPGA CAD tools as described in Chapter 3). Each synthesis

can take between 30 minutes to 2.5 hours with an average of approximately one hour.

Exploring 1000 design points hence requires more than 1 year of compute time. To reduce

this compute time we are motivated to prune the design space.

We vary all combinations of the explored parameter values listed in the last column

of Table 7.1 and implement each architectural configuration. The selection of these

parameter values were guided by our research in the previous chapters. The instruction

cache was not influential as seen in Chapter 6, Section 6.2.4 so it is not explored here.

The data cache has a depth of either 8KB or 32KB to fill the block RAMs for either 16B

or 64B cache lines. Prefetching is enabled only for the 64B configuration as a result of

a limitation discussed in Chapter 6, Section 6.2.2. The same section shows the different

prefetch triggers DPK and DPV to perform similarly across our benchmarks so we explore

only the latter.

Lanes are varied by doubling the number of lanes from 1 to 32 inclusively. The

memory crossbar is either full or half-sized since anything less than this was found in

Section 7.1.3 to be generally inferior to full-sized crossbars with half as many lanes.

The number of multiplier lanes was also varied between all lanes and half the lanes,

despite the observation that some benchmarks required no multiplier lanes. Chaining

Chapter 7. Expanding and Exploring the VESPA Design Space 107

0.5

1

2

4

8

16

4096 8192 16384 32768 65536

W
a
ll
 C
lo
ck
 T
im
e

Area

Figure 7.10: Average normalized wall clock time and area (in equivalent ALMs) of several soft
vector processor variations.

is varied from no chaining, to two-way chaining, to four-way chaining. For the latter

two configurations the ALU replication APB parameter is toggled both on and off. Note

that 4-way chaining on 32-lanes is not performed because of the exceedingly large area

required for this configuration. With the selected parameters and value ranges shown

in the last column of Table 7.1, a brute force exploration of the complete 2400-point

design space would result in 2-3 years of compute time. Further design space pruning

was performed to cull certain parameter combinations which generally result in inferior

design points.

As an example of inferior configurations, consider Figure 7.10 which shows the av-

erage wall clock performance and area of a set of VESPA configurations. The design

space is similar to the one described above but excludes the DPV=7 and MVL=4*L values.

As area is increased, three branches emerge: the topmost (slowest) being the designs

throttled by a small 16B cache line size, and the middle branch throttled by cache misses

without prefetching. With both larger cache lines and prefetching enabled the fastest

and largest designs in the bottom branch can trade area for performance competitively

with the smaller designs. The top two branches are hence comprised entirely of inferior

configurations which can be pruned to save compilation time.

To limit our exploration time we use Figure 7.10 as well as our intuition to exclude

Chapter 7. Expanding and Exploring the VESPA Design Space 108

configurations with:

1. (L < 8) and (MVL = 512) – Configurations with few lanes can seldomly justify the

area for such large amount of vector state.

2. (L >= 8) and (DW = 16B) – Configurations with many lanes require wider cache

lines as seen in Figure 7.10.

3. (L >= 8) and (DPV = 0) – Configurations with many lanes require prefetching as

seen in Figure 7.10.

4. (DD = 8KB) and (DW = 64B) – Configurations which do not fully utilize their block

RAMs.

5. (DD = 32KB) and (DW = 16B) – Configurations with extra block RAMs used

only to expand the cache depth which was shown to be ineffective in accelerating

benchmark performance as seen in Section 6.2.1.

As a result of this pruning, the 2400 point design space resulting from all combina-

tions of parameter values in the last column of Table 7.1 is reduced to just 768 points.

With less than one-third the number of design points the exploration time is reduced

proportionately.

7.3.2 Exploring the Pruned Design Space

Our goal is to measure the area and performance of this 768-point design space and

confirm VESPA’s ability to: (i) span a very broad design space; and (ii) fill in this design

space allowing FPGA designers to choose an exact-fit configuration.

Figure 7.11 shows the vector coprocessor area and cycle count space of the 768 VESPA

configurations. The design space spans a total of 28x in area and 24x in performance

providing a huge range of design points for an FPGA embedded system designer to choose

from. Moreover, the data shows that VESPA provides fine-grain coverage of this design

space indeed allowing for precise selection of a configuration which closely matches the

Chapter 7. Expanding and Exploring the VESPA Design Space 109

1

2

4

8

16

32

1024 2048 4096 8192 16384 32768 65536

C
y
c
le
s

Area

Figure 7.11: Average cycle count and vector coprocessor area of 768 soft vector processor
variations across the pruned design space. Area is measured in equivalent ALMs, while the
cycle count of each benchmark is normalized against the fastest achieved cycle count across all
configurations and then averaged using geometric mean.

area/speed requirements of the application. By inspection, the pareto optimal points in

the figure closely approximate a straight line providing steady performance returns on

area investments. Also the configurations are all relatively close to the pareto optimal

points meaning our exploration was indeed focused on useful configurations. In addition

notice no wasteful branches such as those in Figure 7.10 exist because of the pruning.

Figure 7.12 shows the area and wall clock time space of the same 768 VESPA de-

sign points. This data includes the effect of clock frequency which decays only slightly

throughout the designs up to 8 lanes but is eventually reduced by up to 25% in our

largest designs (the points in the bottom right of the figure). Since these largest designs

are also the fastest, the maximum speed achieved is reduced considerably by the clock

frequency reduction. The design space spans 18x in wall clock time instead of the 24x

spanned in cycle count. This is in line with the 25% performance reduction expected

because of the clock frequency decay. Additional retiming or pipelining can mitigate

this decay, motivating a separate VESPA pipeline for supporting many lanes or even a

pipeline generator such as SPREE [69]. Nonetheless the design space is still very large

and even the designs with reduced clock frequencies in the lower right corner of the figure

provide useful pareto optimal design points.

Chapter 7. Expanding and Exploring the VESPA Design Space 110

Table 7.2: Pareto optimal VESPA configurations.
DD DW DPV APB B MVL L M X Clock Vector Normalized Wall

(MHz) Coproc. Area Clock Time
(Equiv. ALMs)

8KB 16B 0 0 1 4 1 1 1 134 1838 18.91
8KB 16B 0 0 1 8 2 1 1 132 2415 14.46
8KB 16B 0 0 1 8 2 1 2 132 2503 13.15
8KB 16B 0 0 1 8 2 2 2 131 2646 11.07
8KB 16B 0 0 2 8 2 2 1 127 3209 10.90
8KB 16B 0 0 2 8 2 2 2 125 3290 10.15
8KB 16B 0 0 1 16 4 2 2 129 3650 8.92
8KB 16B 0 0 1 16 4 2 4 127 3804 8.35
8KB 16B 0 0 1 16 4 4 2 128 3825 8.02
8KB 16B 0 0 1 16 4 4 4 128 4015 7.26
8KB 16B 0 0 2 16 4 4 2 126 4848 7.25
8KB 16B 0 0 1 128 4 4 4 125 5168 7.12
8KB 16B 0 0 2 16 4 4 4 122 5207 6.90
8KB 16B 0 0 2 128 4 4 2 123 5620 6.74
32KB 64B 0 0 1 16 4 2 4 129 5983 6.64
32KB 64B 8*VL 0 1 16 4 2 4 129 5990 6.49
8KB 16B 0 0 1 32 8 4 4 123 5993 6.42
8KB 16B 0 0 2 128 4 4 4 121 5996 6.17
8KB 16B 0 0 1 32 8 8 4 124 6361 5.72
32KB 64B 7 0 1 16 4 4 2 128 6506 5.19
32KB 64B 7 0 1 16 4 4 4 128 6817 4.54
32KB 64B 7 0 2 16 4 4 2 124 7580 4.44
32KB 64B 7 0 2 16 4 4 4 121 7899 4.05
32KB 64B 7 0 2 128 4 4 2 123 8387 3.99
32KB 64B 8*VL 0 2 128 4 4 2 124 8463 3.90
32KB 64B 7 0 2 128 4 4 4 121 8671 3.50
32KB 64B 8*VL 0 2 128 4 4 4 121 8809 3.46
32KB 64B 8*VL 1 2 128 4 4 4 121 9363 3.37
32KB 64B 8*VL 0 1 32 8 8 4 123 10400 3.02
32KB 64B 7 0 1 32 8 8 4 123 10498 2.94
32KB 64B 7 0 1 32 8 8 8 125 10759 2.54
32KB 64B 8*VL 0 1 128 8 8 8 124 11603 2.45
32KB 64B 7 0 2 128 8 8 4 117 12177 2.35
32KB 64B 8*VL 0 2 128 8 8 4 119 12288 2.27
32KB 64B 7 0 2 128 8 8 8 118 12787 2.02
32KB 64B 8*VL 0 2 128 8 8 8 118 13341 2.00
32KB 64B 7 1 2 128 8 8 8 119 14123 1.98
32KB 64B 8*VL 1 2 128 8 8 8 119 14545 1.94
32KB 64B 8*VL 0 2 128 16 8 8 112 18414 1.91
32KB 64B 8*VL 0 1 64 16 16 8 116 18748 1.80
32KB 64B 8*VL 0 1 128 16 16 8 114 18872 1.80
32KB 64B 8*VL 0 2 128 16 8 16 111 19510 1.78
32KB 64B 8*VL 0 1 64 16 16 16 114 19777 1.64
32KB 64B 8*VL 0 1 128 16 16 16 115 19990 1.58
32KB 64B 8*VL 0 2 128 16 16 8 109 22653 1.55
32KB 64B 7 0 2 128 16 16 16 111 23837 1.38
32KB 64B 7 1 2 128 16 16 16 111 26256 1.37
32KB 64B 8*VL 1 2 128 16 16 16 111 26848 1.32
32KB 64B 7 0 1 128 32 32 32 96 36864 1.31
32KB 64B 8*VL 0 2 512 32 16 32 99 38871 1.30
32KB 64B 7 0 1 512 32 32 32 99 39841 1.28
32KB 64B 8*VL 0 1 512 32 32 32 99 39843 1.24
32KB 64B 8*VL 0 2 128 32 32 32 94 43449 1.24
32KB 64B 7 0 2 128 32 32 32 91 43675 1.24
32KB 64B 8*VL 0 2 512 32 32 32 92 45469 1.13
32KB 64B 8*VL 1 2 512 32 32 32 96 50950 1.08

Chapter 7. Expanding and Exploring the VESPA Design Space 111

1

2

4

8

16

32

1024 2048 4096 8192 16384 32768 65536

W
a
ll
 C
lo
ck
 T
im
e

Area

Figure 7.12: Average wall clock time and vector coprocessor area of 768 soft vector processor
variations across the pruned design space. Area is measured in equivalent ALMs, while the
wall clock time of each benchmark is normalized against the fastest achieved time across all
configurations and then averaged using geometric mean.

Table 7.2 lists the pareto optimal VESPA configurations from the area/wall clock time

design space. These 56 configurations dominate the rest of the 712 designs meaning only

7.3% of the design space was useful. While this analysis is based on an average across

our benchmarks, on a per-application basis we expect a larger set of points to be useful.

The table is sorted starting from the smallest area design at the top, to the largest at

the bottom.

The smallest area design has 1 lane, 8KB data cache with 16B line size, MVL of 4,

and no chaining, prefetching or heterogeneous lanes. There are few neighbouring points

surrounding this configuration since most parameter values are not applicable or cause

large area investments. More small designs can be found in this region by including more

small MVL values in the exploration. As seen in Section 5.6 the MVL value can either

modestly or substantially affect the area for designs with few lanes. Had our search space

included a more fine-grain exploration of MVL values we would expect more neighbouring

points around this smallest area design—our current exploration has only one low value

of MVL (4*L) with the next smallest value being 128 which is very large for a one-lane

vector processor.

The pareto optimal configurations listed in the table highlight the contribution of

the VESPA parameters in creating useful designs. The full range of MVL values and

Chapter 7. Expanding and Exploring the VESPA Design Space 112

vector lanes are used, many of them with half-sized crossbars, or half as many lanes

with multipliers. All memory system configurations were used including all the prefetch-

ing strategies. Chaining varied between off and 2-way chaining through two banks—no

pareto optimal points were created using 4-way chaining. Finally the ALU replication

parameter, APB, was enabled for some of the designs with chaining. Overall we see that

the architectural parameters in VESPA each provide an effective means of trading area

for performance and each contribute towards selecting an efficient soft vector processor

configuration.

The clock frequency of each configuration is shown in the third-last column of the table

and quantifies the clock degradation previously discussed. The smallest configuration

achieves 134 MHz while the largest is reduced to 96 MHz. In general the clock frequency

is relatively stable across configurations with the same number of lanes. Despite the clock

degradation, increasing the number of lanes still provides ample performance acceleration.

7.3.3 Per-Application Analysis

A key motivation for FPGA-based soft processors is their ability to be customized to

a given application. This application-specific customization can aid FPGA designers in

meeting their system constraints. Since these constraints vary from system to system, in

the next two sections we examine the effect of two common cost functions: performance

and performance-per-area.

7.3.3.1 Fastest Per-Application Configurations

Across the complete 768-point design space the fastest overall processor is typically the

fastest for each benchmark. Most of VESPA’s parameters trade additional area for

increased performance, hence without an area constraint all benchmarks benefit from

adding more lanes, bigger caches, and more chaining. The prefetching strategy and MVL

value however can positively or negatively affect the performance for a given application.

Aside from these two parameter the other parameters can only increase performance

Chapter 7. Expanding and Exploring the VESPA Design Space 113

Table 7.3: Configurations with best wall clock performance for each benchmark.
VESPA Configuration Performance

Application DD DW DPV APB B MVL L M X vs GP

autcor 32KB 64B 8*VL 1 2 512 32 32 32 1.000
conven 32KB 64B 7 1 2 512 32 32 16 1.036

rgbcmyk 32KB 64B 8*VL 1 2 512 32 32 16 1.022
rgbyiq 32KB 64B 8*VL 1 2 512 32 32 32 1.000

ip checksum 32KB 64B 8*VL 1 2 128 32 32 16 1.260
imgblend 32KB 64B 8*VL 1 2 512 32 32 32 1.000
filt3x3 32KB 64B 8*VL 1 2 512 32 32 32 1.000
fbital 32KB 64B 8*VL 1 2 128 16 16 16 1.024
viterb 32KB 64B 8*VL 0 1 128 16 16 16 1.168

GEOMEAN 1.053

General Purpose (GP) 32KB 64B 8*VL 1 2 512 32 32 32 1

assuming clock frequency is not significantly reduced.

Table 7.3 shows the fastest configuration for each application. The last row shows

the configuration that is the fastest on average across all the benchmarks, referred to

as the general purpose configuration. All configurations have the same memory system

including prefetching strategy except for conven. With more fine grain exploration

of prefetching strategies we would expect to see more variation here. But certainly all

benchmarks benefit from the deeper and wider cache configuration.

The number of lanes is 32 across all configurations except for fbital and viterb

which are the benchmarks which scale the least. These two benchmarks are better

served with the increased clock frequency of the 16 lane configurations over the 32-way

parallelism of 32-lanes. Similarly conven, rgbcmyk and ip checksum benefit from the

slightly increased clock from eliminating half the multipliers. All other benchmarks have

homogeneous lanes since there is no area incentive to reducing the number of functional

units in this analysis. Two-way chaining and the APB parameter are enabled for all

configurations except for viterb which has insufficient DLP to exploit chaining and

instead benefits from the slightly increased clock frequency attainable without chaining.

The last column shows how much faster the per-application configuration is com-

pared to the general purpose configuration, and for most benchmarks there is little ad-

ditional performance gained. In fact the general purpose configuration is identical to

the fastest configurations for autcor, rgbyiq, imgblend and filt3x3. However the

Chapter 7. Expanding and Exploring the VESPA Design Space 114

Table 7.4: Configurations with best performance-per-area for each benchmark.
VESPA Configuration Performance per

Application DD DW DPV APB B MVL L M X Area vs GP

autcor 8KB 16B 0 0 2 128 8 8 8 1.068
conven 32KB 64B 8*VL 0 2 128 8 8 4 1.054

rgbcmyk 32KB 64B 8*VL 0 1 64 16 16 8 1.071
rgbyiq 32KB 64B 7 0 2 128 16 16 16 1.058

ip checksum 32KB 64B 7 0 2 32 8 8 4 1.087
imgblend 32KB 64B 7 0 2 128 16 16 16 1.025
filt3x3 32KB 64B 8*VL 0 4 512 16 16 16 1.070
fbital 8KB 16B 0 0 1 32 8 4 8 1.246
viterb 8KB 16B 0 1 2 4 1 1 1 1.356

GEOMEAN 1.110

General Purpose (GP) 32KB 64B 7 0 2 128 8 8 8 1

ip checksum benchmark is significantly faster with a smaller MVL value than the gen-

eral purpose configuration. A 26% speed improvement is seen as a result of the shorter

time required to sum all the elements in a vector. The viterb configuration gains 17%

performance due largely to clock frequency.

On average the fastest per-application configuration is 5.3% faster than the general

purpose configuration, but most of this is due to the large performance difference seen

with ip checksum and viterb. To better understand the efficiency gained by selecting

a processor on a per-application basis, one must consider the area costs in addition

to performance. Focussing only on performance acceleration leads to exorbitant area

investments for small performance improvements. In actual fact, other computations

could potentially use available FPGA area to more dramatically accelerate their execution

and better serve the complete system. We therefore seek configuration with the best

performance-per-area.

7.3.3.2 Best Performance-Per-Area Configurations

Performance-per-area is a commonly used metric for measuring efficiency which considers

both performance and area. To calculate performance-per-area we take the inverse of the

product between area and wall clock time, both measured as described in Chapter 3. The

measured area includes the complete processor system excluding the memory controller

and host communication hardware; the wall clock time is measured on the DE3 platform.

Chapter 7. Expanding and Exploring the VESPA Design Space 115

Table 7.4 shows the VESPA configuration with the best performance-per-area for each

benchmark selected out of the 768 explored designs. The last row shows the general pur-

pose configuration that achieves the best performance-per-area averaged arithmetically

across all benchmarks. The per-application configurations can achieve up to 35.6% (av-

erage of 11%) better performance-per-area over the general purpose configuration. The

selected configurations for each benchmark vary significantly from the general purpose

8-lane configuration with MVL=128, 2 banks, 32KB data cache, 64B line size, and 7 cache

line prefetching. Three of the benchmarks work best instead for the 8*VL prefetching

strategy, while another three select the smaller cache which does not support prefetching.

The number of lanes selected is typically 8 or 16 since 32-lane configurations require sig-

nificant area and also suffer from a significant clock frequency degradation. The viterb

benchmark being one of the least data-parallel applications benefits most from exploiting

a high degree of chaining on a 1-lane soft vector processor. This configuration is cer-

tainly the most interesting as it differs the most from the general purpose and improves

performance-per-area by 35.6%. The viterb configuration has 2 banks and is the only

one that benefits from enabling the APB parameter. The selected architecture is similar

to a scalar processor except the vector instructions are issued up to two per cycle across

the two ALUs, one multiplier, and the memory unit. Surprisingly, for this benchmark

this is more efficient in terms of performance-per-area than a 2-lane configuration.

The fbital benchmark achieves 24.6% better performance-per-area than the general

purpose configuration. This is gained largely by the half-sized crossbar and the reduced

vector state from the decreased MVL. Further area savings is gained by disabling chaining

in this configuration. The filt3x3 benchmark selects the largest configuration with 4

banks, MVL=512 and 16 homogeneous lanes achieving 7% improved performance-per-area

over the general purpose. The benchmarks with little or no multiply operations are seen

to employ heterogeneous lanes reducing the number of lanes with multipliers. This is

seen in conven, rgbcmyk, and ip checksum.

With the exception of viterb the benchmarks are characteristically similar: streaming-

Chapter 7. Expanding and Exploring the VESPA Design Space 116

oriented across a large data set. With greater benchmark diversity we expect the improve-

ments in selecting a per-application configuration to be significantly higher. Nonetheless,

these improvements highlight the value in matching the soft vector processor architecture

to the application.

7.4 Eliminating Functionality

All architectural parameters explored so far traded area and performance while preserving

functionality. But if a soft processor need only execute one application, or the FPGA can

be reconfigured between runs of different applications, one can create a highly-customized

soft processor with only the functionality needed by the current application. In this

section we target and automatically eliminate two key general purpose overheads: (i) the

datapath width, since many applications do not require full 32-bit processing (we refer

to this customization as width reduction); and (ii) the hardware support for instructions

which do not exist in the application (we refer to this as subsetting or instruction set

subsetting). We begin by analyzing the opportunity for customizing along these two

axes. Note that both customizations reduce area without altering the cycle-behaviour of

the vector processor.

7.4.1 Hardware Elimination Opportunities

The effectiveness of width reduction and instruction set subsetting are very application-

dependent. Width reduction is effective when applications use less than the full 32-

bit lane-width. Subsetting is effective if applications use only few vector instructions.

Before implementing these customizations we predict their effectiveness by analyzing our

benchmarks.

For width reduction, we inspect the source code and determine the maximum-sized

vector element needed for each benchmark. This is done conservatively according to

the variable types used in the C code and is then verified by executing the benchmark

Chapter 7. Expanding and Exploring the VESPA Design Space 117

Table 7.5: Hardware elimination opportunites across all benchmarks.

Largest Data Percent of Supported
Benchmark Type Size VIRAM ISA used
autcor 32 bits 9.6%
conven 1 bit 5.9%
fbital 16 bits 14.1%
viterb 16 bits 13.3%

rgbcmyk 8 bits 5.9%
rgbyiq 16 bits 8.1%

ip checksum 32 bits 8.1%
imgblend 8 bits 7.4%
filt3x3 8 bits 7.4%

in hardware on a VESPA configuration with reduced width. More aggressive width

reduction can consider the data set and determine for example that despite using a 16-

bit data type, the application requires only 11 bits. The BitValue compiler is an example

of such a system [11]. In general we do not perform this aggressive customization except

for the case of conven which by inspection uses only 1-bit data elements and provides

a best-case width-reduction result.

Table 7.5 shows the largest data type size used by each benchmark in the middle col-

umn. All benchmarks except autcor and ip checksum use less than 32-bit data types

hence providing ample opportunity for width reduction in the vector lanes. Three of the

benchmarks, rgbcmyk, imgblend and filt3x3 use only 8-bit data types, while con-

ven uses only 1-bit binary values. These four benchmarks present the most opportunity

for area savings through width reduction.

Table 7.5 shows the percentage of the total supported vector instruction set used

by each benchmark. These values were determined by extracting the number of unique

vector instructions that exist in a binary and dividing by the total number of vector

instructions VESPA supports. Less than 10% of the vector instruction set is used in all

benchmarks except for fbital and viterb. For these two benchmarks 14.1% and 13.3%

of the vector instruction set is used respectively. With all benchmarks using less than

15%, the opportunity for subsetting appears promising. These usages may not correlate

Chapter 7. Expanding and Exploring the VESPA Design Space 118

with the area savings achieved through subsetting since eliminating instruction variants

may remove some multiplexer paths, but larger savings are achieved when whole func-

tional units are removed. Because of this, the specific instructions used by the application

can have a big impact on the area savings.

Overall, the values in the table motivate the pursuit of both of these customization

techniques. Note that no benchmark was modified to aid or exaggerate the impact of

these techniques. Certainly more aggressive customization can re-code benchmarks to

use reduced widths and fewer instruction types, but our results are based on unmodified

original versions of our benchmarks.

7.4.2 Impact of Vector Datapath Width Reduction (W)

The width of each lane can be modified by simply changing the W parameter in the VESPA

Verilog code which will automatically implement the corresponding width-reduced vector

coprocessor. Although a 1-bit datapath can, with some hardware overhead, continue to

support 32-bit values, VESPA does not insert this bit-serialization hardware overhead.

Therefore a soft vector processor with lane width W will only correctly execute benchmarks

if their computations do not exceed W bits. The area of a conventional hard vector

processor cannot be reduced once it is fabricated, so designers opt instead to dynamically

(with some area overhead) reclaim any unused vector lane datapath width to emulate an

increased number of lanes, hence gaining performance. Our current benchmarks typically

operate on a single data width, making support for dynamically configuring vector lane

width and number of lanes uninteresting—however for a different set of applications this

could be motivated.

Figure 7.13 shows the effect of width reduction on a 16-lane VESPA with full memory

crossbar and 16KB data cache with 64B cache line size. Starting from a 1-bit vector lane

width we double the width until reaching the full 32-bit configuration. The area is

reduced to almost one-quarter in the 1-bit configuration with further reduction limited

due to the control logic, vector state, and address generation which are unaffected by

Chapter 7. Expanding and Exploring the VESPA Design Space 119

0.27
0.32

0.46

0.67

0.76

1.00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-bit 2-bit 4-bit 8-bit 16-bit 32-bit

N
o
rm
a
li
ze
d
 A
re
a

Vector Lane Width

Figure 7.13: Area of vector coprocessors with different lane widths normalized against the full
32-bit configuration. All configurations have 16 lanes with full memory crossbar and 16KB data
cache with 64B cache lines.

Table 7.6: Area after width reduction across benchmarks normalized to 32-bit width.

Largest Data Normalized
Benchmark Type Size Area
autcor 32 bits 1.00
conven 1 bit 0.27
fbital 16 bits 0.76
viterb 16 bits 0.76

rgbcmyk 8 bits 0.67
rgbyiq 16 bits 0.76

ip checksum 32 bits 1.00
imgblend 8 bits 0.67
filt3x3 8 bits 0.67

GEOMEAN 0.69

width reductions. A 2-bit width saves 68% area and is only slightly larger than the 1-bit

configuration. Substantial area savings is possible with wider widths as well: a one-byte

or 8-bit width eliminates 33% area, while a 16-bit width saves 24% of the area.

Table 7.6 lists the normalized area for each benchmark determined by matching the

benchmark to a given width-reduced VESPA using Table 7.5. On average the area is

reduced by 31% across our benchmarks including the two benchmarks which require 32-

bit vector lane widths. These area savings decrease the area cost associated with each lane

enabling low-cost lane scaling at the expense of reduced general purpose functionality.

Chapter 7. Expanding and Exploring the VESPA Design Space 120

1.00

0.58

0.70 0.71

0.82

0.43

0.81 0.81
0.85 0.87

0.72

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm
a
li
ze
d
 A
re
a

Figure 7.14: Area of the vector coprocessor after instruction set subsetting which eliminates
hardware support for unused instructions. All configurations have 16 lanes with full memory
crossbar and 16KB data cache with 64B cache lines. All area measurements are relative to the
full un-subsetted VESPA.

7.4.3 Impact of Instruction Set Subsetting

In VESPA one can disable hardware support for any unused instructions by simply

changing the opcode of a given instruction to the Verilog unknown value x. Doing so

automatically eliminates control logic and datapath hardware for those instructions as

discussed in Appendix C. If all the instructions that use a specific functional unit is re-

moved, the whole functional unit is eliminated from all vector lanes. In the extreme case,

disabling all vector instructions eliminates the entire vector coprocessor unit. To perform

the reduction we developed a tool that parses an application binary and automatically

disables unused instructions using the method described above. This is a conservative

reduction since it depends on the compilers ability to remove dead code and is indepen-

dent of the data set. In some cases a user may want to support only a specific path

through their code, in which case a trace of the benchmark can reveal which instructions

are never executed and can be disabled.

Figure 7.14 shows the area of the resulting subsetted vector coprocessors for each

benchmark using a base VESPA configuration with 16 lanes, full memory crossbar, 16KB

data cache, and 64B cache lines. Up to 57% of the area is reduced for ip checksum which

Chapter 7. Expanding and Exploring the VESPA Design Space 121

1.00

0
.
2
7

0
.
6
7 0

.
7
6

1.00

0
.
6
7

0
.
6
7 0

.
7
6

0
.
7
6

0
.
6
9

0.58

0
.
7
0

0
.
7
1 0

.
8
2

0
.
4
3

0
.
8
1

0
.
8
1

0
.
8
5

0
.
8
7

0
.
7
2

0
.
2
2

0
.
5
8 0

.
6
8

0
.
4
3

0
.
5
8

0
.
5
8 0

.
6
9

0
.
7
0

0
.
5
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm
a
li
ze
d
 A
re
a

Width Reduction

Instruction Set Subsetting

Instruction Set Subsetting + Width Reduction

Figure 7.15: Area of the vector coprocessor after eliminating both unused lane-width and
hardware support for unused instructions. All configurations have 16 lanes with full memory
crossbar and 16KB data cache with 64B cache lines. All area measurements are relative to the
full un-customized VESPA.

requires no multiplier functional unit and no support for stores which eliminates part of

the memory crossbar. Similarly autcor has no vector store instructions resulting in the

second largest savings of 42% area despite using all functional units. The benchmarks

conven and rgbcmyk can eliminate the multiplier only resulting in 30% area savings

while the remaining benchmarks cannot eliminate any whole functional unit. In those

cases removing multiplexer inputs and support for instruction variations results in savings

between 15-20% area. Across all our benchmarks a geometric mean of 28% area savings

is achieved.

7.4.4 Impact of Combining Width Reduction and Instruction Set Subsetting

We can additionally customize both the vector width and the supported instruction set of

VESPA for a given application, thereby creating highly area-reduced VESPA processors

with identical performance to a full VESPA processor. Since these customizations over-

lap, we expect that the savings will not be perfectly additive: for example, the savings

from reducing the width of a hardware adder from 32-bits to 8-bits will disappear if that

adder is eliminated by instruction set subsetting.

Figure 7.15 shows the area savings of combining both the width reduction and the

Chapter 7. Expanding and Exploring the VESPA Design Space 122

1.08
1.05 1.05 1.05 1.13

1.06
1.06

1.03 1.03
1.06

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm
a
li
ze
d
 C
lo
c
k
 F
re
q
u
e
n
c
y

Figure 7.16: Normalized clock frequency of VESPA after eliminating both unused lane-width
and hardware support for unused instructions. All configurations have 16 lanes with full memory
crossbar and 16KB data cache with 64B cache lines. All clock frequency measurements are
relative to the full un-customized VESPA.

instruction set subsetting. For comparison, on the same figure are the individual results

from width reduction and instruction set subsetting. The conven benchmark can have

78% of the VESPA vector coprocessor area eliminated through subsetting and reducing

the datapath width to 1 bit. Except for the cases where width-reduction is not possible,

the combined approach provides additional area savings over either technique alone.

Compared to the average 31% from width reduction and 28% from subsetting, combining

the two produces average area savings of 47%. This is an enormous overall area savings,

allowing FPGA designers to scale their soft vector processors to 16 lanes with almost

half the area cost of a full general-purpose VESPA.

Performing either of these hardware elimination customizations often has the benefi-

cial side-effect of raising the clock frequency. We measure the impact on clock frequency

after applying both instruction set subsetting and width reduction on the same 16-lane

VESPA which has a clock frequency of 117 MHz and has full memory crossbar and 16KB

data cache with 64B line size. Figure 7.16 depicts the clock frequency gains achieved for

that VESPA customized to each application. As expected, the benchmarks which enabled

the most area reduction also achieved the highest clock frequency gains. ip checksum

achieves a 13% clock frequency gain and autcor achieves an 8% gain. The remaining

Chapter 7. Expanding and Exploring the VESPA Design Space 123

benchmarks experience between 3% and 6% clock frequency improvements for an overall

average of 6% faster clock than without subsetting and width reduction.

7.5 Summary

The reprogrammable fabric of FPGAs allows designers to choose an exact-fit processor

solution. In the case of soft vector processors the most powerful parameter is the number

of vector lanes which can be chosen depending on the amount of data level parallelism in

an application. But this decision can also be influenced by other architectural parameters

presented in this chapter which can change the area costs and speed improvements of

adding more lanes.

We implemented heterogeneous lanes allowing the designer to reduce the number of

lanes which support multiplication, as well as the number of lanes connected to the

memory crossbar. With this ability, a designer can conserve FPGA multiply-accumulate

blocks for applications with few multiplication and shift operations, and also reduce the

size of the memory crossbar for applications with low demand of the memory system.

An FPGA-specific implementation of chaining was added to VESPA without requiring

the large many-ported register files typically used. By interleaving across register file

banks chaining can dispatch as many instructions as there are banks. We scale the banks

up to 4 and observe significant performance improvements over no chaining. In addition

by replicating the ALU within each lane we increase the likelihood of dispatching multiple

vector instructions hence further increasing performance albeit at a substantial area cost.

The resulting design space of VESPA was explored after pruning it to 768 useful

design points. The design space spanned 28x in area and 24x in cycle count (18x in

wall clock time). Using VESPA’s many architectural parameters this broad space was

effectively filled in allowing precise selection of the desired area/performance. Also,

significant improvements were observed when selecting a per-application configuration

over the fastest or best performance-per-area over all our benchmarks, despite the similar

Chapter 7. Expanding and Exploring the VESPA Design Space 124

characteristics in these benchmarks.

Finally, we examined the area savings in removing unneeded datapath width for

benchmarks that do not require full 32-bit processing. Lanes were shrunk to as small

as 1-bit achieving a size almost one-fourth the original vector coprocessor area. We also

implemented and evaluated our infrastructure for automatically parsing an application

binary and removing all control and datapath hardware for vector instructions that do not

appear in the binary. In the best case this instruction set subsetting can eliminate more

than half the vector coprocessor area. Combining both techniques yields area savings as

high as 78% and on average 47%.

Chapter 8

Soft Vector Processors vs Manual

FPGA Hardware Design

The aim of this thesis is to enable easier creation of computation engines using software

development instead of through more difficult hardware design. This is done by offering

FPGA designers the option of scaling the performance of data parallel computations

using a soft vector processor. The previous chapter showed that a broad space of VESPA

configurations exists, but deciding on any of these configurations intelligently requires

analysis of the costs and benefits of using a soft vector processor instead of manually

designing FPGA hardware. While it is difficult to measure the ease of use benefit, it

is possible to quantify the concrete aspects of performance and area. In this chapter

we answer the question of how does the area and performance of a soft vector processor

compare to hardware? With this information an FPGA designer can more accurately

assess the costs and benefits of either implementation, including a scalar soft processor

implementation, and select the implementation that best meets the needs of the system.

Moreover, this data enables us to benchmark the progress of this research in having

vector-extended soft processors compete with manual hardware design.

Previous works [27, 58] studied the benefits of FPGA hardware versus hard proces-

sors without considering soft processors. Soft vector processors were compared against

125

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 126

automatically generated hardware from the Altera C2H behavioural synthesis tool and

found to achieve better scalability for 16-way parallelism and beyond [75]. Our compar-

ison differs by comparing soft vector processors to custom-made FPGA hardware which

is the most likely alternative to a soft processor implementation.

We compare the area and performance of the following three implementations of

our benchmarks created via different design entry methods: (i) out-of-the-box C code

executed on the MIPS-based SPREE scalar soft processor; (ii) hand-vectorized assembly

language executed on many variations of our VESPA soft vector processor; and (iii)

hardware designed manually in Verilog at the register transfer level. This comparison

was initially evaluated on the TM4 platform [73] but in this thesis we use the newer DE3

board. While our DE3-based infrastructure is well equipped for evaluating the first scalar

and vector processors, evaluating hardware requires manual design of hardware circuits

from a C benchmark. To design and evaluate such a circuit with the same realism used

to evaluate the processors would require many weeks or months for each benchmark. We

hence simplify the hardware design process as described in the next section.

8.1 Designing Custom Hardware Circuits

We created custom FPGA hardware by manually converting each benchmark into a

Verilog hardware circuit. Two factors heavily influence the implementation of this hard-

ware circuit: (i) the assumed system-level design constraints require certain levels of

performance as well as communication with specific peripherals; and (ii) the idealized

assumptions we made to simplify and reduce the design time for each hardware circuit.

Both of these are described below.

8.1.1 System-Level Design Constraints

For any given application, there are many hardware design variations ranging from area-

optimized 1-bit datapaths to extremely parallel high-performance implementations. In

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 127

this work we focus on performance and implement the latter. Similarly, the peripherals

used in the design will greatly influence its implementation. For example, a circuit

that receives its data from on-chip SRAM may be designed significantly different than

a circuit relying on serial RS-232 communication for its data. To fairly compare the

hardware circuits with the processor implementations, we use similar memories for the

data storage in both. Specifically we apply the following constraints on the hardware

system to match those in the processors:

1. Memory Width – There is only one 128-bit wide path to memory, hence we

assume a typical 64-pin (128 bits per clock) double data rate DRAM module.

2. Memory Usage – Input/output data starts/ends in memory. Internal storage can

be used for any partial or temporary results, but the final result must be written

to memory.

3. No Value Optimizations – All input data is assumed to be unknown at design-

time—i.e., we perform no value-specific or value-range-specific optimizations.

We expect that without these constraints, the performance of the hardware circuits

could be increased more than that of the processors. However to experimentally eval-

uate this would require re-engineering of the SPREE and VESPA soft processors and

modification of the benchmarks. To avoid this added effort we apply these constraints

to the hardware and as a result constrain the hardware design with conservative design

assumptions.

8.1.2 Simplifying Hardware Design Optimistically

The design of custom FPGA hardware requires months of effort to plan, implement, and

verify. Indeed, the complications associated with this effort motivate the introduction

of soft vector processors to reduce the amount of hardware design required in a digital

system. Rather than embracing these complications and pursuing full and complete hard-

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 128

ware implementations for each benchmark, we make the following optimistic assumptions

to make this comparison measurement tractable in the time available.

1. Benchmark Selection – Hardware implementations were designed for six out of

the nine benchmarks—fbital, viterb, and filt3x3 were excluded because of

their relative complexity which would have resulted in extremely difficult hardware

implementations. The six remaining benchmarks are very streaming-oriented re-

sulting in simpler datapath designs. A key side-effect of this simplification is that

these benchmarks can readily take advantage of parallel hardware circuits. This

makes the simplification optimistic for the hardware since benchmarks with more

complicated control would perform more similar to a processor.

2. Datapath Only – Any control logic or hardware for sending requests to/from the

memory controller is assumed to have negligible size and ideal performance in both

clock frequency and cycle count. In other words, only the datapath of the circuits

are designed assuming input and output data streams are already entering and

exiting the circuit. This assumption is optimistic in general but more reasonable

for our benchmarks which access mostly contiguous arrays which can be tracked

with a single counter and streamed at the highest memory bandwidth.

3. No Datapath Stalls – The datapath is fully pipelined, requires no stalls, and

assumes a continuous flow of data, and hence does not implement stalling/buffering

logic needed to handle data flow interruptions caused by DRAM refreshing for

example. This is also optimistic but in the context of our streaming benchmarks

with very predictable memory accesses, many data stalls can be avoided or hidden.

4. Memory Alignment – Data is assumed to be aligned in memory to the near-

est 128-bit boundary, eliminating the need for shifting and alignment logic. This

provides a significant area advantage for some benchmarks which would otherwise

require a memory crossbar similar to that in VESPA.

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 129

5. Memory Speed – We do not let the speed of the memory limit the performance of

the hardware circuits. In other words, we allow the 128-bit words to be transmitted

at the full clock rate of the hardware circuit despite the fact that this clock rate is

faster than the DDR2 DIMM used on the DE3 platform for the soft processors.

In summary, we build only the datapath of the circuit for the most streaming-oriented

benchmarks under optimistic assumptions about the control logic and transfer of data.

The memory being modelled is effectively an on-chip memory with a single 128-bit wide

port. This assumption is a valid approximation since the latency of an off-chip mem-

ory could be amortized over the large contiguous access patterns in the benchmarks.

Nonetheless, our idealizations imply that 100% of the memory bandwidth is utilized

by the hardware circuit, while our consultations with industry revealed that typical

FPGA system designers have difficulty achieving 50% utilization [9]. Hence, our sim-

ple benchmarks and simplifying assumptions have significantly idealized our hardware

results meaning this study can be interpreted as an upper-bound on the advantages of

custom hardware circuits.

As an example, consider the ip checksum benchmark which simply sums all the

16-bit elements in an array. The hardware circuit used to implement this benchmark is

shown in Figure 8.1. Since the array is stored contiguously in memory we can assume

8 16-bit words arrive from the 128-bit memory every clock cycle. Because addition is

commutative we can separately accumulate the 8 words each in their own register. After

the entire array has been processed we can reduce the 8 sums via an adder tree into a

single 32-bit scalar sum. The circuit shown is easy to build since it neglects the cycle-

to-cycle behaviour of control logic and data arrival, yet it captures the most significant

part of the overall area.

Although not quantified, we can qualitatively discuss the components missing from

the circuit and approximate their contribution to overall area. Missing from the figure is

a counter which stores and increments the address currently being accessed in the array.

Similarly absent is another counter for tracking the total progress and signalling when

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 130

16

16

16

16

16

16

16

16

128 32

Figure 8.1: Hardware circuit implemented for ip checksum.

the final accumulation is valid. Also not included are enable signals for disabling the

accumulation of data not part of the array—for example the first word of the array may

not be aligned to the boundary of the 128-bit DRAM word. This disabling logic would be

very small, especially compared to the vector memory crossbar required to map words to

vector lanes. In total the area of these missing components would still be small compared

to the 15 adders in the circuit.

8.2 Evaluating Hardware Circuits

While the evaluation of the scalar and vector soft processors is identical to that described

in Chapter 3 (with the area excluding the memory controller and host communication

hardware), the evaluation of the hardware circuits requires a slightly modified method-

ology due to their simplified and incomplete nature. For example, with an incomplete

hardware design, performance can only be modelled rather than evaluated in a real sys-

tem as is done for VESPA. The details of the measurement methodology used and the

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 131

performance modelling are discussed below.

8.2.1 Area Measurement

The hardware circuits are synthesized for the Stratix III FPGA on our DE3 platform

using the same method for measuring actual silicon area of the design in equivalent ALMs

as discussed in Chapter 3. Only the datapath is synthesized assuming, as mentioned

previously, that control logic and memory request logic for communicating with the

memory can be implemented with negligible area.

8.2.2 Clock Frequency Measurement

The clock frequency of the hardware circuits is measured through a full synthesis onto

the FPGA over multiple seeds in the manner described in Chapter 3.

8.2.3 Cycle Count Measurement

Cycle count performance is modelled by considering the transfer of the data set through

the pipelined datapath, which performs the computation as the data flows through the

pipeline. As previously mentioned it is assumed that 128 bits are transfered on every

clock cycle at the clock speed of the hardware circuit which is faster than the DIMM

on the DE3. Therefore, to transfer the 40960 bytes of input data for the ip checksum

benchmark requires 2560 clock cycles. Then, to transfer the 40 bytes of output data

requires 3 cycles. The 4-cycle latency through the pipeline is also added to the cycle count

yielding a total of 2560 + 3 + 4 = 2567 clock cycles for the ip checksum benchmark.

In general the equation for calculating cycle performance of a streaming benchmark is

given by

Ncycles = InputBytes/16 + OutputBytes/16 + pipeline latency (8.1)

where InputBytes are the number of bytes in the input data set, OutputBytes are the

number of bytes in the output data set, and pipeline latency is the number of stages in

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 132

the pipeline. All computations are performed in a pipelined fashion in parallel with the

transfer of data, which is measured in the first two terms in the equation. For example,

the circuit for ip checksum is computing the checksum across some data values at the

same time that later data is being fetched into the datapath. As discussed earlier, we

assume memory latency can be hidden because of the sequential memory accesses in our

benchmarks. As a consequence, this makes our results equivalent to being executed using

128-bit wide on-chip block RAMs for memory.

8.2.4 Area-Delay Product

For a given digital system, there may be a heavier emphasis on area than performance, or

vice-versa. However, it is important to have an understanding of the overall performance-

per-area of candidate designs motivating us to measure area-delay product as is tradition-

ally done for digital circuits. We use the silicon area measured in equivalent ALMs for

area and the wall-clock-time of benchmark execution as the delay. The wall-clock-time

is measured by multiplying the cycle counts with the minimum clock period reported by

the CAD tools.

8.3 Implementing Hardware Circuits

The six selected benchmarks were implemented in Verilog under the constraints and

optimistic simplifications discussed earlier. Each circuit was tested in simulation using

test vectors to ensure the correct compute elements exist in the datapath.

Table 8.1 lists the FPGA resources used, clock rates, and cycle counts for each bench-

mark circuit. The number of ALMs is relatively small compared to VESPA, especially for

conven and ip checksum. Some of this is due to our assumptions about the negligible

area consumed by control logic and memory request logic.

The table also shows the extraordinarily high clock frequencies achieved by the hard-

ware circuits. Clock rates range between 274-476 MHz, all faster than the 266 MHz of

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 133

Table 8.1: Hardware circuit area and performance.
DSPs Clock

Benchmark ALMs (18-bit) M9Ks (MHz) Cycles
autcor 592 32 1 323 1057
conven 46 0 0 476 226

rgbcmyk 527 0 0 447 237784
rgbyiq 706 108 0 274 144741

ip checksum 158 0 0 457 2567
imgblend 302 32 0 443 14414

our DDR2 DIMM on the DE3 proving that the hardware is further advantaged by having

memory bandwidth modelled faster than what is available to the scalar and vector soft

processors on the DE3 platform. These clock frequencies are significantly faster than

what we expect in a typical system—as a point of comparison the Altera Nios II soft

processor can be clocked at only 250 MHz. Nonetheless we use these measured clock

frequencies in our analysis hence presenting an upper bound on the performance of the

hardware circuits.

8.4 Comparing to Hardware

Once the area, cycle performance, and clock frequency of each hardware circuit is mea-

sured, we can compare them against that achieved in software using either a scalar soft

processor or a soft vector processor. We measure the area and wall clock time for the

scalar SPREE core described in Chapter 5, Section 5.3.1, and across the pareto optimal

VESPA designs from Chapter 7, Section 7.3. We compare how much larger these imple-

mentations are relative to the hardware, referred to as the hardware area advantage, and

how much slower they are in terms of wall clock time, referred to as the hardware speed

advantage.

8.4.1 Software vs Hardware: Area

Table 8.2 shows the hardware area advantage over the scalar SPREE soft processor

and the pareto optimal VESPA configurations. This is measured using the equation in

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 134

Table 8.2: Area advantage for hardware over various processors
Processor Clock Area (Aprocessor/Ahw)

DD DW DPV APB B MVL L M X autcor conven rgb- rgb- ip ch- img- GEO
(KB) (B) (MHz) cmyk yiq ecksum blend MEAN

8 16 0 Scalar 143 2.9 69.5 6.1 1.4 20.2 4.3 7.3
8 16 0 0 1 4 1 1 1 134 4.6 109.5 9.6 2.3 31.9 6.7 11.5
8 16 0 0 1 8 2 1 1 132 5.2 122.1 10.7 2.5 35.5 7.5 12.9
8 16 0 0 1 8 2 1 2 132 5.3 124.0 10.8 2.6 36.1 7.6 13.1
8 16 0 0 1 8 2 2 2 131 5.4 127.1 11.1 2.6 37.0 7.8 13.4
8 16 0 0 2 8 2 2 1 127 5.9 139.3 12.2 2.9 40.6 8.5 14.7
8 16 0 0 2 8 2 2 2 125 6.0 141.1 12.3 2.9 41.1 8.7 14.9
8 16 0 0 1 16 4 2 2 129 6.3 148.9 13.0 3.1 43.3 9.1 15.7
8 16 0 0 1 16 4 2 4 127 6.5 152.2 13.3 3.2 44.3 9.3 16.0
8 16 0 0 1 16 4 4 2 128 6.5 152.7 13.3 3.2 44.5 9.4 16.1
8 16 0 0 1 16 4 4 4 128 6.6 156.8 13.7 3.3 45.7 9.6 16.5
8 16 0 0 2 16 4 4 2 126 7.4 174.9 15.3 3.6 50.9 10.7 18.4
8 16 0 0 1 128 4 4 4 125 7.7 181.9 15.9 3.8 53.0 11.2 19.2
8 16 0 0 2 16 4 4 4 122 7.7 182.7 16.0 3.8 53.2 11.2 19.3
8 16 0 0 2 128 4 4 2 123 8.1 191.7 16.7 4.0 55.8 11.8 20.2
32 64 0 0 1 16 4 2 4 129 8.5 199.6 17.4 4.1 58.1 12.2 21.0
32 64 8VL 0 1 16 4 2 4 129 8.5 199.8 17.4 4.1 58.2 12.3 21.1
8 16 0 0 1 32 8 4 4 123 8.5 199.8 17.4 4.1 58.2 12.3 21.1
8 16 0 0 2 128 4 4 4 121 8.5 199.9 17.4 4.1 58.2 12.3 21.1
8 16 0 0 1 32 8 8 4 124 8.8 207.8 18.1 4.3 60.5 12.7 21.9
32 64 7 0 1 16 4 4 2 128 8.9 211.0 18.4 4.4 61.4 12.9 22.2
32 64 7 0 1 16 4 4 4 128 9.2 217.8 19.0 4.5 63.4 13.4 22.9
32 64 7 0 2 16 4 4 2 124 9.9 234.3 20.5 4.9 68.2 14.4 24.7
32 64 7 0 2 16 4 4 4 121 10.2 241.3 21.1 5.0 70.2 14.8 25.4
32 64 7 0 2 128 4 4 2 123 10.7 251.9 22.0 5.2 73.3 15.4 26.5
32 64 8VL 0 2 128 4 4 2 124 10.7 253.5 22.1 5.3 73.8 15.5 26.7
32 64 7 0 2 128 4 4 4 121 10.9 258.0 22.5 5.4 75.1 15.8 27.2
32 64 8VL 0 2 128 4 4 4 121 11.1 261.0 22.8 5.4 76.0 16.0 27.5
32 64 8VL 1 2 128 4 4 4 121 11.6 273.1 23.8 5.7 79.5 16.7 28.8
32 64 8VL 0 1 32 8 8 4 123 12.5 295.6 25.8 6.1 86.1 18.1 31.2
32 64 7 0 1 32 8 8 4 123 12.6 297.8 26.0 6.2 86.7 18.3 31.4
32 64 7 0 1 32 8 8 8 125 12.9 303.4 26.5 6.3 88.3 18.6 32.0
32 64 8VL 0 1 128 8 8 8 124 13.6 321.8 28.1 6.7 93.7 19.7 33.9
32 64 7 0 2 128 8 8 4 117 14.2 334.3 29.2 6.9 97.3 20.5 35.2
32 64 8VL 0 2 128 8 8 4 119 14.3 336.7 29.4 7.0 98.0 20.6 35.5
32 64 7 0 2 128 8 8 8 118 14.7 347.5 30.3 7.2 101.2 21.3 36.6
32 64 8VL 0 2 128 8 8 8 118 15.2 359.6 31.4 7.5 104.7 22.1 37.9
32 64 7 1 2 128 8 8 8 119 16.0 376.6 32.9 7.8 109.6 23.1 39.7
32 64 8VL 1 2 128 8 8 8 119 16.4 385.7 33.7 8.0 112.3 23.7 40.7
32 64 8VL 0 2 128 16 8 8 112 19.9 469.9 41.0 9.7 136.8 28.8 49.5
32 64 8VL 0 1 64 16 16 8 116 20.2 477.1 41.6 9.9 138.9 29.3 50.3
32 64 8VL 0 1 128 16 16 8 114 20.3 479.8 41.9 10.0 139.7 29.4 50.6
32 64 8VL 0 2 128 16 8 16 111 20.9 493.7 43.1 10.2 143.7 30.3 52.0
32 64 8VL 0 1 64 16 16 16 114 21.2 499.5 43.6 10.4 145.4 30.6 52.6
32 64 8VL 0 1 128 16 16 16 115 21.4 504.1 44.0 10.5 146.8 30.9 53.1
32 64 8VL 0 2 128 16 16 8 109 23.8 562.0 49.1 11.7 163.6 34.5 59.2
32 64 7 0 2 128 16 16 16 111 24.9 587.7 51.3 12.2 171.1 36.0 61.9
32 64 7 1 2 128 16 16 16 111 27.1 640.3 55.9 13.3 186.4 39.3 67.5
32 64 8VL 1 2 128 16 16 16 111 27.7 653.2 57.0 13.5 190.2 40.1 68.8
32 64 7 0 1 128 32 32 32 96 36.9 870.9 76.0 18.1 253.6 53.4 91.8
32 64 8VL 0 2 512 32 16 32 99 38.8 914.6 79.8 19.0 266.3 56.1 96.4
32 64 7 0 1 512 32 32 32 99 39.7 935.7 81.7 19.4 272.4 57.4 98.6
32 64 8VL 0 1 512 32 32 32 99 39.7 935.7 81.7 19.4 272.4 57.4 98.6
32 64 8VL 0 2 128 32 32 32 94 43.0 1014.1 88.5 21.0 295.2 62.2 106.9
32 64 7 0 2 128 32 32 32 91 43.2 1019.0 88.9 21.1 296.7 62.5 107.4
32 64 8VL 0 2 512 32 32 32 92 44.8 1058.0 92.3 21.9 308.0 64.9 111.5
32 64 8VL 1 2 512 32 32 32 96 49.9 1177.2 102.7 24.4 342.7 72.2 124.1

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 135

Table 8.3: Speed advantage for hardware over various processors.
Processor Clock Wall Clock Time (Tprocessor/Thw)

DD DW DPV APB B MVL L M X autcor conven rgb- rgb- ip ch- img- GEO
(KB) (B) (MHz) cmyk yiq ecksum blend MEAN

8 16 0 Scalar 143 491.4 2140.3 312.0 621.3 197.6 378.1 497.9
8 16 0 0 1 4 1 1 1 134 287.0 277.9 233.8 222.4 135.3 259.7 229.4
8 16 0 0 1 8 2 1 1 132 257.8 204.5 173.1 177.3 95.5 218.9 179.8
8 16 0 0 1 8 2 1 2 132 220.6 205.3 173.4 144.4 95.3 193.2 166.0
8 16 0 0 1 8 2 2 2 131 151.6 158.5 141.7 131.6 96.0 159.6 137.8
8 16 0 0 2 8 2 2 1 127 165.7 161.8 137.4 128.6 89.3 152.9 136.5
8 16 0 0 2 8 2 2 2 125 149.3 165.3 140.2 111.6 91.1 142.8 130.9
8 16 0 0 1 16 4 2 2 129 134.4 116.6 115.2 118.0 78.8 129.9 113.9
8 16 0 0 1 16 4 2 4 127 117.2 118.4 117.0 102.6 80.0 118.8 108.0
8 16 0 0 1 16 4 4 2 128 102.3 97.5 113.3 107.9 75.1 125.2 102.3
8 16 0 0 1 16 4 4 4 128 82.7 97.4 113.2 90.6 75.0 111.0 94.0
8 16 0 0 2 16 4 4 2 126 89.1 98.6 114.9 91.8 72.7 108.0 94.9
8 16 0 0 1 128 4 4 4 125 81.8 85.5 123.0 93.4 78.5 104.0 93.2
8 16 0 0 2 16 4 4 4 122 81.8 101.8 118.7 81.6 75.1 103.8 92.5
8 16 0 0 2 128 4 4 2 123 81.0 74.2 115.9 91.9 73.0 100.2 88.1
32 64 0 0 1 16 4 2 4 129 115.0 105.2 80.7 74.4 44.9 89.5 81.4
32 64 8VL 0 1 16 4 2 4 129 115.2 103.2 79.5 69.6 42.9 89.7 79.5
8 16 0 0 1 32 8 4 4 123 77.0 80.5 114.8 82.2 73.3 100.9 87.0
8 16 0 0 2 128 4 4 4 121 64.9 75.6 117.9 80.5 74.2 93.8 82.9
8 16 0 0 1 32 8 8 4 124 58.7 67.8 100.4 74.7 72.3 90.8 76.2
32 64 7 0 1 16 4 4 2 128 96.7 73.5 51.0 70.2 26.5 68.6 59.9
32 64 7 0 1 16 4 4 4 128 77.6 73.6 51.1 53.2 26.5 54.9 53.2
32 64 7 0 2 16 4 4 2 124 85.0 75.4 47.8 54.5 23.6 50.7 52.1
32 64 7 0 2 16 4 4 4 121 77.1 77.4 49.1 42.7 24.3 44.8 48.9
32 64 7 0 2 128 4 4 2 123 75.1 50.1 44.8 52.8 22.1 48.1 46.0
32 64 8VL 0 2 128 4 4 2 124 74.1 48.8 44.2 51.8 20.8 47.0 44.8
32 64 7 0 2 128 4 4 4 121 60.1 51.1 45.5 40.2 22.4 41.6 41.7
32 64 8VL 0 2 128 4 4 4 121 60.0 50.3 45.5 39.7 21.4 41.0 41.0
32 64 8VL 1 2 128 4 4 4 121 60.0 49.8 45.2 38.2 21.4 41.0 40.7
32 64 8VL 0 1 32 8 8 4 123 53.4 44.4 30.3 37.9 15.1 40.1 34.4
32 64 7 0 1 32 8 8 4 123 53.4 43.7 29.6 37.9 15.0 36.8 33.6
32 64 7 0 1 32 8 8 8 125 42.8 42.8 29.1 28.5 14.8 29.1 29.4
32 64 8VL 0 1 128 8 8 8 124 41.5 35.7 29.5 28.1 15.2 27.9 28.4
32 64 7 0 2 128 8 8 4 117 43.4 33.1 26.8 29.1 12.8 26.6 26.9
32 64 8VL 0 2 128 8 8 4 119 42.5 32.0 26.0 27.9 12.0 25.5 25.9
32 64 7 0 2 128 8 8 8 118 34.3 32.8 26.5 21.8 12.6 22.6 23.9
32 64 8VL 0 2 128 8 8 8 118 34.3 32.3 26.3 21.3 12.1 22.1 23.4
32 64 7 1 2 128 8 8 8 119 34.2 32.5 26.4 21.0 12.6 22.6 23.7
32 64 8VL 1 2 128 8 8 8 119 34.0 31.8 25.8 20.4 12.1 21.9 23.0
32 64 8VL 0 2 128 16 8 8 112 35.3 32.1 24.8 20.1 11.2 21.1 22.6
32 64 8VL 0 1 64 16 16 8 116 32.1 29.5 18.7 20.9 10.1 20.7 20.7
32 64 8VL 0 1 128 16 16 8 114 31.8 26.4 19.5 22.0 9.9 20.5 20.4
32 64 8VL 0 2 128 16 8 16 111 31.8 32.6 25.0 17.5 11.4 19.8 21.6
32 64 8VL 0 1 64 16 16 16 114 27.7 30.4 19.2 16.6 10.4 17.4 19.1
32 64 8VL 0 1 128 16 16 16 115 26.1 26.1 19.3 17.0 9.8 16.5 18.2
32 64 8VL 0 2 128 16 16 8 109 28.3 26.5 18.2 17.2 8.3 15.8 17.7
32 64 7 0 2 128 16 16 16 111 23.0 26.6 18.2 13.0 9.4 13.9 16.3
32 64 7 1 2 128 16 16 16 111 23.0 26.6 18.0 12.6 9.4 14.8 16.4
32 64 8VL 1 2 128 16 16 16 111 22.9 25.9 17.5 12.9 8.1 13.5 15.7
32 64 7 0 1 128 32 32 32 96 22.0 25.3 15.7 11.9 9.5 12.7 15.2
32 64 8VL 0 2 512 32 16 32 99 23.7 24.2 18.3 11.5 10.6 12.0 15.8
32 64 7 0 1 512 32 32 32 99 21.9 21.2 16.3 12.3 11.4 11.7 15.2
32 64 8VL 0 1 512 32 32 32 99 21.9 21.0 15.6 12.0 10.3 10.6 14.5
32 64 8VL 0 2 128 32 32 32 94 21.9 25.7 18.3 12.5 7.7 10.4 14.7
32 64 7 0 2 128 32 32 32 91 22.6 26.7 16.1 10.4 9.0 11.1 14.7
32 64 8VL 0 2 512 32 32 32 92 20.4 21.6 15.2 10.1 10.0 9.1 13.5
32 64 8VL 1 2 512 32 32 32 96 19.7 21.0 14.5 9.5 9.5 8.8 13.0

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 136

the top row of the table which divides the processor area by the hardware area. The

configurations are sorted by their areas with the smallest area designs at the top of the

table and the largest at the bottom. Since no instruction set subsetting or width reduction

is performed in this section (these customizations will be evaluated in Section 8.5), the

area of the processors are the same for each benchmark, however the area of the hardware

circuit that implements each benchmark varies significantly. The first row shows the

hardware area advantage over the scalar processor varies between 1.4x for the rgbyiq

benchmark and 69.5x for conven which is extremely small in hardware due to its 1-bit

datapath.

The geometrically averaged mean across the benchmark indicates a scalar soft proces-

sor is 7.3x bigger than a hardware circuit on average. The second row shows that adding

minimum support for vector extensions creates a VESPA processor which is 11.5x larger

than hardware. Thus, both processors require significantly more area than a custom-

built hardware circuit. This is partly due to the simplifying assumptions made resulting

in incomplete hardware circuits, but is also due to the general purpose processing capa-

bilities of the processors. Both processors can perform any 32-bit computation on data

organized in any pattern in memory (without requiring alignment). The hardware how-

ever performs only a very specific task, and due to the simplicity in these benchmarks,

this is often a very small task which leads to circuits with small areas. We would expect

more complicated benchmarks to require significantly more area than these six, however

certain overheads are specific to the processors and can be avoided in hardware: the

caches for hiding memory latency, the register file shared by all functional units, and

the instruction fetch and decode logic contribute to additional area not required in the

hardware circuits. These area overheads can be amortized over the many vector lanes as

is the case for the largest VESPA configuration which has 32 lanes and is 124.1x larger

than the hardware circuits. However the lanes themselves contain significant overheads

in supporting a variety of operations and fixed 32-bit precision. Both of these are elimi-

nated in Section 8.5 using the instruction set subsetting and width reduction techniques

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 137

from the previous chapter.

8.4.2 Software vs Hardware: Wall Clock Speed

Table 8.3 shows the wall clock speed advantage of the hardware over the processors.

The slowest processors are at the top of the table and fastest at the bottom. Focusing

on the first row of the table, we observe that the scalar processor executing out-of-the-

box C code performs approximately 500x slower than hardware. The primary cause of

the under-performance is failing to exploit the available data parallelism, except for the

conven benchmark which performs extraordinarily worse in software. This benchmark

performs different array operations depending on the values in a small matrix. Each array

operation requires load and store operations to fetch each array element and write it back

to memory. In hardware the elements are only fetched once and stored internally in flip

flops removing this memory access overhead as well as loop overheads resulting in a 2140x

hardware speedup. The scalar processor is relatively more competitive with the very

simple ip checksum benchmark performing 197.6x slower than hardware. Nonetheless

the speed gap is shown to be very large between the hardware and scalar soft processor.

It is hence not surprising that current commercial soft processors are used predominantly

for system control tasks, while hardware design is necessary for most computational tasks

on an FPGA.

The slowest VESPA configuration is on average 229.4x slower than hardware, while

the fastest configuration can dramatically reduce this performance gap to just 13x as seen

in the last row of Table 8.3. Though this is still a significant performance gap, it makes

a soft vector processor far more likely to be used for implementing a non-critical data

parallel compute task than a scalar soft processor. The performance certainly does not

match that of hardware design, and the area cost is significant as seen in the previous

section, but the ease of programming a soft vector processor versus designing custom

hardware can make a soft vector processor an effective implementation vehicle for data

parallel workloads. Thus, the addition of vector processor extensions to commercial soft

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 138

8.0

16.0

32.0

64.0

128.0

256.0

512.0

4.0 8.0 16.0 32.0 64.0 128.0

H
W
 S
p
e
e
d
 A
d
v
a
n
ta
g
e

HW Area Advantage

Scalar

VESPA

Figure 8.2: Area-performance design space of scalar soft processors and pareto-optimal VESPA
processors normalized against hardware.

processors may well be justified.

Figure 8.2 graphs the area-performance design space of the scalar soft processor and

VESPA configurations listed in the tables. The breadth of VESPA’s design space is

depicted in the figure ranging from 11.5x-124.1x larger than hardware, and 229.4x-13x

slower. This vast design space allows a designer to choose an area/speed tradeoff specific

to their application, but ideally further improvements and customizations (seen in a

subsequent section) will move the configurations closer to the origin and hence improve

the overall competitiveness of soft vector processors versus hardware. In the next section

the gap between the slowest VESPA and the scalar processor is discussed.

8.4.2.1 Analysis of VESPA vs Scalar

Observing the first two rows of Table 8.3, we can compare the scalar processor with a

VESPA processor that has only a single lane and identical cache organization. While

the additional area of the 1-lane VESPA over the scalar is expected (because VESPA

consists of a scalar augmented with vector extensions), the big performance benefit is

not. The hand-vectorized assembly executed on the 1-lane VESPA gains more than twice

the average performance over the scalar out-of-the-box C code on scalar SPREE. There

is no data parallel execution on the single-lane version of VESPA, suggesting that the

performance benefit is gained from a number of other advantages in VESPA:

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 139

1. Amortization of loop control instructions. The loop control instructions are

executed far less often in VESPA than in the scalar.

2. More register storage. The large vector register file can store and manipulate

arrays without having to access the cache or memory.

3. More efficient pipelining. VESPA executes batches of operations with no de-

pendencies, meaning the pipeline can process these without stalling due to hazards.

4. Instruction support. VESPA has direct support for fixed-point operations, pred-

ication, and built-in min/max/absolute instructions from the VIRAM instruction

set.

5. Simultaneous execution across multiple pipelines. In VESPA scalar opera-

tions are executed in the scalar pipeline, vector control operations are executed in

the vector control pipeline, and vector operations in the vector pipeline. All three

of these execute out-of-order with respect to each other.

6. Assembly-level optimization. Manual vectorization in assembly may have lead

to optimizations beyond the C-compiled scalar output from GCC.

Determining the exact contribution of each advantage is beyond the scope of this work.

We instead perform some qualitative analysis: Closer inspection of conven revealed the

cause of the 9x performance boost seen on the single lane VESPA to be the repeated

operations performed on a single array. In VESPA the large vector register file can store

large array chunks and manipulate them without storing and re-reading them from cache

as the scalar processor must. The other benchmarks are less impacted because of their

streaming and low-reuse nature. The loop overhead amortization gained by performing

64 loop iterations (MVL=64) at once significantly impacts benchmarks with small loop

bodies such as autcor, conven, ip checksum, and imgblend. The more powerful

VIRAM instruction set with fixed-point support further reduced the loop bodies of aut-

cor and rgbcmyk. Finally, the disassembled GCC output did not appear significantly

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 140

Table 8.4: Hardware advantages over fastest VESPA.
Iteration Cycles per

Benchmark Clock Parallelism Iteration
autcor 3.4x 0.5x 11.7x
conven 5.0x 0.5x 8.5x

rgbcmyk 4.7x 0.1875x 16.6x
rgbyiq 2.9x 0.1875x 17.8x

ip checksum 4.8x 0.25x 8.0x
imgblend 4.6x 0.5x 3.8x

GEOMEAN 4.1x 0.32x 9.8x

more inefficient than the vectorized assembly for any of the benchmarks, leading us to

infer that manual assembly optimization was not a significant advantage for the VESPA

implementations.

8.4.2.2 Analysis of VESPA vs Hardware

Our goal is to present a compelling case for soft vector processors as an FPGA implemen-

tation medium. The VESPA soft vector processor presented in this thesis was designed

and optimized to meet this goal. Nonetheless further optimization of its architecture is

certainly possible. In this section we more closely analyze the performance gap between

soft vector processors and hardware to steer future optimizations in the architecture of

soft vector processors.

By focussing only on loops we can decompose the reasons for the performance gap

between VESPA and hardware into the following categories: (i) the clock frequency; (ii)

the number of loop iterations executed concurrently called iteration level parallelism; and

(iii) the number of cycles required to execute a single loop iteration. For each of these

components, the hardware advantage over the fastest VESPA configuration (in the last

row of Table 8.3) is shown in Table 8.4. The second column shows the hardware circuits

have clock speeds between 2.9x and 5x faster than the best performing VESPA. Note

this 4.1x average clock advantage is optimistic for the hardware circuits and can also be

reduced through further circuit design effort in VESPA.

The third column of Table 8.4 shows that the iteration level parallelism exploited by

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 141

the hardware is less than or equal to that exploited by VESPA which is 32 for all bench-

marks since there are 32 lanes in the chosen configuration. But in the hardware circuits

we matched the parallelism to the memory bandwidth. For example, the ip checksum

benchmark operates on a stream of 16-bit elements meaning in a given DRAM access

only 8 elements can be retrieved from memory. The circuit is hence designed to have

only 8-way parallelism. If the memory was widened further the hardware circuit would

more effectively utilize the additional bandwidth than VESPA.

The last column gives the speedup of executing a single loop iteration in hardware

over VESPA and is calculated from the measured overall speedups in the last row of

Table 8.3 divided by the clock and iteration parallelism advantages. This component

represents the cycle inefficiencies in the VESPA architecture much of which is inherent

in any processor-style architecture. We list these inefficiencies below:

1. Limited register ports – Only a few data operands can be retrieved in a given

clock cycle. This limits the number of instructions that can be ready for execution.

Hardware design does not require a centralized register file and hence avoids this

limitation.

2. Limited functional units – Only a few operations can be performed in a given

clock cycle. In hardware a designer can instantiate as many dedicated processing

elements as necessary.

3. Limited cache access ports – Only one cache line can be retrieved in a given

clock cycle. In hardware a designer can distribute data into any organization that

meets the needs of an application.

4. Imperfect prefetching – Ideally all memory latency can be hidden.

Overcoming the first two inefficiencies would allow many instruction to be simulta-

neously executed which more closely resembles the spatial computation performed by

the hardware circuit. In addition, perfect prefetching and multiple cache ports would

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 142

512

1024

2048

4096

4.0 8.0 16.0 32.0 64.0 128.0

H
W
 A
re
a
-D
e
la
y
 A
d
v
a
n
ta
g
e

HW Area Advantage

Scalar

VESPA

Figure 8.3: Area-delay product versus area of VESPA processors normalized against hardware.

allow large data sets to be accessed in ideally a single cycle without requiring the data

to be contiguous in memory. In general resolving these limitations leads to high-latency

components (such as register files and caches) and overall low clock frequency architec-

tures due to the scaling limitations of crossbars, wiring, and the centralized register file.

Future architectural improvements should leverage the compiler or the properties of the

application itself to overcome these limitations without degrading clock frequency.

8.4.3 Software vs Hardware: Area-Delay

In addition to the area and performance gaps, it is also important to consider the gap

in area-delay product compared to hardware design. A lower area-delay product implies

the silicon area is being more efficiently used to produce increased performance. By

measuring area-delay we aim to ascertain whether the addition of vector extensions can

result in more efficient silicon usage, and for which configurations this is true.

Figure 8.3 shows the area-delay of the scalar and VESPA processors relative to that

of hardware, averaged across the benchmark set, and plotted against area (for symmetry

with previous graphs). The figure demonstrates that the addition of vector extensions

results in lower (better) area-delay than the scalar processor alone which has a 3650x

larger area-delay than hardware. All pareto-optimal VESPA configurations achieve lower

area-delay product than the scalar. Recall that VESPA includes the same scalar SPREE

processor, thus, despite the addition of the vector coprocessor, the area-delay product

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 143

is improved because of the large performance gains possible on the data-parallel bench-

marks.

Starting from the smallest VESPA configuration in Figure 8.3, area-delay is decreased

as more area (likely in the form of lanes) is added reaching a minimum area-delay that

is 24% of that of the scalar processor. This VESPA configuration with the least area-

delay product is still 874x worse than the hardware but is not the VESPA design with

the highest performance. Instead it is the 8-lane, full memory crossbar vector processor

with 2-way chaining, 32KB cache, 64B line size, and data prefetching of 7 cache lines.

All configurations larger than this increase area-delay causing the “V” shape seen in the

figure. The VESPA configurations with 16 or more lanes consume large amounts of silicon

area without a proportionate increase in average wall clock performance. Reversing

this trend would require higher clock rates and greater memory system performance

to support scaling of this magnitude. Nonetheless these configurations more efficiently

utilize silicon than the scalar processor alone.

8.5 Effect of Subsetting and Width Reduction

The pareto-optimal VESPA configurations previously discussed in this chapter used full

32-bit lanes with support for all vector instructions. This general purpose overhead dis-

advantages VESPA compared to hardware which implements only the functional units

and bit-widths necessary for each application. VESPA can eliminate some of these over-

heads using the automatic instruction set subsetting and width reduction capabilities

presented in Chapter 7, Section 7.4. We apply both techniques to the 56 pareto optimal

configurations creating 312 customized soft vector processors (56 customized configura-

tions for each of the six benchmarks) that can better compete with hardware, specifically

by reducing area and mildly increasing clock frequency.

Figure 8.4 shows the average wall clock performance and area normalized to the hard-

ware for: (i) the scalar soft processor, (ii) the pareto optimal VESPA configurations, and

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 144

8.0

16.0

32.0

64.0

128.0

256.0

512.0

4.0 8.0 16.0 32.0 64.0 128.0

H
W
 S
p
e
e
d
 A
d
v
a
n
ta
g
e

HW Area Advantage

Scalar

VESPA

VESPA+Subset+Width Reduction

Figure 8.4: Area-performance design space of scalar and VESPA processors normalized against
hardware. Also shown are the VESPA processors after applying instruction set subsetting and
width reduction to match the application.

512

1024

2048

4096

4.0 8.0 16.0 32.0 64.0 128.0

H
W
 A
re
a
-D
e
la
y
 A
d
v
a
n
ta
g
e

HW Area Advantage

Scalar

VESPA

VESPA+Subset+Width Reduction

Figure 8.5: Area-delay product of scalar and VESPA processors normalized against hardware.
Also shown are the VESPA processors after applying instruction set subsetting and width
reduction to match the application.

(iii) the same VESPA configurations after applying both subsetting and width reduction.

These customized configurations save between 10-43% area averaged across our bench-

marks and hence are further left than the original pareto optimal VESPA configurations.

For example, the largest configuration was originally 124x larger than hardware, but after

applying subsetting and width reduction is only 77x larger. The area savings is more

pronounced in this large configuration since the area of the scalar processor, instruction

cache, and data cache is amortized. As general purpose overheads are removed, VESPA

moves closer to the origin and hence is more competitive with hardware. The area savings

similarly affects the area-delay product.

Chapter 8. Soft Vector Processors vs Manual FPGA Hardware Design 145

Figure 8.5 shows the area-delay versus area plot of the same three data series. The

subsetting and width reduction customizations reduce area and hence area-delay result-

ing in VESPA configurations which are both further left and down than the original

corresponding pareto optimal configurations. The lowest achievable area-delay is still

620x larger than hardware but is significantly smaller than the 874x area-delay without

subsetting and width reduction. Interestingly, the configuration that achieves the 620x

area-delay is not the same 8-lane VESPA discussed in the last section. Instead it is a

16-lane VESPA with no chaining, full memory crossbar, 32KB data cache, 64B line size,

and prefetching of 8V L cache lines. Thus, by reducing the area cost of adding more lanes

we further enable many-lane configurations to efficiently trade area for performance.

8.6 Summary

This chapter described the manual hardware implementations of our benchmarks which

we used to compare against VESPA and a scalar soft processor without vector extensions.

The scalar was shown to be 500x slower than the hardware while VESPA can reduce this

performance gap to 13x, although the area is increased from 7.3x to 124x. Nonetheless

this area growth results in improved area-delay over the scalar soft processor. In the

best case area-delay is reduced from 3650x to 874x larger than hardware. Furthermore

subsetting and width reduction can be applied to save up to 43% area and reduce area-

delay to 620x compared to hardware. While the gaps between VESPA and hardware

remain large, they have been reduced considerably compared to the scalar soft processor.

Further optimization of the VESPA architecture can continue to close the gap, however

our idealized simplifications for the hardware circuits suggest these measurements likely

upper bounds on the advantages of hardware design. As a result, soft vector processors

are adequately motivated since an FPGA designer is more likely to implement a data

parallel computation in software if hardware can at best outperform the soft processor

by only 13x.

Chapter 9

Conclusions

FPGAs are increasingly used to implement complex digital systems, but the design of

such systems is difficult due to the laborious hardware descriptions necessary for efficient

FPGA implementation. A microprocessor can be used to more easily implement compu-

tation in a high-level programming language. Because of the performance overheads asso-

ciated with a microprocessor it is limited to implementing system control and non-critical

computation tasks. In fact, this microprocessor is often a soft processor implemented in

the reprogrammable fabric hence inheriting both FPGA and processor overheads. The

added overhead results in further inefficiencies in area/performance/power making soft

processors useful for only the least critical computation tasks. Nonetheless, a soft proces-

sor is useful because it preserves the benefits of a single-chip solution without specializing

the FPGA device and increasing its cost. By improving soft processors and offseting these

overheads, more computation can be designed in software and executed on a soft proces-

sor without the long hardware design times and without heavy area/performance/power

penalties.

In this thesis, we improve soft processors by allowing their architecture to respond

to characteristics in the application. Specifically, we focus on the amount of data level

parallelism in an application, which is a property found in many embedded and mul-

timedia applications. We propose that soft vector processors can be used to efficiently

146

Chapter 9. Conclusions 147

scale performance for such applications, hence suggesting that current soft processors be

augmented with vector extensions. This increased performance can be used to justify

the implementation of more critical computation in a soft vector processor rather than

using manual hardware design. As more computation is implemented with relative ease

using sequential programming, we achieve our goal of simplifying FPGA design.

Through experimentation with real benchmarks and real hardware implementations,

we validate the feasibility of soft vector processors hence making a compelling case for

the inclusion of vector extensions in current soft processors. We consider the soft vector

processor successful if it can take advantage of the FPGA reprogrammable fabric to:

(i) scale performance when executing data parallel workloads; (ii) precisely control the

area/performance tradeoff; and (iii) customize the functionality and area overheads to a

given application. To this end we make the following contributions.

9.1 Contributions

1. VESPA Infrastructure – A proof-of-concept soft vector processor called VESPA

was designed and implemented on real FPGA hardware, executing industry-standard

embedded benchmarks from off-chip commodity DRAM. The VESPA processor, its

ported GNU assembler, and instruction set simulator are valuable infrastructure

components for enabling future research into soft vector processors.

2. Performance Scalability – VESPA was shown to scale up to 32 vector lanes

on real FPGA hardware achieving up to 26.5x speedup over 1 lane using data

parallel benchmarks from the industry-standard EEMBC suite. Much of this scaling

was enabled through improvements to the memory system which were necessary to

sustain performance scaling for many vector lanes.

3. Architectural Parameters – To precisely control the area and performance trade-

off, many architectural parameters were implemented for modifying the compute

architecture, interface, and memory system of the soft vector processor. In addition

Chapter 9. Conclusions 148

to the cache configuration and prefetching strategy, VESPA also has a parameter-

ized maximum vector length and number of lanes in the architecture. Beyond these,

VESPA can be customized to the instruction mix allowing the designer to reduce the

number of lanes with multiply functional units and access to the memory crossbar.

Applications with low demand of the multiplier or memory can have area saved

with minimal performance loss. Performance within each lane can be increased

using the parameterized support for vector chaining. VESPA can simultaneously

execute multiple chained vector instructions using a banked register file. All three

VESPA functional units can potentially be active, and the number of ALUs can

also be replicated to enable further scaling.

4. Design Space Exploration – To demonstrate that the architectural variations in a

soft vector processor can be used to gain fine-grain control of area and performance,

we explore the VESPA design space through 768 configurations. VESPA was shown

to finely span a broad 28x range in area, 24x in cycle performance, and 18x in wall

clock time due to the clock frequency degradation caused by instantiating many

lanes. Of these 768 configurations, the 56 configurations found to be pareto optimal

employed different combinations of all VESPA parameters, showing that each of

these architectural variations can be useful to an FPGA designer. Moreover it was

shown that performance-per-area gains can be achieved by choosing a configuration

on a per-application basis.

5. Customizing Functionality – An important feature of soft processors is their

ability to deliver exactly the functionality required by the application without added

overheads. VESPA supports this through automatic subsetting of the instruction

set by parsing the application binary and removing hardware support for unused

instructions. Also, the width of the lanes can be reduced from the 32-bit default

to match the precision required by an application down to 1-bit. The combination

of these two customizations can dramatically reduce the area of the VESPA vector

Chapter 9. Conclusions 149

coprocessor by up to 78%, on average 47%.

6. VESPA Versus Hardware Comparison – Although soft vector processors were

shown to scale performance, span a broad design space, and customize their func-

tionality, an FPGA designer must still consider that better area and performance

can be achieved with manual hardware design. By quantifying the area and per-

formance gaps between soft vector processors and hardware design we can better

inform FPGA designers as well as benchmark the progress made with VESPA. A

scalar soft processor was shown to perform 500x slower than hardware while the

VESPA soft vector processor can reduce this performance gap to 13x. These mea-

surements were made with idealized hardware implementations of our benchmarks

and are hence upper bounds on the advantages of hardware design. In terms of

area-delay product, scalar soft processors are 3650x worse than custom hardware

design, while all pareto-optimal VESPA configurations improve on this. This sug-

gests that the addition of vector extensions to a scalar soft processor makes it more

efficient for data parallel workloads. The most efficient configuration reduces the

3650x area-delay gap to 874x without customization, and to 620x after unneeded

instruction support and datapath width are removed.

In conclusion, the scalable performance provided by soft vector processors allows

FPGA designers to meet their performance constraints without resorting to more difficult

hardware design. This simplifies FPGA design since for a given digital system, the

overal design time is reduced by leveraging the high-level programming languages and

single-step debug infrastructure in software. Efficiency can be gained by performing

fine-grain matching of the architecture of the soft vector processor to the needs of the

application. Additionally, the soft vector processor can also be customized to support

only the functionality required by the application to save area.

Chapter 9. Conclusions 150

9.2 Future Work

Although VESPA was already used to thoroughly investigate the feasibility of soft vector

processors, there are several new avenues of research enabled by this thesis.

Improving the VESPA Architecture – In terms of improving VESPA, the clock

frequency and memory unit can be improved to make it significantly more powerful. The

VESPA clock frequency is in the same range as the scalar SPREE processor it is based

off of, which runs at 143 MHz, while the Altera Nios II can be clocked at 250 MHz on the

same device. A faster clock rate may not translate to proportionally higher performance,

but is necessary for designs with higher system clocks to avoid clock crossing delays.

The memory system is pipelined but currently has one cycle start latency and one cycle

end latency. These delays can be removed by better integrating the memory system

into the VESPA pipeline or implementing a non-blocking cache. Either of these options

would improve the impact of scaling across lanes and vector chaining. Alternatively,

radically different vector architectures such as the CODE [34] vector processor could be

implemented. Simultaneous with high-level architectural modifications, a generator tool

could also consider low-level circuit optimizations which are imperative for supporting

certain configurations. For example, much of the clock frequency degradation in the

32-lane VESPA could be eliminated with more careful re-engineering within the pipeline.

Auto-Vectorizing Compiler Support – The key attribute of VESPA over hard-

ware design is its software interface making it easier to program and debug. In this

thesis manual programming at the assembly-level was necessary to program VESPA. Al-

though this is still very much easier than hardware design, ideally vectorization should be

performed in the compiler from a high-level programming language. Successfully imple-

menting this software toolchain would further promote the adoption of vector processing

extensions in soft processors.

Custom Instructions – VESPA provides several methods of customizing the soft

vector processor by removing hardware, but additional interesting research may be per-

formed by adding new hardware to VESPA. An example of this is the option of adding a

Chapter 9. Conclusions 151

custom functional unit to each lane which simultaneously exploits custom computation

and data parallelism. Another example similar to Yu et. al. [75] is to include lane-local

scratchpad memories, or dedicated instructions for reduction operations. Other more

generically useful operations can be explored and included in VESPA.

Architecture Selection Heuristics – The expansive VESPA design space moti-

vates exciting research into the automatic configuration of a soft vector processor. This

thesis showed that choosing a per-application configuration can result in significantly

more efficient soft vector processors, but searching this configuration space with tens of

thousands of possible configurations is infeasible for FPGA designers under tight time-to-

market constraints. Tools for automatically selecting a configuration given an application

would enable designers to take advantage of the many architectural parameters without

evaluating each configuration. One possible such method is to include in-hardware pro-

filing to extract characteristics of the program behaviour and use heuristics for mapping

these to a vector architecture configuration.

System-Level Tradeoffs – Soft vector processors are effective for data parallel code,

but other processor architectures may be required for better exploiting other code char-

acteristics. The integration of VESPA with a SPREE processor allows it to be included

in the SPREE framework enabling simultaneous exploration of vector and scalar soft pro-

cessor architectures. Such a framework allows system-level optimizations to be performed

to best match the needs of the overall FPGA system.

High Performance Computing – VESPA makes a significant impact for current

embedded FPGA system designers, but FPGAs are also useful in other computing do-

mains such as in high-performance computing (HPC). VESPA can be used in this domain

to provide scientists with a familiar vector processor interface reminiscent of previous vec-

tor supercomputers. The addition of floating point instructions is necessary for many

HPC applications, but most importantly, these systems would need to provide scaling

far beyond 32 lanes. Research in such an architecture and its memory system provides

opportunity for interesting innovations as it likely spans multiple FPGA devices.

Appendix A

Measured Model Parameters

In chapter 4 we modelled a perfect memory system by extrapolating a model based

on a few input parameters measured from the program behaviour. Specifically, the

input parameters were: (i) the frequency of load instruction; (ii) the load miss rates

on various sized direct-mapped data caches with 16B line size; (iii) the frequency of store

instructions; and (iv) the store miss rates on various sized direct-mapped data caches

with 16B line size.

These input parameters were measured across 46 EEMBC benchmarks using the

MINT simulator. MINT was augmented with counters for tracking the number of total

instructions, load instructions, and store instructions. These measurements were used

to calculate the frequency of loads and stores in the instruction stream. MINT was also

augmented with a model of a direct-mapped cache with 16B line size and parameterized

depth. This model was used to count hits and misses in the data cache and derive the

load and store miss rates for caches ranging from 256B to 1MB. The tables below list

the values collected for loads and stores respectively.

152

Appendix A. Measured Model Parameters 153

Table A.1: Load frequency and miss rates across cache size for EEMBC benchmarks.
Load Load Miss Rate for Given Cache Size

Frequency 256B 1KB 4KB 16KB 64KB 256KB 1MB

a2time01 0.036 0.140 0.022 0.003 0.000 0.000 0.000 0.000
aifftr01 0.186 0.867 0.857 0.561 0.029 0.002 0.000 0.000
aifirf01 0.201 0.266 0.158 0.137 0.000 0.000 0.000 0.000
aiifft01 0.189 0.893 0.883 0.578 0.028 0.002 0.000 0.000
basefp01 0.061 0.029 0.010 0.001 0.000 0.000 0.000 0.000
bitmnp01 0.051 0.109 0.052 0.008 0.000 0.000 0.000 0.000
cacheb01 0.206 0.269 0.107 0.053 0.027 0.000 0.000 0.000
canrdr01 0.124 0.430 0.103 0.031 0.001 0.000 0.000 0.000
idctrn01 0.171 0.258 0.075 0.030 0.000 0.000 0.000 0.000
iirflt01 0.040 0.213 0.108 0.071 0.000 0.000 0.000 0.000
matrix01 0.090 0.055 0.034 0.023 0.003 0.000 0.000 0.000
puwmod01 0.151 0.170 0.032 0.002 0.000 0.000 0.000 0.000
rspeed01 0.171 0.106 0.041 0.008 0.000 0.000 0.000 0.000
tblook01 0.099 0.076 0.034 0.003 0.001 0.000 0.000 0.000
bezier01fixed 0.046 0.044 0.036 0.034 0.010 0.000 0.000 0.000
dither01 0.130 0.282 0.200 0.021 0.014 0.002 0.000 0.000
rotate01 0.058 0.513 0.308 0.161 0.030 0.000 0.000 0.000
text01 0.157 0.379 0.156 0.099 0.041 0.000 0.000 0.000
autcor00data 2 0.200 0.063 0.063 0.000 0.000 0.000 0.000 0.000
conven00data 1 0.158 0.067 0.021 0.000 0.000 0.000 0.000 0.000
fbital00data 2 0.061 0.238 0.164 0.031 0.031 0.000 0.000 0.000
fft00data 3 0.130 0.780 0.076 0.002 0.000 0.000 0.000 0.000
viterb00data 2 0.162 0.075 0.018 0.016 0.000 0.000 0.000 0.000
ip pktcheckb4m 0.191 0.146 0.117 0.109 0.107 0.093 0.040 0.012
ip reassembly 0.264 0.383 0.265 0.190 0.156 0.143 0.127 0.074
nat 0.160 0.356 0.256 0.225 0.179 0.177 0.158 0.000
ospfv2 0.187 0.728 0.508 0.063 0.020 0.000 0.000 0.000
qos 0.233 0.240 0.002 0.001 0.000 0.000 0.000 0.000
routelookup 0.244 0.377 0.219 0.044 0.008 0.000 0.000 0.000
tcpbulk 0.133 0.201 0.181 0.120 0.075 0.013 0.000 0.000
tcpjumbo 0.180 0.172 0.169 0.168 0.103 0.022 0.000 0.000
tcpmixed 0.089 0.253 0.178 0.132 0.081 0.022 0.000 0.000
aes 0.143 0.274 0.121 0.000 0.000 0.000 0.000 0.000
cjpegv2data5 0.182 0.362 0.284 0.095 0.030 0.017 0.011 0.008
des 0.204 0.776 0.463 0.004 0.003 0.000 0.000 0.000
djpegv2data6 0.178 0.420 0.259 0.104 0.034 0.015 0.008 0.003
huffde 0.078 0.681 0.521 0.215 0.042 0.014 0.000 0.000
mp2decoddata1 0.169 0.157 0.073 0.033 0.014 0.010 0.009 0.005
mp2enfixdata1 0.222 0.174 0.084 0.010 0.004 0.003 0.003 0.002
mp3playerfixeddata2 0.221 0.373 0.174 0.086 0.023 0.009 0.006 0.006
mp4decodedata4 0.144 0.211 0.096 0.060 0.032 0.026 0.015 0.004
mp4encodedata3 0.217 0.260 0.113 0.037 0.013 0.009 0.006 0.002
rgbcmykv2data5 0.103 0.082 0.067 0.064 0.063 0.063 0.063 0.063
rgbhpgv2data5 0.232 0.115 0.031 0.009 0.007 0.006 0.006 0.001
rgbyiqv2data5 0.038 0.271 0.063 0.063 0.063 0.063 0.063 0.063
rsa 0.115 0.231 0.070 0.013 0.005 0.005 0.000 0.000

AVERAGE 0.148 0.295 0.171 0.081 0.028 0.016 0.011 0.005

Appendix A. Measured Model Parameters 154

Table A.2: Store frequency and miss rates across cache size for EEMBC benchmarks.
Store Store Miss Rate for Given Cache Size

Frequency 256B 1KB 4KB 16KB 64KB 256KB 1MB

a2time01 0.144 0.022 0.006 0.000 0.000 0.000 0.000 0.000
aifftr01 0.135 0.350 0.340 0.225 0.024 0.000 0.000 0.000
aifirf01 0.085 0.093 0.010 0.003 0.000 0.000 0.000 0.000
aiifft01 0.138 0.348 0.338 0.214 0.026 0.000 0.000 0.000
basefp01 0.060 0.041 0.003 0.001 0.000 0.000 0.000 0.000
bitmnp01 0.103 0.053 0.045 0.017 0.000 0.000 0.000 0.000
cacheb01 0.188 0.214 0.116 0.031 0.008 0.000 0.000 0.000
canrdr01 0.163 0.123 0.035 0.007 0.000 0.000 0.000 0.000
idctrn01 0.109 0.125 0.047 0.031 0.000 0.000 0.000 0.000
iirflt01 0.154 0.046 0.004 0.001 0.000 0.000 0.000 0.000
matrix01 0.082 0.034 0.016 0.012 0.001 0.000 0.000 0.000
puwmod01 0.191 0.191 0.044 0.001 0.000 0.000 0.000 0.000
rspeed01 0.144 0.112 0.044 0.002 0.000 0.000 0.000 0.000
tblook01 0.081 0.053 0.020 0.002 0.000 0.000 0.000 0.000
bezier01fixed 0.019 0.016 0.004 0.001 0.000 0.000 0.000 0.000
dither01 0.029 0.801 0.751 0.039 0.018 0.008 0.000 0.000
rotate01 0.032 0.044 0.043 0.042 0.016 0.000 0.000 0.000
text01 0.097 0.219 0.088 0.061 0.039 0.000 0.000 0.000
autcor00data 2 0.000 1.000 1.000 0.941 0.941 0.000 0.000 0.000
conven00data 1 0.076 0.053 0.018 0.000 0.000 0.000 0.000 0.000
fbital00data 2 0.033 0.179 0.088 0.058 0.058 0.000 0.000 0.000
fft00data 3 0.084 0.391 0.031 0.004 0.000 0.000 0.000 0.000
viterb00data 2 0.118 0.086 0.016 0.009 0.000 0.000 0.000 0.000
ip pktcheckb4m 0.075 0.132 0.034 0.008 0.002 0.001 0.000 0.000
ip reassembly 0.177 0.255 0.215 0.188 0.176 0.171 0.158 0.111
nat 0.110 0.266 0.204 0.174 0.169 0.167 0.160 0.000
ospfv2 0.011 0.329 0.260 0.177 0.050 0.001 0.001 0.001
qos 0.089 0.127 0.002 0.001 0.000 0.000 0.000 0.000
routelookup 0.000 0.778 0.778 0.778 0.556 0.556 0.556 0.556
tcpbulk 0.174 0.248 0.242 0.231 0.099 0.052 0.000 0.000
tcpjumbo 0.093 0.249 0.246 0.244 0.163 0.043 0.000 0.000
tcpmixed 0.249 0.247 0.238 0.227 0.068 0.028 0.000 0.000
aes 0.051 0.099 0.049 0.000 0.000 0.000 0.000 0.000
cjpegv2data5 0.101 0.206 0.083 0.065 0.036 0.023 0.012 0.007
des 0.012 0.166 0.140 0.030 0.022 0.000 0.000 0.000
djpegv2data6 0.103 0.272 0.136 0.089 0.050 0.028 0.018 0.014
huffde 0.037 0.342 0.197 0.148 0.126 0.113 0.000 0.000
mp2decoddata1 0.103 0.113 0.053 0.034 0.010 0.007 0.007 0.004
mp2enfixdata1 0.026 0.106 0.050 0.019 0.012 0.011 0.010 0.010
mp3playerfixeddata2 0.048 0.197 0.095 0.062 0.034 0.009 0.007 0.006
mp4decodedata4 0.104 0.191 0.097 0.071 0.051 0.047 0.046 0.015
mp4encodedata3 0.050 0.251 0.119 0.047 0.035 0.032 0.030 0.019
rgbcmykv2data5 0.138 0.076 0.066 0.063 0.063 0.063 0.063 0.063
rgbhpgv2data5 0.023 0.647 0.079 0.068 0.065 0.064 0.064 0.006
rgbyiqv2data5 0.038 0.271 0.062 0.062 0.062 0.062 0.062 0.062
rsa 0.072 0.076 0.035 0.008 0.003 0.003 0.000 0.000

AVERAGE 0.090 0.223 0.143 0.098 0.065 0.032 0.026 0.019

Appendix B

Raw VESPA Data on DE3 Platform

Table B.1: Area of VESPA system without the vector coprocessor. Data cache is 4KB deep
with 16B line size.

Resource Number
Consumed

ALMs 4181
M9Ks 37

M144Ks 0
18-bit DSPs 6

Table B.2: Area of VESPA system without the vector coprocessor. Data cache is 16KB deep
with 64B line size.

Resource Number
Consumed

ALMs 4925
M9Ks 59

M144Ks 0
18-bit DSPs 6

155

Appendix B. Raw VESPA Data on DE3 Platform 156

Table B.3: System area of pareto optimal VESPA configurations.
DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit

DSPs

8KB 16B 0 0 1 4 1 1 1 5556 46 0 10
8KB 16B 0 0 1 8 2 1 1 6043 48 0 10
8KB 16B 0 0 1 8 2 1 2 6075 48 0 14
8KB 16B 0 0 1 8 2 2 2 6218 48 0 14
8KB 16B 0 0 2 8 2 2 1 6566 54 0 10
8KB 16B 0 0 2 8 2 2 2 6591 54 0 14
8KB 16B 0 0 1 16 4 2 2 7041 52 0 14
8KB 16B 0 0 1 16 4 2 4 7083 52 0 22
8KB 16B 0 0 1 16 4 4 2 7216 52 0 14
8KB 16B 0 0 1 16 4 4 4 7294 52 0 22
8KB 16B 0 0 2 16 4 4 2 7787 62 0 14
8KB 16B 0 0 1 128 4 4 4 7362 76 0 22
8KB 16B 0 0 2 16 4 4 4 8034 62 0 22
8KB 16B 0 0 2 128 4 4 2 7836 78 0 14
32KB 64B 0 0 1 16 4 2 4 8268 74 0 22
32KB 64B 8*VL 0 1 16 4 2 4 8261 74 0 23
8KB 16B 0 0 1 32 8 4 4 8910 60 0 22
8KB 16B 0 0 2 128 4 4 4 8100 78 0 22
8KB 16B 0 0 1 32 8 8 4 9278 60 0 22
32KB 64B 7 0 1 16 4 4 2 8903 74 0 14
32KB 64B 7 0 1 16 4 4 4 9102 74 0 22
32KB 64B 7 0 2 16 4 4 2 9525 84 0 14
32KB 64B 7 0 2 16 4 4 4 9732 84 0 22
32KB 64B 7 0 2 128 4 4 2 9608 100 0 14
32KB 64B 8*VL 0 2 128 4 4 2 9670 100 0 15
32KB 64B 7 0 2 128 4 4 4 9780 100 0 22
32KB 64B 8*VL 0 2 128 4 4 4 9904 100 0 23
32KB 64B 8*VL 1 2 128 4 4 4 10458 100 0 23
32KB 64B 8*VL 0 1 32 8 8 4 12309 82 0 23
32KB 64B 7 0 1 32 8 8 4 12421 82 0 22
32KB 64B 7 0 1 32 8 8 8 12458 82 0 38
32KB 64B 8*VL 0 1 128 8 8 8 12565 98 0 39
32KB 64B 7 0 2 128 8 8 4 13286 100 0 22
32KB 64B 8*VL 0 2 128 8 8 4 13383 100 0 23
32KB 64B 7 0 2 128 8 8 8 13672 100 0 38
32KB 64B 8*VL 0 2 128 8 8 8 14212 100 0 39
32KB 64B 7 1 2 128 8 8 8 15008 100 0 38
32KB 64B 8*VL 1 2 128 8 8 8 15416 100 0 39
32KB 64B 8*VL 0 2 128 16 8 8 17727 132 0 47
32KB 64B 8*VL 0 1 64 16 16 8 19598 98 0 47
32KB 64B 8*VL 0 1 128 16 16 8 19722 98 0 47
32KB 64B 8*VL 0 2 128 16 8 16 18375 132 0 79
32KB 64B 8*VL 0 1 64 16 16 16 20179 98 0 79
32KB 64B 8*VL 0 1 128 16 16 16 20392 98 0 79
32KB 64B 8*VL 0 2 128 16 16 8 21966 132 0 47
32KB 64B 7 0 2 128 16 16 16 22716 132 0 78
32KB 64B 7 1 2 128 16 16 16 25135 132 0 78
32KB 64B 8*VL 1 2 128 16 16 16 25713 132 0 79
32KB 64B 7 0 1 128 32 32 32 34489 130 0 174
32KB 64B 8*VL 0 2 512 32 16 32 33499 196 0 175
32KB 64B 7 0 1 512 32 32 32 34483 196 0 174
32KB 64B 8*VL 0 1 512 32 32 32 34471 196 0 175
32KB 64B 8*VL 0 2 128 32 32 32 38077 196 0 175
32KB 64B 7 0 2 128 32 32 32 38317 196 0 174
32KB 64B 8*VL 0 2 512 32 32 32 40097 196 0 175
32KB 64B 8*VL 1 2 512 32 32 32 45578 196 0 175

Appendix B. Raw VESPA Data on DE3 Platform 157

T
ab

le
B

.4
:

P
er

fo
rm

an
ce

of
pa

re
to

op
ti

m
al

V
E

SP
A

co
nfi

gu
ra

ti
on

s.
D

D
D

W
D

P
V

A
P

B
B

M
V

L
L

M
X

C
lo

ck
C

y
cl

e
C

o
u
n
t

(M
H

z)
a
u
tc

o
r

co
n
v
en

rg
b
cm

y
k

rg
b
y
iq

ip
ch

ec
k
su

m
im

g
b
le

n
d

fi
lt

3
x
3

fb
it

a
l

v
it

er
b

8
K

B
1
6
B

0
0

1
4

1
1

1
1
3
3
.5

1
2

1
2
5
3
7
6

1
7
6
1
0

1
6
6
0
8
4
7
7

1
5
6
8
3
2
7
7

1
0
1
2
5
7

1
1
2
7
9
6
5

2
7
5
4
2
1
6

3
5
8
0
7
0

8
8
6
2
4

8
K

B
1
6
B

0
0

1
8

2
1

1
1
3
1
.9

6
9

1
1
1
3
2
1

1
2
8
0
9

1
2
1
5
0
3
4
5

1
2
3
5
9
1
9
9

7
0
6
8
5

9
3
9
9
9
3

2
0
0
8
7
4
1

2
4
1
8
7
4

1
1
2
5
1
4

8
K

B
1
6
B

0
0

1
8

2
1

2
1
3
1
.7

4
5

9
5
1
2
4

1
2
8
3
6

1
2
1
5
0
3
5
7

1
0
0
4
8
8
5
7

7
0
4
3
2

8
2
8
3
6
9

1
6
2
7
3
9
0

2
2
5
2
2
1

1
0
9
4
6
9

8
K

B
1
6
B

0
0

1
8

2
2

2
1
3
0
.5

7
3

6
4
7
9
1

9
8
2
1

9
8
3
9
4
0
9

9
0
7
8
5
6
1

7
0
2
7
1

6
7
7
8
5
6

1
4
3
2
3
9
6

1
9
1
9
5
4

8
2
6
7
9

8
K

B
1
6
B

0
0

2
8

2
2

1
1
2
7
.0

0
9

6
8
8
5
6

9
7
5
5

9
2
8
6
0
1
4

8
6
2
5
7
1
4

6
3
6
2
8

6
3
1
6
6
9

1
3
6
1
5
6
8

1
7
9
4
6
2

7
5
8
4
2

8
K

B
1
6
B

0
0

2
8

2
2

2
1
2
4
.5

2
8

6
0
8
5
2

9
7
6
7

9
2
8
6
0
2
9

7
3
3
8
4
4
7

6
3
6
0
5

5
7
8
6
7
4

1
0
5
3
9
8
5

1
6
2
8
3
9

7
4
1
0
2

8
K

B
1
6
B

0
0

1
1
6

4
2

2
1
2
9
.1

9
1

5
6
8
2
6

7
1
4
9

7
9
1
5
9
2
3

8
0
5
1
4
6
6

5
7
0
9
2

5
4
6
1
7
8

1
1
2
8
9
5
4

1
3
4
3
4
5

1
1
4
6
7
7

8
K

B
1
6
B

0
0

1
1
6

4
2

4
1
2
7
.2

0
1

4
8
7
6
8

7
1
4
5

7
9
1
5
9
5
9

6
8
9
4
7
8
9

5
7
0
9
1

4
9
1
8
1
2

9
3
9
1
5
9

1
2
6
0
2
9

1
1
1
7
7
9

8
K

B
1
6
B

0
0

1
1
6

4
4

2
1
2
7
.6

6
6

4
2
7
2
6

5
9
0
9

7
6
9
7
2
5
6

7
2
7
7
2
7
1

5
3
7
9
4

5
1
9
9
1
0

1
0
1
4
1
7
7

1
1
7
7
1
0

9
8
5
7
3

8
K

B
1
6
B

0
0

1
1
6

4
4

4
1
2
7
.8

1
1

3
4
5
9
9

5
9
0
6

7
6
9
7
3
3
9

6
1
1
8
0
7
1

5
3
7
7
9

4
6
1
6
2
0

8
2
2
4
1
2

1
0
9
3
9
0

9
5
6
6
0

8
K

B
1
6
B

0
0

2
1
6

4
4

2
1
2
5
.9

0
1

3
6
7
2
6

5
8
9
1

7
6
9
3
3
9
5

6
1
0
7
0
4
9

5
1
3
3
1

4
4
2
5
9
7

7
9
1
2
5
3

1
0
3
1
5
4

9
0
0
5
0

8
K

B
1
6
B

0
0

1
1
2
8

4
4

4
1
2
5
.3

4
4

3
3
5
6
7

5
0
8
7

8
1
9
9
3
4
7

6
1
8
3
6
7
8

5
5
2
0
1

4
2
3
9
6
9

6
8
2
8
7
8

1
1
4
4
3
4

9
6
7
0
7

8
K

B
1
6
B

0
0

2
1
6

4
4

4
1
2
1
.8

8
3
2
6
2
5

5
8
9
1

7
6
9
3
4
7
6

5
2
5
0
5
3
3

5
1
3
1
3

4
1
1
5
7
1

6
3
2
9
7
0

9
4
8
4
2

8
7
8
0
3

8
K

B
1
6
B

0
0

2
1
2
8

4
4

2
1
2
2
.6

5
5

3
2
5
2
6

4
3
1
9

7
5
6
1
5
3
2

5
9
5
1
4
5
7

5
0
2
2
7

4
0
0
0
7
4

6
5
3
6
4
1

1
0
2
7
1
6

9
0
5
6
0

3
2
K

B
6
4
B

0
0

1
1
6

4
2

4
1
2
9
.3

8
6

4
8
6
8
1

6
4
5
9

5
5
5
2
2
3
3

5
0
8
4
7
7
1

3
2
5
3
9

3
7
6
6
2
0

8
6
2
7
1
5

1
2
3
6
3
9

8
9
5
7
1

3
2
K

B
6
4
B

8
*
V

L
0

1
1
6

4
2

4
1
2
9
.0

9
7

4
8
6
8
1

6
3
2
4

5
4
5
7
8
0
8

4
7
4
7
2
8
1

3
1
0
5
8

3
7
6
5
9
9

8
3
0
5
5
8

1
2
3
5
7
3

8
7
7
5
6

8
K

B
1
6
B

0
0

1
3
2

8
4

4
1
2
2
.8

1
4

3
0
9
4
5

4
6
9
1

7
5
0
0
2
4
0

5
3
3
3
5
0
5

5
0
4
7
6

4
0
3
0
9
9

6
2
5
7
8
5

7
9
0
5
8

8
5
2
5
3

8
K

B
1
6
B

0
0

2
1
2
8

4
4

4
1
2
0
.6

1
8

2
5
6
2
3

4
3
2
8

7
5
6
2
7
3
8

5
1
2
9
8
8
0

5
0
1
8
7

3
6
8
1
7
6

4
9
2
5
3
4

9
4
3
7
3

8
8
2
7
2

8
K

B
1
6
B

0
0

1
3
2

8
8

4
1
2
4
.4

4
4

2
3
9
1
0

4
0
0
4

6
6
4
6
4
7
9

4
9
1
1
5
3
1

5
0
4
7
8

3
6
7
7
8
5

5
6
9
1
6
3

7
8
0
2
3

7
9
8
4
1

3
2
K

B
6
4
B

7
0

1
1
6

4
4

2
1
2
8
.3

3
8

4
0
6
2
9

4
4
7
9

3
4
8
4
1
0
8

4
7
5
9
2
4
1

1
9
0
3
4

2
8
6
5
4
9

7
9
9
0
0
1

1
1
5
2
1
3

6
5
4
2
1

3
2
K

B
6
4
B

7
0

1
1
6

4
4

4
1
2
8
.1

8
1

3
2
5
5
6

4
4
7
9

3
4
8
4
1
2
3

3
6
0
4
0
4
0

1
9
0
2
7

2
2
9
0
1
4

6
0
8
2
2
2

1
0
6
9
1
1

6
2
7
6
0

3
2
K

B
6
4
B

7
0

2
1
6

4
4

2
1
2
4
.4

9
1

3
4
6
3
2

4
4
5
2

3
1
6
2
8
4
8

3
5
8
7
2
2
2

1
6
5
0
3

2
0
5
2
0
6

5
7
5
0
4
1

1
0
0
6
6
2

5
6
6
8
8

3
2
K

B
6
4
B

7
0

2
1
6

4
4

4
1
2
1
.0

7
8

3
0
5
6
4

4
4
4
9

3
1
6
2
8
2
4

2
7
3
1
4
4
2

1
6
4
8
7

1
7
6
5
4
6

4
1
6
9
1
8

9
2
3
4
6

5
4
7
7
4

3
2
K

B
6
4
B

7
0

2
1
2
8

4
4

2
1
2
2
.8

7
4

3
0
2
0
7

2
9
2
2

2
9
2
6
9
0
6

3
4
2
6
2
9
2

1
5
2
1
2

1
9
2
3
7
7

5
0
0
2
8
9

1
0
0
1
7
9

5
7
7
3
8

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

4
4

2
1
2
4
.4

0
1

3
0
1
6
5

2
8
8
3

2
9
2
5
2
4
5

3
4
0
5
1
8
5

1
4
4
9
5

1
9
0
2
3
3

4
9
8
2
5
6

1
0
0
1
7
9

5
7
6
3
0

3
2
K

B
6
4
B

7
0

2
1
2
8

4
4

4
1
2
0
.9

9
2
3
7
9
9

2
9
3
4

2
9
2
6
8
7
3

2
5
6
8
5
1
0

1
5
1
9
5

1
6
3
6
4
2

3
3
8
8
8
4

9
1
8
6
0

5
5
7
1
6

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

4
4

4
1
2
0
.9

1
4

2
3
7
6
0

2
8
8
6

2
9
2
5
2
6
6

2
5
3
6
3
6
1

1
4
4
8
3

1
6
1
4
8
0

3
3
6
7
7
6

9
1
8
6
0

5
5
6
2
3

3
2
K

B
6
4
B

8
*
V

L
1

2
1
2
8

4
4

4
1
2
0
.9

7
9

2
3
7
6
0

2
8
6
2

2
9
0
8
4
8
3

2
4
4
0
2
4
4

1
4
4
8
9

1
6
1
5
1
5

3
3
6
7
3
3

7
9
2
3
9

5
3
4
3
0

3
2
K

B
6
4
B

8
*
V

L
0

1
3
2

8
8

4
1
2
3
.4

3
5

2
1
5
7
9

2
6
0
1

1
9
9
1
1
6
1

2
4
6
9
3
3
9

1
0
4
8
5

1
6
1
0
8
3

4
4
5
2
2
9

7
1
0
6
7

4
6
4
4
3

3
2
K

B
6
4
B

7
0

1
3
2

8
8

4
1
2
3
.2

0
6

2
1
5
3
7

2
5
5
6

1
9
3
9
7
5
0

2
4
6
8
3
6
6

1
0
3
7
6

1
4
7
3
6
7

4
0
2
3
5
5

7
1
0
4
0

4
5
7
1
1

C
o
n
ti

n
u
ed

o
n

n
ex

t
p
a
g
e

..
.

Appendix B. Raw VESPA Data on DE3 Platform 158

T
ab

le
B

.5
:

P
er

fo
rm

an
ce

of
pa

re
to

op
ti

m
al

V
E

SP
A

co
nfi

gu
ra

ti
on

s
(c

on
t’

d)
.

D
D

D
W

D
P

V
A

P
B

B
M

V
L

L
M

X
C

lo
ck

C
y
cl

e
C

o
u
n
t

(M
H

z)
a
u
tc

o
r
co

n
v
en

rg
b
cm

y
k

rg
b
y
iq

ip
ch

ec
k
su

m
im

g
b
le

n
d

fi
lt

3
x
3

fb
it

a
l
v
it

er
b

3
2
K

B
6
4
B

7
0

1
3
2

8
8

8
1
2
5
.3

6
6

1
7
5
4
4

2
5
4
4

1
9
3
9
6
6
9

1
8
8
9
8
2
2

1
0
3
8
4

1
1
8
7
0
4

3
0
8
3
3
1

6
6
8
8
2

4
4
8
8
5

3
2
K

B
6
4
B

8
*
V

L
0

1
1
2
8

8
8

8
1
2
4
.2

8
2

1
6
8
9
6

2
1
0
3

1
9
5
0
7
4
2

1
8
4
4
3
2
7

1
0
5
8
3

1
1
2
9
3
7

2
7
1
2
5
2

6
9
1
8
6

4
4
7
1
2

3
2
K

B
6
4
B

7
0

2
1
2
8

8
8

4
1
1
6
.9

4
1
6
6
2
6

1
8
3
6

1
6
6
6
5
8
8

1
7
9
4
9
1
7

8
3
7
8

1
0
1
3
7
6

2
5
8
2
1
8

6
3
5
4
6

4
3
4
6
7

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

8
8

4
1
1
9
.2

7
5

1
6
5
9
9

1
8
0
9

1
6
4
9
2
0
0

1
7
5
5
7
7
9

8
0
4
8

9
9
1
2
2

2
5
6
7
1
1

6
3
5
4
3

4
3
4
1
6

3
2
K

B
6
4
B

7
0

2
1
2
8

8
8

8
1
1
8
.3

8
8

1
3
2
9
0

1
8
4
2

1
6
6
6
5
4
0

1
3
6
5
9
8
3

8
3
5
1

8
7
0
5
2

1
7
7
3
9
1

5
9
3
7
9

4
2
6
8
1

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

8
8

8
1
1
7
.9

1
3
2
5
1

1
8
0
6

1
6
4
9
2
0
0

1
3
2
3
6
9
3

8
0
2
9

8
4
7
6
1

1
7
5
7
6
6

5
9
3
8
8

4
2
5
8
2

3
2
K

B
6
4
B

7
1

2
1
2
8

8
8

8
1
1
8
.5

5
7

1
3
2
8
1

1
8
2
7

1
6
6
1
8
8
1

1
3
1
8
2
8
0

8
3
7
2

8
7
0
6
0

1
7
7
3
3
1

5
2
9
9
8

4
1
7
7
5

3
2
K

B
6
4
B

8
*
V

L
1

2
1
2
8

8
8

8
1
1
9
.0

2
4

1
3
2
5
1

1
7
9
4

1
6
3
2
1
2
2

1
2
8
1
1
4
3

8
0
4
8

8
4
7
7
6

1
7
5
7
4
5

5
2
9
9
8

4
1
6
9
1

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

1
6

8
8

1
1
1
.5

5
6

1
2
8
9
7

1
7
0
1

1
4
7
1
8
8
7

1
1
8
6
1
5
1

7
0
0
7

7
6
5
8
4

1
6
5
0
0
4

4
9
4
2
8

4
0
7
5
2

3
2
K

B
6
4
B

8
*
V

L
0

1
6
4

1
6

1
6

8
1
1
6
.4

3
4

1
2
2
3
4

1
6
2
9

1
1
6
0
9
9
9

1
2
8
6
4
8
3

6
6
2
2

7
8
2
4
0

1
9
3
6
5
7

4
9
3
8
0

3
8
6
5
5

3
2
K

B
6
4
B

8
*
V

L
0

1
1
2
8

1
6

1
6

8
1
1
4
.1

3
5

1
1
8
6
5

1
4
2
8

1
1
8
3
9
4
3

1
3
2
4
4
6
0

6
3
3
3

7
6
2
3
5

1
8
9
4
3
3

5
0
1
3
0

3
8
2
6
5

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

1
6

8
1
6

1
1
0
.8

0
4

1
1
5
3
8

1
7
1
3

1
4
7
1
9
8
7

1
0
2
5
3
4
5

7
1
1
1

7
1
4
2
4

1
2
7
2
2
5

4
7
3
5
8

4
0
3
3
8

3
2
K

B
6
4
B

8
*
V

L
0

1
6
4

1
6

1
6

1
6

1
1
3
.5

2
2

1
0
2
8
7

1
6
3
8

1
1
6
1
3
7
0

9
9
7
5
1
1

6
6
2
9

6
4
1
7
6

1
4
5
7
2
9

4
7
3
0
3

3
8
2
1
9

3
2
K

B
6
4
B

8
*
V

L
0

1
1
2
8

1
6

1
6

1
6

1
1
5
.1

3
9

9
8
4
0

1
4
2
8

1
1
8
3
9
8
1

1
0
3
5
9
6
8

6
3
5
6

6
1
8
4
2

1
4
1
8
1
5

4
8
0
5
4

3
7
8
4
5

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

1
6

1
6

8
1
0
8
.8

3
9

1
0
0
8
6

1
3
7
1

1
0
5
2
6
1
4

9
9
0
5
1
2

5
0
8
3

5
6
0
7
0

1
3
4
4
5
6

4
5
3
9
3

3
8
1
2
1

3
2
K

B
6
4
B

7
0

2
1
2
8

1
6

1
6

1
6

1
1
1
.3

6
4

8
3
6
4

1
4
0
7

1
0
7
8
4
0
5

7
6
3
5
9
3

5
8
5
0

5
0
2
3
2

9
8
5
7
3

4
3
3
2
3

3
7
8
3
0

3
2
K

B
6
4
B

7
1

2
1
2
8

1
6

1
6

1
6

1
1
1
.0

9
5

8
3
5
5

1
4
0
1

1
0
6
5
5
6
8

7
4
2
2
3
2

5
8
6
9

5
3
3
2
4

9
8
5
4
0

4
0
0
7
4

3
7
7
4
3

3
2
K

B
6
4
B

8
*
V

L
1

2
1
2
8

1
6

1
6

1
6

1
1
1
.2

0
8

8
3
3
7

1
3
6
8

1
0
3
5
6
1
1

7
5
6
4
1
9

5
0
6
8

4
8
8
9
3

9
4
6
5
4

4
0
0
6
8

3
7
6
0
7

3
2
K

B
6
4
B

7
0

1
1
2
8

3
2

3
2

3
2

9
6
.4

7
8
8

6
9
5
1

1
1
5
8

8
0
3
4
4
0

6
0
4
4
5
4

5
1
6
5

3
9
7
5
7

8
2
4
8
0

3
8
3
9
1

3
7
1
6
4

3
2
K

B
6
4
B

8
*
V

L
0

2
5
1
2

3
2

1
6

3
2

9
9
.4

5
5

7
7
2
2

1
1
4
0

9
6
8
5
8
1

6
0
6
0
7
4

5
8
9
6

3
8
8
2
8

6
4
7
5
0

3
8
7
8
4

3
7
3
9
2

3
2
K

B
6
4
B

7
0

1
5
1
2

3
2

3
2

3
2

9
9
.1

3
3
8

7
0
9
5

9
9
6

8
6
0
4
0
7

6
4
1
7
7
3

6
3
3
8

3
7
7
5
2

7
2
8
5
6

3
9
3
4
8

3
6
8
4
0

3
2
K

B
6
4
B

8
*
V

L
0

1
5
1
2

3
2

3
2

3
2

9
8
.5

2
1
3

7
0
6
2

9
8
4

8
1
9
6
8
8

6
2
2
7
2
7

5
7
0
8

3
3
9
5
3

7
2
9
6
6

3
9
3
7
2

3
6
8
7
9

3
2
K

B
6
4
B

8
*
V

L
0

2
1
2
8

3
2

3
2

3
2

9
3
.7

2
6
7
1
8

1
1
4
3

9
1
0
4
1
7

6
1
9
9
6
2

4
0
2
6

3
1
6
1
4

6
3
4
9
3

3
6
5
1
3

3
7
0
9
5

3
2
K

B
6
4
B

7
0

2
1
2
8

3
2

3
2

3
2

9
1
.0

0
2
5

6
7
4
4

1
1
5
3

7
7
9
7
7
0

4
9
8
8
5
4

4
5
8
2

3
2
9
0
9

6
0
2
8
4

3
6
5
1
3

3
7
1
4
9

3
2
K

B
6
4
B

8
*
V

L
0

2
5
1
2

3
2

3
2

3
2

9
2
.4

0
8
7

6
1
7
1

9
4
8

7
4
6
7
3
7

4
9
2
1
9
3

5
1
6
0

2
7
2
2
3

4
9
0
7
8

3
6
9
9
0

3
6
8
3
4

3
2
K

B
6
4
B

8
*
V

L
1

2
5
1
2

3
2

3
2

3
2

9
5
.8

0
2
5

6
1
7
7

9
5
7

7
4
1
4
9
3

4
8
0
5
1
5

5
0
9
8

2
7
5
7
3

4
9
0
7
6

3
5
3
5
2

3
6
7
9
2

Appendix B. Raw VESPA Data on DE3 Platform 159

Table B.6: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for autcor.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 5172 46 0 10
8KB 16B 0 0 1 8 2 1 1 5425 48 0 10
8KB 16B 0 0 1 8 2 1 2 5379 48 0 14
8KB 16B 0 0 1 8 2 2 2 5485 48 0 14
8KB 16B 0 0 2 8 2 2 1 6329 54 0 10
8KB 16B 0 0 2 8 2 2 2 6440 54 0 14
8KB 16B 0 0 1 16 4 2 2 5984 52 0 14
8KB 16B 0 0 1 16 4 2 4 6138 52 0 22
8KB 16B 0 0 1 16 4 4 2 6063 52 0 14
8KB 16B 0 0 1 16 4 4 4 6087 52 0 22
8KB 16B 0 0 2 16 4 4 2 7548 62 0 14
8KB 16B 0 0 1 128 4 4 4 6197 76 0 22
8KB 16B 0 0 2 16 4 4 4 7749 62 0 22
8KB 16B 0 0 2 128 4 4 2 7646 78 0 14
32KB 64B 0 0 1 16 4 2 4 6913 74 0 22
32KB 64B 8*VL 0 1 16 4 2 4 6916 74 0 22
8KB 16B 0 0 1 32 8 4 4 7125 60 0 22
8KB 16B 0 0 2 128 4 4 4 7784 78 0 22
8KB 16B 0 0 1 32 8 8 4 7319 60 0 22
32KB 64B 7 0 1 16 4 4 2 7135 74 0 14
32KB 64B 7 0 1 16 4 4 4 7207 74 0 22
32KB 64B 7 0 2 16 4 4 2 9371 84 0 14
32KB 64B 7 0 2 16 4 4 4 9548 84 0 22
32KB 64B 7 0 2 128 4 4 2 9345 100 0 14
32KB 64B 8*VL 0 2 128 4 4 2 9397 100 0 15
32KB 64B 7 0 2 128 4 4 4 9496 100 0 22
32KB 64B 8*VL 0 2 128 4 4 4 9641 100 0 23
32KB 64B 8*VL 1 2 128 4 4 4 10233 100 0 23
32KB 64B 8*VL 0 1 32 8 8 4 8988 82 0 22
32KB 64B 7 0 1 32 8 8 4 9096 82 0 22
32KB 64B 7 0 1 32 8 8 8 8956 82 0 38
32KB 64B 8*VL 0 1 128 8 8 8 9137 98 0 38
32KB 64B 7 0 2 128 8 8 4 13006 100 0 22
32KB 64B 8*VL 0 2 128 8 8 4 13007 100 0 23
32KB 64B 7 0 2 128 8 8 8 13352 100 0 38
32KB 64B 8*VL 0 2 128 8 8 8 13531 100 0 39
32KB 64B 7 1 2 128 8 8 8 14572 100 0 38
32KB 64B 8*VL 1 2 128 8 8 8 14593 100 0 39
32KB 64B 8*VL 0 2 128 16 8 8 17035 132 0 39
32KB 64B 8*VL 0 1 64 16 16 8 12456 98 0 38
32KB 64B 8*VL 0 1 128 16 16 8 12481 98 0 38
32KB 64B 8*VL 0 2 128 16 8 16 17837 132 0 71
32KB 64B 8*VL 0 1 64 16 16 16 12779 98 0 70
32KB 64B 8*VL 0 1 128 16 16 16 12754 98 0 70
32KB 64B 8*VL 0 2 128 16 16 8 22321 132 0 39
32KB 64B 7 0 2 128 16 16 16 21901 132 0 70
32KB 64B 7 1 2 128 16 16 16 25152 132 0 70
32KB 64B 8*VL 1 2 128 16 16 16 24363 132 0 71
32KB 64B 7 0 1 128 32 32 32 20555 130 0 134
32KB 64B 8*VL 0 2 512 32 16 32 31633 196 0 135
32KB 64B 7 0 1 512 32 32 32 20744 196 0 134
32KB 64B 8*VL 0 1 512 32 32 32 21034 196 0 134
32KB 64B 8*VL 0 2 128 32 32 32 39621 196 0 135
32KB 64B 7 0 2 128 32 32 32 36944 196 0 134
32KB 64B 8*VL 0 2 512 32 32 32 37234 196 0 135
32KB 64B 8*VL 1 2 512 32 32 32 43321 196 0 135

Appendix B. Raw VESPA Data on DE3 Platform 160

Table B.7: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for conven.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 4900 46 0 6
8KB 16B 0 0 1 8 2 1 1 4885 46 0 6
8KB 16B 0 0 1 8 2 1 2 4967 46 0 6
8KB 16B 0 0 1 8 2 2 2 4952 46 0 6
8KB 16B 0 0 2 8 2 2 1 5257 50 0 6
8KB 16B 0 0 2 8 2 2 2 5292 50 0 6
8KB 16B 0 0 1 16 4 2 2 5135 46 0 6
8KB 16B 0 0 1 16 4 2 4 5125 46 0 6
8KB 16B 0 0 1 16 4 4 2 5193 46 0 6
8KB 16B 0 0 1 16 4 4 4 5243 46 0 6
8KB 16B 0 0 2 16 4 4 2 5528 50 0 6
8KB 16B 0 0 1 128 4 4 4 5273 52 0 6
8KB 16B 0 0 2 16 4 4 4 5607 50 0 6
8KB 16B 0 0 2 128 4 4 2 5618 54 0 6
32KB 64B 0 0 1 16 4 2 4 5912 68 0 6
32KB 64B 8*VL 0 1 16 4 2 4 6007 68 0 7
8KB 16B 0 0 1 32 8 4 4 5498 48 0 6
8KB 16B 0 0 2 128 4 4 4 5617 54 0 6
8KB 16B 0 0 1 32 8 8 4 5494 48 0 6
32KB 64B 7 0 1 16 4 4 2 6107 68 0 6
32KB 64B 7 0 1 16 4 4 4 6120 68 0 6
32KB 64B 7 0 2 16 4 4 2 6458 72 0 6
32KB 64B 7 0 2 16 4 4 4 6552 72 0 6
32KB 64B 7 0 2 128 4 4 2 6603 76 0 6
32KB 64B 8*VL 0 2 128 4 4 2 6586 76 0 7
32KB 64B 7 0 2 128 4 4 4 6551 76 0 6
32KB 64B 8*VL 0 2 128 4 4 4 6601 76 0 7
32KB 64B 8*VL 1 2 128 4 4 4 6606 76 0 7
32KB 64B 8*VL 0 1 32 8 8 4 6751 70 0 7
32KB 64B 7 0 1 32 8 8 4 6676 70 0 6
32KB 64B 7 0 1 32 8 8 8 6737 70 0 6
32KB 64B 8*VL 0 1 128 8 8 8 6766 74 0 7
32KB 64B 7 0 2 128 8 8 4 7328 76 0 6
32KB 64B 8*VL 0 2 128 8 8 4 7355 76 0 7
32KB 64B 7 0 2 128 8 8 8 7282 76 0 6
32KB 64B 8*VL 0 2 128 8 8 8 7291 76 0 7
32KB 64B 7 1 2 128 8 8 8 7419 76 0 6
32KB 64B 8*VL 1 2 128 8 8 8 7438 76 0 7
32KB 64B 8*VL 0 2 128 16 8 8 8179 84 0 15
32KB 64B 8*VL 0 1 64 16 16 8 8101 74 0 15
32KB 64B 8*VL 0 1 128 16 16 8 8054 74 0 15
32KB 64B 8*VL 0 2 128 16 8 16 8266 84 0 15
32KB 64B 8*VL 0 1 64 16 16 16 8082 74 0 15
32KB 64B 8*VL 0 1 128 16 16 16 8103 74 0 15
32KB 64B 8*VL 0 2 128 16 16 8 8975 84 0 15
32KB 64B 7 0 2 128 16 16 16 8909 84 0 14
32KB 64B 7 1 2 128 16 16 16 9173 84 0 14
32KB 64B 8*VL 1 2 128 16 16 16 9236 84 0 15
32KB 64B 7 0 1 128 32 32 32 11032 82 0 46
32KB 64B 8*VL 0 2 512 32 16 32 11146 100 0 47
32KB 64B 7 0 1 512 32 32 32 10876 100 0 46
32KB 64B 8*VL 0 1 512 32 32 32 10676 100 0 47
32KB 64B 8*VL 0 2 128 32 32 32 12470 100 0 47
32KB 64B 7 0 2 128 32 32 32 12516 100 0 46
32KB 64B 8*VL 0 2 512 32 32 32 12639 100 0 47
32KB 64B 8*VL 1 2 512 32 32 32 12863 100 0 47

Appendix B. Raw VESPA Data on DE3 Platform 161

Table B.8: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for rgbcmyk.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 5072 46 0 6
8KB 16B 0 0 1 8 2 1 1 5105 46 0 6
8KB 16B 0 0 1 8 2 1 2 5127 46 0 6
8KB 16B 0 0 1 8 2 2 2 5264 46 0 6
8KB 16B 0 0 2 8 2 2 1 5761 50 0 7
8KB 16B 0 0 2 8 2 2 2 5603 50 0 8
8KB 16B 0 0 1 16 4 2 2 5413 46 0 6
8KB 16B 0 0 1 16 4 2 4 5497 46 0 6
8KB 16B 0 0 1 16 4 4 2 5588 46 0 6
8KB 16B 0 0 1 16 4 4 4 5656 46 0 6
8KB 16B 0 0 2 16 4 4 2 6240 50 0 8
8KB 16B 0 0 1 128 4 4 4 5701 52 0 6
8KB 16B 0 0 2 16 4 4 4 6296 50 0 10
8KB 16B 0 0 2 128 4 4 2 6295 54 0 8
32KB 64B 0 0 1 16 4 2 4 6672 68 0 6
32KB 64B 8*VL 0 1 16 4 2 4 6660 68 0 7
8KB 16B 0 0 1 32 8 4 4 5994 48 0 6
8KB 16B 0 0 2 128 4 4 4 6340 54 0 10
8KB 16B 0 0 1 32 8 8 4 6469 48 0 6
32KB 64B 7 0 1 16 4 4 2 7403 68 0 6
32KB 64B 7 0 1 16 4 4 4 7458 68 0 6
32KB 64B 7 0 2 16 4 4 2 7878 72 0 8
32KB 64B 7 0 2 16 4 4 4 7924 72 0 10
32KB 64B 7 0 2 128 4 4 2 8018 76 0 8
32KB 64B 8*VL 0 2 128 4 4 2 8050 76 0 9
32KB 64B 7 0 2 128 4 4 4 7922 76 0 10
32KB 64B 8*VL 0 2 128 4 4 4 8102 76 0 11
32KB 64B 8*VL 1 2 128 4 4 4 8241 76 0 11
32KB 64B 8*VL 0 1 32 8 8 4 9493 70 0 7
32KB 64B 7 0 1 32 8 8 4 9434 70 0 6
32KB 64B 7 0 1 32 8 8 8 9473 70 0 6
32KB 64B 8*VL 0 1 128 8 8 8 9553 74 0 7
32KB 64B 7 0 2 128 8 8 4 10754 76 0 10
32KB 64B 8*VL 0 2 128 8 8 4 10729 76 0 11
32KB 64B 7 0 2 128 8 8 8 10477 76 0 14
32KB 64B 8*VL 0 2 128 8 8 8 10670 76 0 15
32KB 64B 7 1 2 128 8 8 8 10748 76 0 14
32KB 64B 8*VL 1 2 128 8 8 8 11152 76 0 15
32KB 64B 8*VL 0 2 128 16 8 8 12005 84 0 23
32KB 64B 8*VL 0 1 64 16 16 8 14619 74 0 15
32KB 64B 8*VL 0 1 128 16 16 8 14677 74 0 15
32KB 64B 8*VL 0 2 128 16 8 16 12064 84 0 31
32KB 64B 8*VL 0 1 64 16 16 16 14545 74 0 15
32KB 64B 8*VL 0 1 128 16 16 16 14627 74 0 15
32KB 64B 8*VL 0 2 128 16 16 8 16942 84 0 23
32KB 64B 7 0 2 128 16 16 16 16245 84 0 30
32KB 64B 7 1 2 128 16 16 16 16934 84 0 30
32KB 64B 8*VL 1 2 128 16 16 16 17635 84 0 31
32KB 64B 7 0 1 128 32 32 32 22141 82 0 46
32KB 64B 8*VL 0 2 512 32 16 32 20361 100 0 79
32KB 64B 7 0 1 512 32 32 32 22012 100 0 46
32KB 64B 8*VL 0 1 512 32 32 32 21898 100 0 47
32KB 64B 8*VL 0 2 128 32 32 32 27560 100 0 79
32KB 64B 7 0 2 128 32 32 32 25509 100 0 78
32KB 64B 8*VL 0 2 512 32 32 32 27573 100 0 79
32KB 64B 8*VL 1 2 512 32 32 32 28766 100 0 79

Appendix B. Raw VESPA Data on DE3 Platform 162

Table B.9: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for rgbyiq.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 5145 46 0 8
8KB 16B 0 0 1 8 2 1 1 5201 46 0 8
8KB 16B 0 0 1 8 2 1 2 5178 46 0 10
8KB 16B 0 0 1 8 2 2 2 5381 46 0 10
8KB 16B 0 0 2 8 2 2 1 5919 50 0 8
8KB 16B 0 0 2 8 2 2 2 5935 50 0 10
8KB 16B 0 0 1 16 4 2 2 5631 48 0 10
8KB 16B 0 0 1 16 4 2 4 5719 48 0 14
8KB 16B 0 0 1 16 4 4 2 5865 48 0 10
8KB 16B 0 0 1 16 4 4 4 5917 48 0 14
8KB 16B 0 0 2 16 4 4 2 6687 54 0 10
8KB 16B 0 0 1 128 4 4 4 6012 60 0 14
8KB 16B 0 0 2 16 4 4 4 6835 54 0 14
8KB 16B 0 0 2 128 4 4 2 6819 62 0 10
32KB 64B 0 0 1 16 4 2 4 6999 70 0 14
32KB 64B 8*VL 0 1 16 4 2 4 6964 70 0 15
8KB 16B 0 0 1 32 8 4 4 6453 52 0 14
8KB 16B 0 0 2 128 4 4 4 6790 62 0 14
8KB 16B 0 0 1 32 8 8 4 6848 52 0 14
32KB 64B 7 0 1 16 4 4 2 7597 70 0 10
32KB 64B 7 0 1 16 4 4 4 7627 70 0 14
32KB 64B 7 0 2 16 4 4 2 8370 76 0 10
32KB 64B 7 0 2 16 4 4 4 8407 76 0 14
32KB 64B 7 0 2 128 4 4 2 8408 84 0 10
32KB 64B 8*VL 0 2 128 4 4 2 8358 84 0 11
32KB 64B 7 0 2 128 4 4 4 8440 84 0 14
32KB 64B 8*VL 0 2 128 4 4 4 8551 84 0 15
32KB 64B 8*VL 1 2 128 4 4 4 8836 84 0 15
32KB 64B 8*VL 0 1 32 8 8 4 9862 74 0 15
32KB 64B 7 0 1 32 8 8 4 9930 74 0 14
32KB 64B 7 0 1 32 8 8 8 10044 74 0 22
32KB 64B 8*VL 0 1 128 8 8 8 9974 82 0 23
32KB 64B 7 0 2 128 8 8 4 11284 84 0 14
32KB 64B 8*VL 0 2 128 8 8 4 11458 84 0 15
32KB 64B 7 0 2 128 8 8 8 11541 84 0 22
32KB 64B 8*VL 0 2 128 8 8 8 11780 84 0 23
32KB 64B 7 1 2 128 8 8 8 12168 84 0 22
32KB 64B 8*VL 1 2 128 8 8 8 12442 84 0 23
32KB 64B 8*VL 0 2 128 16 8 8 13908 100 0 31
32KB 64B 8*VL 0 1 64 16 16 8 15379 82 0 31
32KB 64B 8*VL 0 1 128 16 16 8 15416 82 0 31
32KB 64B 8*VL 0 2 128 16 8 16 14174 100 0 47
32KB 64B 8*VL 0 1 64 16 16 16 15530 82 0 47
32KB 64B 8*VL 0 1 128 16 16 16 15499 82 0 47
32KB 64B 8*VL 0 2 128 16 16 8 18432 100 0 31
32KB 64B 7 0 2 128 16 16 16 18369 100 0 46
32KB 64B 7 1 2 128 16 16 16 20239 100 0 46
32KB 64B 8*VL 1 2 128 16 16 16 19879 100 0 47
32KB 64B 7 0 1 128 32 32 32 24181 98 0 110
32KB 64B 8*VL 0 2 512 32 16 32 24082 132 0 111
32KB 64B 7 0 1 512 32 32 32 24100 132 0 110
32KB 64B 8*VL 0 1 512 32 32 32 23758 132 0 111
32KB 64B 8*VL 0 2 128 32 32 32 31992 132 0 111
32KB 64B 7 0 2 128 32 32 32 30434 132 0 110
32KB 64B 8*VL 0 2 512 32 32 32 32241 132 0 111
32KB 64B 8*VL 1 2 512 32 32 32 32783 132 0 111

Appendix B. Raw VESPA Data on DE3 Platform 163

Table B.10: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for ip checksum.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 4932 46 0 6
8KB 16B 0 0 1 8 2 1 1 5096 48 0 6
8KB 16B 0 0 1 8 2 1 2 5196 48 0 6
8KB 16B 0 0 1 8 2 2 2 5203 48 0 6
8KB 16B 0 0 2 8 2 2 1 6378 54 0 10
8KB 16B 0 0 2 8 2 2 2 6382 54 0 14
8KB 16B 0 0 1 16 4 2 2 5615 52 0 6
8KB 16B 0 0 1 16 4 2 4 5549 52 0 6
8KB 16B 0 0 1 16 4 4 2 5674 52 0 6
8KB 16B 0 0 1 16 4 4 4 5658 52 0 6
8KB 16B 0 0 2 16 4 4 2 7529 62 0 14
8KB 16B 0 0 1 128 4 4 4 5724 76 0 6
8KB 16B 0 0 2 16 4 4 4 7706 62 0 22
8KB 16B 0 0 2 128 4 4 2 7619 78 0 14
32KB 64B 0 0 1 16 4 2 4 6483 74 0 6
32KB 64B 8*VL 0 1 16 4 2 4 6471 74 0 6
8KB 16B 0 0 1 32 8 4 4 6294 60 0 6
8KB 16B 0 0 2 128 4 4 4 7769 78 0 22
8KB 16B 0 0 1 32 8 8 4 6599 60 0 6
32KB 64B 7 0 1 16 4 4 2 6799 74 0 6
32KB 64B 7 0 1 16 4 4 4 6762 74 0 6
32KB 64B 7 0 2 16 4 4 2 9345 84 0 14
32KB 64B 7 0 2 16 4 4 4 9494 84 0 22
32KB 64B 7 0 2 128 4 4 2 9380 100 0 14
32KB 64B 8*VL 0 2 128 4 4 2 9454 100 0 15
32KB 64B 7 0 2 128 4 4 4 9534 100 0 22
32KB 64B 8*VL 0 2 128 4 4 4 9583 100 0 23
32KB 64B 8*VL 1 2 128 4 4 4 10190 100 0 23
32KB 64B 8*VL 0 1 32 8 8 4 8185 82 0 6
32KB 64B 7 0 1 32 8 8 4 8219 82 0 6
32KB 64B 7 0 1 32 8 8 8 8216 82 0 6
32KB 64B 8*VL 0 1 128 8 8 8 8165 98 0 6
32KB 64B 7 0 2 128 8 8 4 12923 100 0 22
32KB 64B 8*VL 0 2 128 8 8 4 12934 100 0 23
32KB 64B 7 0 2 128 8 8 8 13497 100 0 38
32KB 64B 8*VL 0 2 128 8 8 8 13393 100 0 39
32KB 64B 7 1 2 128 8 8 8 14486 100 0 38
32KB 64B 8*VL 1 2 128 8 8 8 15054 100 0 39
32KB 64B 8*VL 0 2 128 16 8 8 17058 132 0 39
32KB 64B 8*VL 0 1 64 16 16 8 10895 98 0 6
32KB 64B 8*VL 0 1 128 16 16 8 11030 98 0 6
32KB 64B 8*VL 0 2 128 16 8 16 18028 132 0 71
32KB 64B 8*VL 0 1 64 16 16 16 10808 98 0 6
32KB 64B 8*VL 0 1 128 16 16 16 11018 98 0 6
32KB 64B 8*VL 0 2 128 16 16 8 20952 132 0 39
32KB 64B 7 0 2 128 16 16 16 22525 132 0 70
32KB 64B 7 1 2 128 16 16 16 24445 132 0 70
32KB 64B 8*VL 1 2 128 16 16 16 24351 132 0 71
32KB 64B 7 0 1 128 32 32 32 16854 130 0 6
32KB 64B 8*VL 0 2 512 32 16 32 31153 196 0 135
32KB 64B 7 0 1 512 32 32 32 17031 196 0 6
32KB 64B 8*VL 0 1 512 32 32 32 16911 196 0 6
32KB 64B 8*VL 0 2 128 32 32 32 37247 196 0 135
32KB 64B 7 0 2 128 32 32 32 39438 196 0 134
32KB 64B 8*VL 0 2 512 32 32 32 39597 196 0 135
32KB 64B 8*VL 1 2 512 32 32 32 42765 196 0 135

Appendix B. Raw VESPA Data on DE3 Platform 164

Table B.11: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for imgblend.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 4991 46 0 7
8KB 16B 0 0 1 8 2 1 1 5102 46 0 7
8KB 16B 0 0 1 8 2 1 2 5116 46 0 8
8KB 16B 0 0 1 8 2 2 2 5185 46 0 8
8KB 16B 0 0 2 8 2 2 1 5652 50 0 7
8KB 16B 0 0 2 8 2 2 2 5645 50 0 8
8KB 16B 0 0 1 16 4 2 2 5475 46 0 8
8KB 16B 0 0 1 16 4 2 4 5491 46 0 10
8KB 16B 0 0 1 16 4 4 2 5676 46 0 8
8KB 16B 0 0 1 16 4 4 4 5627 46 0 10
8KB 16B 0 0 2 16 4 4 2 6147 50 0 8
8KB 16B 0 0 1 128 4 4 4 5633 52 0 10
8KB 16B 0 0 2 16 4 4 4 6191 50 0 10
8KB 16B 0 0 2 128 4 4 2 6216 54 0 8
32KB 64B 0 0 1 16 4 2 4 6581 68 0 10
32KB 64B 8*VL 0 1 16 4 2 4 6671 68 0 10
8KB 16B 0 0 1 32 8 4 4 6058 48 0 10
8KB 16B 0 0 2 128 4 4 4 6270 54 0 10
8KB 16B 0 0 1 32 8 8 4 6545 48 0 10
32KB 64B 7 0 1 16 4 4 2 7356 68 0 8
32KB 64B 7 0 1 16 4 4 4 7386 68 0 10
32KB 64B 7 0 2 16 4 4 2 7794 72 0 8
32KB 64B 7 0 2 16 4 4 4 7904 72 0 10
32KB 64B 7 0 2 128 4 4 2 7925 76 0 8
32KB 64B 8*VL 0 2 128 4 4 2 7945 76 0 9
32KB 64B 7 0 2 128 4 4 4 7927 76 0 10
32KB 64B 8*VL 0 2 128 4 4 4 7855 76 0 11
32KB 64B 8*VL 1 2 128 4 4 4 8119 76 0 11
32KB 64B 8*VL 0 1 32 8 8 4 9485 70 0 10
32KB 64B 7 0 1 32 8 8 4 9406 70 0 10
32KB 64B 7 0 1 32 8 8 8 9486 70 0 14
32KB 64B 8*VL 0 1 128 8 8 8 9520 74 0 14
32KB 64B 7 0 2 128 8 8 4 10245 76 0 10
32KB 64B 8*VL 0 2 128 8 8 4 10546 76 0 11
32KB 64B 7 0 2 128 8 8 8 10322 76 0 14
32KB 64B 8*VL 0 2 128 8 8 8 10621 76 0 15
32KB 64B 7 1 2 128 8 8 8 10559 76 0 14
32KB 64B 8*VL 1 2 128 8 8 8 10950 76 0 15
32KB 64B 8*VL 0 2 128 16 8 8 11751 84 0 15
32KB 64B 8*VL 0 1 64 16 16 8 14513 74 0 14
32KB 64B 8*VL 0 1 128 16 16 8 14397 74 0 14
32KB 64B 8*VL 0 2 128 16 8 16 11933 84 0 23
32KB 64B 8*VL 0 1 64 16 16 16 14559 74 0 22
32KB 64B 8*VL 0 1 128 16 16 16 14752 74 0 22
32KB 64B 8*VL 0 2 128 16 16 8 15952 84 0 15
32KB 64B 7 0 2 128 16 16 16 15867 84 0 22
32KB 64B 7 1 2 128 16 16 16 16632 84 0 22
32KB 64B 8*VL 1 2 128 16 16 16 16800 84 0 23
32KB 64B 7 0 1 128 32 32 32 22180 82 0 38
32KB 64B 8*VL 0 2 512 32 16 32 19231 100 0 39
32KB 64B 7 0 1 512 32 32 32 22179 100 0 38
32KB 64B 8*VL 0 1 512 32 32 32 22064 100 0 38
32KB 64B 8*VL 0 2 128 32 32 32 26417 100 0 39
32KB 64B 7 0 2 128 32 32 32 24604 100 0 38
32KB 64B 8*VL 0 2 512 32 32 32 24790 100 0 39
32KB 64B 8*VL 1 2 512 32 32 32 25952 100 0 39

Appendix B. Raw VESPA Data on DE3 Platform 165

Table B.12: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for filt3x3.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 4991 46 0 7
8KB 16B 0 0 1 8 2 1 1 5102 46 0 7
8KB 16B 0 0 1 8 2 1 2 5116 46 0 8
8KB 16B 0 0 1 8 2 2 2 5185 46 0 8
8KB 16B 0 0 2 8 2 2 1 5652 50 0 7
8KB 16B 0 0 2 8 2 2 2 5645 50 0 8
8KB 16B 0 0 1 16 4 2 2 5475 46 0 8
8KB 16B 0 0 1 16 4 2 4 5491 46 0 10
8KB 16B 0 0 1 16 4 4 2 5676 46 0 8
8KB 16B 0 0 1 16 4 4 4 5627 46 0 10
8KB 16B 0 0 2 16 4 4 2 6147 50 0 8
8KB 16B 0 0 1 128 4 4 4 5633 52 0 10
8KB 16B 0 0 2 16 4 4 4 6191 50 0 10
8KB 16B 0 0 2 128 4 4 2 6216 54 0 8
32KB 64B 0 0 1 16 4 2 4 6581 68 0 10
32KB 64B 8*VL 0 1 16 4 2 4 6671 68 0 10
8KB 16B 0 0 1 32 8 4 4 6058 48 0 10
8KB 16B 0 0 2 128 4 4 4 6270 54 0 10
8KB 16B 0 0 1 32 8 8 4 6545 48 0 10
32KB 64B 7 0 1 16 4 4 2 7356 68 0 8
32KB 64B 7 0 1 16 4 4 4 7386 68 0 10
32KB 64B 7 0 2 16 4 4 2 7794 72 0 8
32KB 64B 7 0 2 16 4 4 4 7904 72 0 10
32KB 64B 7 0 2 128 4 4 2 7925 76 0 8
32KB 64B 8*VL 0 2 128 4 4 2 7945 76 0 9
32KB 64B 7 0 2 128 4 4 4 7927 76 0 10
32KB 64B 8*VL 0 2 128 4 4 4 7855 76 0 11
32KB 64B 8*VL 1 2 128 4 4 4 8119 76 0 11
32KB 64B 8*VL 0 1 32 8 8 4 9485 70 0 10
32KB 64B 7 0 1 32 8 8 4 9406 70 0 10
32KB 64B 7 0 1 32 8 8 8 9486 70 0 14
32KB 64B 8*VL 0 1 128 8 8 8 9520 74 0 14
32KB 64B 7 0 2 128 8 8 4 10245 76 0 10
32KB 64B 8*VL 0 2 128 8 8 4 10546 76 0 11
32KB 64B 7 0 2 128 8 8 8 10322 76 0 14
32KB 64B 8*VL 0 2 128 8 8 8 10621 76 0 15
32KB 64B 7 1 2 128 8 8 8 10559 76 0 14
32KB 64B 8*VL 1 2 128 8 8 8 10950 76 0 15
32KB 64B 8*VL 0 2 128 16 8 8 11751 84 0 15
32KB 64B 8*VL 0 1 64 16 16 8 14513 74 0 14
32KB 64B 8*VL 0 1 128 16 16 8 14397 74 0 14
32KB 64B 8*VL 0 2 128 16 8 16 11933 84 0 23
32KB 64B 8*VL 0 1 64 16 16 16 14559 74 0 22
32KB 64B 8*VL 0 1 128 16 16 16 14752 74 0 22
32KB 64B 8*VL 0 2 128 16 16 8 15952 84 0 15
32KB 64B 7 0 2 128 16 16 16 15867 84 0 22
32KB 64B 7 1 2 128 16 16 16 16632 84 0 22
32KB 64B 8*VL 1 2 128 16 16 16 16800 84 0 23
32KB 64B 7 0 1 128 32 32 32 22180 82 0 38
32KB 64B 8*VL 0 2 512 32 16 32 19231 100 0 39
32KB 64B 7 0 1 512 32 32 32 22179 100 0 38
32KB 64B 8*VL 0 1 512 32 32 32 22064 100 0 38
32KB 64B 8*VL 0 2 128 32 32 32 26417 100 0 39
32KB 64B 7 0 2 128 32 32 32 24604 100 0 38
32KB 64B 8*VL 0 2 512 32 32 32 24790 100 0 39
32KB 64B 8*VL 1 2 512 32 32 32 25952 100 0 39

Appendix B. Raw VESPA Data on DE3 Platform 166

Table B.13: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for fbital.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 5251 46 0 8
8KB 16B 0 0 1 8 2 1 1 5305 46 0 8
8KB 16B 0 0 1 8 2 1 2 5290 46 0 10
8KB 16B 0 0 1 8 2 2 2 5530 46 0 10
8KB 16B 0 0 2 8 2 2 1 5930 50 0 8
8KB 16B 0 0 2 8 2 2 2 5974 50 0 10
8KB 16B 0 0 1 16 4 2 2 5768 48 0 10
8KB 16B 0 0 1 16 4 2 4 5860 48 0 14
8KB 16B 0 0 1 16 4 4 2 6066 48 0 10
8KB 16B 0 0 1 16 4 4 4 6013 48 0 14
8KB 16B 0 0 2 16 4 4 2 6662 54 0 10
8KB 16B 0 0 1 128 4 4 4 6139 60 0 14
8KB 16B 0 0 2 16 4 4 4 6729 54 0 14
8KB 16B 0 0 2 128 4 4 2 6716 62 0 10
32KB 64B 0 0 1 16 4 2 4 6968 70 0 14
32KB 64B 8*VL 0 1 16 4 2 4 7123 70 0 14
8KB 16B 0 0 1 32 8 4 4 6640 52 0 14
8KB 16B 0 0 2 128 4 4 4 6882 62 0 14
8KB 16B 0 0 1 32 8 8 4 7150 52 0 14
32KB 64B 7 0 1 16 4 4 2 7716 70 0 10
32KB 64B 7 0 1 16 4 4 4 7726 70 0 14
32KB 64B 7 0 2 16 4 4 2 8416 76 0 10
32KB 64B 7 0 2 16 4 4 4 8428 76 0 14
32KB 64B 7 0 2 128 4 4 2 8315 84 0 10
32KB 64B 8*VL 0 2 128 4 4 2 8539 84 0 11
32KB 64B 7 0 2 128 4 4 4 8574 84 0 14
32KB 64B 8*VL 0 2 128 4 4 4 8504 84 0 15
32KB 64B 8*VL 1 2 128 4 4 4 8919 84 0 15
32KB 64B 8*VL 0 1 32 8 8 4 10157 74 0 14
32KB 64B 7 0 1 32 8 8 4 10172 74 0 14
32KB 64B 7 0 1 32 8 8 8 10199 74 0 22
32KB 64B 8*VL 0 1 128 8 8 8 10364 82 0 22
32KB 64B 7 0 2 128 8 8 4 11435 84 0 14
32KB 64B 8*VL 0 2 128 8 8 4 11572 84 0 15
32KB 64B 7 0 2 128 8 8 8 11380 84 0 22
32KB 64B 8*VL 0 2 128 8 8 8 11459 84 0 23
32KB 64B 7 1 2 128 8 8 8 12286 84 0 22
32KB 64B 8*VL 1 2 128 8 8 8 11852 84 0 23
32KB 64B 8*VL 0 2 128 16 8 8 13566 100 0 23
32KB 64B 8*VL 0 1 64 16 16 8 15925 82 0 22
32KB 64B 8*VL 0 1 128 16 16 8 15854 82 0 22
32KB 64B 8*VL 0 2 128 16 8 16 13851 100 0 39
32KB 64B 8*VL 0 1 64 16 16 16 16040 82 0 38
32KB 64B 8*VL 0 1 128 16 16 16 16085 82 0 38
32KB 64B 8*VL 0 2 128 16 16 8 17587 100 0 23
32KB 64B 7 0 2 128 16 16 16 18060 100 0 38
32KB 64B 7 1 2 128 16 16 16 18909 100 0 38
32KB 64B 8*VL 1 2 128 16 16 16 18923 100 0 39
32KB 64B 7 0 1 128 32 32 32 25095 98 0 70
32KB 64B 8*VL 0 2 512 32 16 32 22773 132 0 71
32KB 64B 7 0 1 512 32 32 32 25278 132 0 70
32KB 64B 8*VL 0 1 512 32 32 32 25288 132 0 70
32KB 64B 8*VL 0 2 128 32 32 32 30822 132 0 71
32KB 64B 7 0 2 128 32 32 32 30714 132 0 70
32KB 64B 8*VL 0 2 512 32 32 32 31040 132 0 71
32KB 64B 8*VL 1 2 512 32 32 32 33409 132 0 71

Appendix B. Raw VESPA Data on DE3 Platform 167

Table B.14: System area of pareto optimal VESPA configurations after instruction subsetting
and width reduction for viterb.

DD DW DPV APB B MVL L M X ALMs M9Ks M144Ks 18-bit
DSPs

8KB 16B 0 0 1 4 1 1 1 5149 46 0 8
8KB 16B 0 0 1 8 2 1 1 5314 46 0 8
8KB 16B 0 0 1 8 2 1 2 5377 46 0 10
8KB 16B 0 0 1 8 2 2 2 5416 46 0 10
8KB 16B 0 0 2 8 2 2 1 5903 50 0 8
8KB 16B 0 0 2 8 2 2 2 5885 50 0 10
8KB 16B 0 0 1 16 4 2 2 5750 48 0 10
8KB 16B 0 0 1 16 4 2 4 5833 48 0 14
8KB 16B 0 0 1 16 4 4 2 6005 48 0 10
8KB 16B 0 0 1 16 4 4 4 6088 48 0 14
8KB 16B 0 0 2 16 4 4 2 6714 54 0 10
8KB 16B 0 0 1 128 4 4 4 6126 60 0 14
8KB 16B 0 0 2 16 4 4 4 6767 54 0 14
8KB 16B 0 0 2 128 4 4 2 6805 62 0 10
32KB 64B 0 0 1 16 4 2 4 7078 70 0 14
32KB 64B 8*VL 0 1 16 4 2 4 6908 70 0 15
8KB 16B 0 0 1 32 8 4 4 6656 52 0 14
8KB 16B 0 0 2 128 4 4 4 6849 62 0 14
8KB 16B 0 0 1 32 8 8 4 7231 52 0 14
32KB 64B 7 0 1 16 4 4 2 7733 70 0 10
32KB 64B 7 0 1 16 4 4 4 7769 70 0 14
32KB 64B 7 0 2 16 4 4 2 8404 76 0 10
32KB 64B 7 0 2 16 4 4 4 8446 76 0 14
32KB 64B 7 0 2 128 4 4 2 8510 84 0 10
32KB 64B 8*VL 0 2 128 4 4 2 8350 84 0 11
32KB 64B 7 0 2 128 4 4 4 8504 84 0 14
32KB 64B 8*VL 0 2 128 4 4 4 8478 84 0 15
32KB 64B 8*VL 1 2 128 4 4 4 8881 84 0 15
32KB 64B 8*VL 0 1 32 8 8 4 10142 74 0 15
32KB 64B 7 0 1 32 8 8 4 10151 74 0 14
32KB 64B 7 0 1 32 8 8 8 10095 74 0 22
32KB 64B 8*VL 0 1 128 8 8 8 10271 82 0 23
32KB 64B 7 0 2 128 8 8 4 11447 84 0 14
32KB 64B 8*VL 0 2 128 8 8 4 11358 84 0 15
32KB 64B 7 0 2 128 8 8 8 11422 84 0 22
32KB 64B 8*VL 0 2 128 8 8 8 11695 84 0 23
32KB 64B 7 1 2 128 8 8 8 11964 84 0 22
32KB 64B 8*VL 1 2 128 8 8 8 12296 84 0 23
32KB 64B 8*VL 0 2 128 16 8 8 13867 100 0 31
32KB 64B 8*VL 0 1 64 16 16 8 15784 82 0 31
32KB 64B 8*VL 0 1 128 16 16 8 15814 82 0 31
32KB 64B 8*VL 0 2 128 16 8 16 14167 100 0 47
32KB 64B 8*VL 0 1 64 16 16 16 16119 82 0 47
32KB 64B 8*VL 0 1 128 16 16 16 16032 82 0 47
32KB 64B 8*VL 0 2 128 16 16 8 17666 100 0 31
32KB 64B 7 0 2 128 16 16 16 17966 100 0 46
32KB 64B 7 1 2 128 16 16 16 19147 100 0 46
32KB 64B 8*VL 1 2 128 16 16 16 19982 100 0 47
32KB 64B 7 0 1 128 32 32 32 24991 98 0 110
32KB 64B 8*VL 0 2 512 32 16 32 23890 132 0 111
32KB 64B 7 0 1 512 32 32 32 25096 132 0 110
32KB 64B 8*VL 0 1 512 32 32 32 25891 132 0 111
32KB 64B 8*VL 0 2 128 32 32 32 31784 132 0 111
32KB 64B 7 0 2 128 32 32 32 31810 132 0 110
32KB 64B 8*VL 0 2 512 32 32 32 32233 132 0 111
32KB 64B 8*VL 1 2 512 32 32 32 34351 132 0 111

Appendix C

Instruction Disabling Using Verilog

Instruction subsetting is supported by automatically disabling instructions directly in

Verilog as opposed to building higher-level tools that generate the Verilog of the subsetted

processor. In this appendix we briefly describe the mechanism for enabling this in Verilog.

Similar to C, Verilog supports case statements which compare multiple values to a

single variable and perform the operations associated with the value that matches the

current value of the variable. Verilog also supports two special non-integer values: z for

high-impedance values and x for unknown values. To support the desired matching or

ignoring of these special values (treat as don’t care), three case statement variants exist.

1. case – Matches both z and x

2. casez – Don’t care for z, matches x

3. casex – Don’t care for both z and x

A real hardware circuit can never produce the value x–it is symbolic. Therefore any

requests to match x will be optimized away by the FPGA synthesis tools. We can use

this behaviour to eliminate hardware for a given instruction as described below using

Listing C.1 as an example.

First, use a case or casez statement to examine the current instruction opcode and

compare it against the different opcode values. Then, each instruction should enable key

168

Appendix C. Instruction Disabling Using Verilog 169

Listing C.1: Example Verilog case statement for decoding instructions and accompanying mul-
tiplexer for selecting results between adder and multiplier.

parameter OP ADD=’ h3f5
parameter OP MUL=’ h3c7

always@∗
begin

s e l =0;
case (i n s t r opcode)

OP ADD: s e l =0;
OP MUL: s e l =1;

endcase
end

a s s i gn r e s u l t= (s e l) ? mu l r e su l t : add r e su l t ;

control signals upon being matched with the current instruction. In the example shown

a multiplexer selects the result from either the adder or multiplier functional units and

makes this selection based on the current opcode. To disable the multiply instruction

a user need only insert a single x into its opcode value. In the example shown we can

change ’h3c7 to ’hxxx. As a result of this, the synthesis tools will recognize that the value

OP MUL can never match the current opcode and ignore any signals being set within the

OP MUL case statement clause. The synthesis tool will then discern that the multiplexer

sel signal is never set to 1 and will eliminate that input to the multiplexer as well as

the multiplier feeding it since it longer has any fan-out.

The reader should notice that the reason the sel signal never takes the value 1

after disabling the multiply is because its default assignment is set to 0 as seen in the

sel=0 statement beneath the begin keyword. This illuminates a key consideration for

performing instruction subsetting using this method: default values of control signals

should be assigned to match the values of the instructions that are least likely to be

subsetted in any application and/or least costly to support in hardware. In the example

above, the sel signal is set to 0 by default to match the add instruction. Addition

instructions are more likely to be used within an application than a multiply. They

are also much cheaper to implement in the FPGA fabric. With this default setting, the

hardware for supporting add instructions could never be fully eliminated by the synthesis

Appendix C. Instruction Disabling Using Verilog 170

tool, however since this is unlikely to occur and would only save a moderate amount of

area we accept this limitation. VESPA has this same limitation for adds as well as

loads. The only way to fully eliminate the hardware associated for these instructions is

to eliminate the complete coprocessor.

Bibliography

[1] “Intelligent ram (iram): the industrial setting, applications, and architectures,” in

ICCD ’97: Proceedings of the 1997 International Conference on Computer Design

(ICCD ’97). Washington, DC, USA: IEEE Computer Society, 1997, p. 2.

[2] “Actel ARM Cortex-M1,” http://www.actel.com/products/mpu/cortexm1/default.aspx,

Actel Corporation.

[3] T. Allen, “Altera Corporation,” Private Communication, 2009.

[4] “Excalibur,” http://www.altera.com/products/devices/arm/arm-index.html, Al-

tera.

[5] “Nios II,” http://www.altera.com/products/ip/processors/nios2, Altera.

[6] K. Asanovic, J. Beck, B. Irissou, B. Kingsbury, and N. Morgan, “The TO Vector

Microprocessor,” Hot Chips, vol. 7, pp. 187–196, 1995.

[7] K. Asanovic, “Vector Microprocessors,” Ph.D. dissertation, University of California-

Berkeley, 1998.

[8] J. Ball, “Altera Corporation,” Private Communication, 2005.

[9] ——, “Altera Corporation,” Private Communication, 2009.

[10] D. Besedin, “Platform benchmarking with RightMark memory analyzer,”

http://www.digit-life.com, 2004.

171

BIBLIOGRAPHY 172

[11] M. Budiu and S. C. Goldstein, “Bitvalue inference: Detecting and exploiting narrow

bitwidth computations,” in In Proceedings of the EuroPar 2000 European Conference

on Parallel Computing. Springer Verlag, 2000, pp. 969–979.

[12] R. Carli, “Flexible MIPS Soft Processor Architecture,” Massachusetts Institute

of Technology, Tech. Rep. MIT-CSAIL-TR-2008-036, 2008. [Online]. Available:

http://hdl.handle.net/1721.1/41874

[13] R. Cliff, “Altera Corporation,” Private Communication, 2005.

[14] G. C. Collections, “Auto-vectorization in GCC,” http://gcc.gnu.org/projects/tree-

ssa/vectorization.html, 2009.

[15] R. Dimond, O. Mencer, and W. Luk, “Application-specific customisation of multi-

threaded soft processors,” Computers and Digital Techniques, IEE Proceedings -,

vol. 153, no. 3, pp. 173–180, May 2006.

[16] ——, “ CUSTARD - A Customisable Threaded FPGA Soft Processor and Tools ,”

in International Conference on Field Programmable Logic (FPL), August 2005.

[17] B. A. Draper, A. P. W. Böhm, J. Hammes, W. A. Najjar, J. R. Beveridge, C. Ross,

M. Chawathe, M. Desai, and J. Bins, “Compiling sa-c programs to fpgas: Perfor-

mance results,” in ICVS ’01: Proceedings of the Second International Workshop on

Computer Vision Systems. London, UK: Springer-Verlag, 2001, pp. 220–235.

[18] “The Embedded Microprocessor Benchmark Consortium,” http://www.eembc.org,

EEMBC.

[19] J. Fender, J. Rose, and D. R. Galloway, “The transmogrifier-4: An fpga-based

hardware development system with multi-gigabyte memory capacity and high host

and memory bandwidth.” in IEEE International Conference on Field Programmable

Technology, 2005, pp. 301–302.

http://hdl.handle.net/1721.1/41874

BIBLIOGRAPHY 173

[20] M. Flynn and P. Hung, “Microprocessor design issues: thoughts on the road ahead,”

Micro, IEEE, vol. 25, no. 3, pp. 16–31, May-June 2005.

[21] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A multithreaded soft pro-

cessor for sopc area reduction,” in FCCM ’06: Proceedings of the 14th Annual IEEE

Symposium on Field-Programmable Custom Computing Machines. Washington,

DC, USA: IEEE Computer Society, 2006, pp. 131–142.

[22] J. W. C. Fu and J. H. Patel, “Data prefetching in multiprocessor vector cache

memories,” SIGARCH Comput. Archit. News, vol. 19, no. 3, pp. 54–63, 1991.

[23] “LEON SPARC,” http://www.gaisler.com, Gaisler Research.

[24] J. Gebis and D. Patterson, “Embracing and Extending 20th-Century Instruction Set

Architectures,” Computer, vol. 40, no. 4, pp. 68–75, 2007.

[25] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented fpga

computing in the streams-c high level language,” in FCCM ’00: Proceedings of

the 2000 IEEE Symposium on Field-Programmable Custom Computing Machines.

Washington, DC, USA: IEEE Computer Society, 2000. [Online]. Available:

http://portal.acm.org/citation.cfm?id=795916

[26] J. Gray, “Designing a simple fpga-optimized risc cpu and system-on-a-chip,” 2000.

[Online]. Available: citeseer.ist.psu.edu/article/gray00designing.html

[27] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quantitative analysis of the speedup

factors of fpgas over processors,” in Symposium on Field programmable gate arrays.

New York, NY, USA: ACM, 2004, pp. 162–170.

[28] J. L. Hennessy and D. A. Patterson, Computer Architecture; A Quantitative Ap-

proach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1992.

[29] “Intel Core i7,” http://www.intel.com/products/processor/corei7/, Intel Corpora-

tion.

http://portal.acm.org/citation.cfm?id=795916
citeseer.ist.psu.edu/article/gray00designing.html

BIBLIOGRAPHY 174

[30] A. Jones, D. Bagchi, S. Pal, X. Tang, A. Choudhary, and P. Banerjee, “Pact hdl:

a c compiler targeting asics and fpgas with power and performance optimizations,”

in CASES ’02: Proceedings of the 2002 international conference on Compilers, ar-

chitecture, and synthesis for embedded systems. New York, NY, USA: ACM, 2002,

pp. 188–197.

[31] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An fpga-based vliw

processor with custom hardware execution,” in FPGA ’05: Proceedings of the 2005

ACM/SIGDA 13th international symposium on Field-programmable gate arrays.

New York, NY, USA: ACM, 2005, pp. 107–117.

[32] C. Kozyrakis and D. Patterson, “Vector vs. superscalar and VLIW architectures

for embedded multimedia benchmarks,” IEEE/ACM International Symposium on

Microarchitecture, 2002.(MICRO-35)., pp. 283–293, 2002.

[33] ——, “Scalable, vector processors for embedded systems,” Micro, IEEE, vol. 23,

no. 6, pp. 36–45, 2003.

[34] C. Kozyrakis, “Scalable Vector Media Processors for Embedded Systems,” Ph.D.

dissertation, University of California-Berkeley, 2002.

[35] C. Kozyrakis and D. Patterson, “Overcoming the limitations of conventional vector

processors,” SIGARCH Comput. Archit. News, vol. 31, no. 2, pp. 399–409, 2003.

[36] I. Kuon, “Measuring and Navigating the Gap Between FPGAs and ASICs,” Ph.D.

dissertation, University of Toronto, 2008.

[37] M. Labrecque and J. G. Steffan, “Improving pipelined soft processors with multi-

threading,” in Proc. of FPL’07, Amsterdam, Netherlands, August 2007, pp. 210–215.

[38] M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Scaling Soft Processor Sys-

tems,” in IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM’08)., Palo Alto, CA, April 2008.

BIBLIOGRAPHY 175

[39] “Lattice Micro32,” http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/ind

Lattice Semiconductor Corporation.

[40] D. Lau, O. Pritchard, and P. Molson, “Automated generation of hardware accelera-

tors with direct memory access from ansi/iso standard c functions.” in FCCM, 2006,

pp. 45–56.

[41] A. Lodi, M. Toma, and F. Campi, “A pipelined configurable gate array for em-

bedded processors,” in FPGA ’03: Proceedings of the 2003 ACM/SIGDA eleventh

international symposium on Field programmable gate arrays. New York, NY, USA:

ACM Press, 2003, pp. 21–30.

[42] R. Lysecky and F. Vahid, “A study of the speedups and competitiveness of fpga soft

processor cores using dynamic hardware/software partitioning,” in DATE ’05: Pro-

ceedings of the conference on Design, Automation and Test in Europe. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 18–23.

[43] S. McCloud, “Catapult c synthesis-based design flow: Speeding implementation and

increasing flexibility,” in White Paper, Mentor Graphics, 2004.

[44] K. Meier and A. Forin, “Hardware compilation from machine code with m2v,” Field-

Programmable Custom Computing Machines, Annual IEEE Symposium on, vol. 0,

pp. 293–295, 2008.

[45] P. Metzgen, “A high performance 32-bit ALU for programmable logic,” in Proceeding

of the 2004 ACM/SIGDA 12th international symposium on Field programmable gate

arrays. ACM Press, 2004, pp. 61–70.

[46] “MIPS,” http://www.mips.com, MIPS Technologies.

[47] R. Moussali, N. Ghanem, and M. A. R. Saghir, “Supporting multithreading in config-

urable soft processor cores,” in International Conference on Compilers, architecture,

and synthesis for embedded systems. New York, NY, USA: ACM, 2007, pp. 155–159.

BIBLIOGRAPHY 176

[48] R. Mukherjee, A. Jones, and P. Banerjee, “Handling data streams while compiling

c programs onto hardware,” in VLSI, 2004. Proceedings. IEEE Computer society

Symposium on, Feb. 2004, pp. 271–272.

[49] J. Nurmi, Processor Design: System-On-Chip Computing for ASICs and FPGAs.

Springer Publishing Company, Incorporated, 2007.

[50] D. Nuzman and A. Zaks, “Outer-loop vectorization: revisited for short simd archi-

tectures,” in PACT ’08: Proceedings of the 17th international conference on Parallel

architectures and compilation techniques. New York, NY, USA: ACM, 2008, pp.

2–11.

[51] “SystemC,” http://www.systemc.org, OSCI.

[52] D. Pellerin and S. Thibault, Practical fpga programming in c. Upper Saddle River,

NJ, USA: Prentice Hall Press, 2005.

[53] F. Plavec, Z. Vranesic, and S. Brown, “Towards compilation of streaming programs

into fpga hardware,” in Specification, Verification and Design Languages, 2008. FDL

2008. Forum on, Sept. 2008, pp. 67–72.

[54] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P. Sundarara-

jan, and R. Wittig, “Performance and power of cache-based reconfigurable com-

puting,” in ISCA ’09: Proceedings of the 36th annual international symposium on

Computer architecture. New York, NY, USA: ACM, 2009, pp. 395–405.

[55] K. Ravindran, N. Satish, Y. Jin, and K. Keutzer, “An fpga-based soft multiprocessor

system for ipv4 packet forwarding,” Aug. 2005, pp. 487–492.

[56] R. M. Russell, “The cray-1 computer system,” Communications of the ACM, vol. 21,

no. 1, pp. 63–72, 1978.

[57] M. A. R. Saghir, M. El-Majzoub, and P. Akl, “Datapath and isa customization for

soft vliw processors,” Sept. 2006, pp. 1–10.

BIBLIOGRAPHY 177

[58] A. F. Scott Sirowy, “Where’s the Beef? Why FPGAs Are So Fast,” Microsoft

Research, Tech. Rep. MSR-TR-2008-130, 2008.

[59] C. Sullivan and S. Chapell, “Handel-c for coprocessing and co-design of field pro-

grammable system on chip,” in JCRA, 2002.

[60] “Vector extensions to the mips-iv instruction set architecture (the v-iram architec-

ture manual),” http://iram.cs.berkeley.edu/isa.ps, University of California-Berkeley.

[61] “MiBench,” http://www.eecs.umich.edu/mibench/, University of Michigan.

[62] D. Unnikrishnan, J. Zhao, and R. Tessier, “Application-Specific Customization and

Scalability of Soft Multiprocessors,” in IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM’09)., Napa, CA, April 2009.

[63] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM Comput. Surv.,

vol. 32, no. 2, pp. 174–199, 2000.

[64] J. E. Veenstra and R. J. Fowler, “ MINT: a front end for efficient simulation of

shared-memory multiprocessors,” in Proceedings of the Second International Work-

shop on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS ’94)., Durham, NC, January 1994, pp. 201–207.

[65] R. Wittig, “Xilinx Corporation,” Private Communication, 2005.

[66] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the obvi-

ous,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, 1995.

[67] “MicroBlaze,” http://www.xilinx.com/microblaze, Xilinx.

[68] “Xilinx Virtex II Pro,” http://www.xilinx.com/xlnx/xil prodcat landingpage.jsp?title=Virtex-

II+Pro+FPGAs, Xilinx.

[69] P. Yiannacouras, “The Microarchitecture of FPGA-Based Soft

Processors,” Master’s thesis, University of Toronto, 2005,

BIBLIOGRAPHY 178

http://www.eecg.toronto.edu/∼jayar/pubs/theses

/Yiannacouras/PeterYiannacouras.pdf.

[70] P. Yiannacouras, J. Rose, and J. G. Steffan, “The Microarchitecture of FPGA Based

Soft Processors,” in CASES’05: International Conference on Compilers, Architec-

ture and Synthesis for Embedded Systems. ACM Press, 2005, pp. 202–212.

[71] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific customization

of soft processor microarchitecture,” in FPGA’06: Proceedings of the International

Symposium on Field Programmable Gate Arrays. New York, NY, USA: ACM Press,

2006, pp. 201–210.

[72] ——, “Vespa: Portable, scalable, and flexible fpga-based vector processors,” in

CASES’08: International Conference on Compilers, Architecture and Synthesis for

Embedded Systems. ACM, 2008.

[73] ——, “Data parallel fpga workloads: Software versus hardware,” in Proc. of FPL’09,

Grenoble, France, August 2009.

[74] ——, “Fine-grain performance scaling of soft vector processors,” in CASES’09: In-

ternational Conference on Compilers, Architecture and Synthesis for Embedded Sys-

tems. ACM, 2009.

[75] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core cpu accel-

erator,” in Symposium on Field programmable gate arrays. New York, NY, USA:

ACM, 2008, pp. 222–232.

	Contents
	List of Tables
	List of Figures
	Introduction
	Research Goals
	Organization

	Background
	Microprocessor Background
	Vector Processors
	Vector Instructions
	Vector Architecture
	Vector Lanes
	Vector Chaining
	The T0 Vector Processor
	The VIRAM Vector Processor
	SIMD Extensions

	Field-Programmable Gate Arrays (FPGAs)
	Block RAMs
	Multiply-Accumulate blocks
	Microprocessor Cores

	FPGA Design
	Behavioural Synthesis
	Extensible Processors

	Soft Processors and Related Work
	Soft Single-Issue In-Order Pipelines
	Soft Multi-Issue Pipelines
	Soft Multi-Threaded Pipelines
	Soft Multiprocessors
	Soft Vector Processors

	Experimental Framework
	Overview
	Benchmarks
	Software Compilation Framework
	FPGA CAD Software
	Measuring Area
	Measuring Clock Frequency

	Hardware Platforms
	Transmogrifier-4
	Terasic DE3
	Measuring Wall Clock Time

	Measurement Error
	Verification
	Instruction Set Simulation
	Register Transfer Level (RTL) Simulation
	In-Hardware Debugging

	Advantages of Hardware Execution
	Summary

	Performance Bottlenecks of Scalar Soft Processors
	Integrating Scalar Soft Processors with Off-Chip Memory
	Scalar Soft Processor Area Breakdown
	Scalar Soft Processor Memory Latency

	Scaling Soft Processor Caches
	Soft vs Hard Processor Comparison
	Summary

	The VESPA Soft Vector Processor
	Motivating Soft Vector Processors
	VESPA Design Goals
	VESPA
	MIPS-Based Scalar Processor
	VIRAM-Based Vector Instruction Set
	Vector Memory Architecture
	VESPA Pipelines

	Meeting the Design Goals
	VESPA Flexibility
	VESPA Portability

	FPGA Influences on VESPA Architecture
	Selecting a Maximum Vector Length (MVL)
	Summary

	Scalability of the VESPA Soft Vector Processor
	Initial Scalability (L)
	Analyzing the Initial Design

	Improving the Memory System
	Cache Design Trade-Offs (DD and DW)
	Impact of Data Prefetching (DPK and DPV)
	Reduced Memory Bottleneck
	Impact of Instruction Cache (IW and ID)

	Decoupling Vector and Control Pipelines
	Improved VESPA Scalability
	Cycle Performance
	Clock Frequency
	Area

	Summary

	Expanding and Exploring the VESPA Design Space
	Heterogeneous Lanes
	Supporting Heterogeneous Lanes
	Impact of Multiplier Lanes (X)
	Impact of Memory Crossbar (M)

	Vector Chaining in VESPA
	Supporting Vector Chaining
	Impact of Vector Chaining
	Vector Lanes and Powers of Two

	Exploring the VESPA Design Space
	Selecting and Pruning the Design Space
	Exploring the Pruned Design Space
	Per-Application Analysis

	Eliminating Functionality
	Hardware Elimination Opportunities
	Impact of Vector Datapath Width Reduction (W)
	Impact of Instruction Set Subsetting
	Impact of Combining Width Reduction and Instruction Set Subsetting

	Summary

	Soft Vector Processors vs Manual FPGA Hardware Design
	Designing Custom Hardware Circuits
	System-Level Design Constraints
	Simplifying Hardware Design Optimistically

	Evaluating Hardware Circuits
	Area Measurement
	Clock Frequency Measurement
	Cycle Count Measurement
	Area-Delay Product

	Implementing Hardware Circuits
	Comparing to Hardware
	Software vs Hardware: Area
	Software vs Hardware: Wall Clock Speed
	Software vs Hardware: Area-Delay

	Effect of Subsetting and Width Reduction
	Summary

	Conclusions
	Contributions
	Future Work

	Measured Model Parameters
	Raw VESPA Data on DE3 Platform
	Instruction Disabling Using Verilog
	Bibliography

