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Abstract 1.1 Generating Custom Code for Custom Processors

Embedded systems designers that use FPGAs are increasingly intn this paper we investigate several opportunities for the compiler
cluding soft processorsn their designs (configurable processors to customize the code that is generated for soft processors—to un-
built in the programmable logic of the FPGA). While there has derstand the range of impact of such techniques, and to give design-
been a significant amount of research on adding custom instruc-ers more fine-grain control of the area/performance trade-offespa
tions and accelerators to soft processors, these are typically usedor soft processors. Using the SPREE infrastructure (Soft Psoces
to extend an unmodified base ISA targeted by generic compila- Rapid Exploration Environment) [18], we study the impact of our
tion such as with unmodifiegcc. In this paper we explore sev-  techniques on the wall-clock time and area of a wide range of soft
eral opportunities for the compiler to optimize the code generated processor architectures running a set of general-purpose barichm
for soft processors through application-specific customization of applications. In particular we focus on three main areas of cus-
the base ISA—techniques that are orthogonal to adding custom in-tomization: (i) low-level software/hardware trade-offs, for example
structions. In particular we explore: (i) low level software-hardware in shifter implementations and in hazard detection and observation;
trade-offs between basic instructions; (i) the utility of ISA-specific (i) inclusion of ISA-specific features, for example the MIPS load
features—in particular for the delay slots afidLo registers in the and branch delay slots, and/Lo multiplication result registers;
MIPS ISA; and (iii) application specific register management. We and (iii) register management, for example operand scheduling to
find that through these techniques that have no hardware cost weminimize forwarding logic, and reducing the number of architected
can improve the area efficiency of soft processors by 8% on av- registers. We also study the combination of these techniques and
erage across a suite of benchmarks, and by up to 37% in the bestheir resulting impact on area and performance. It is important to
case. understand that in this paper we do not study the addition of custom
accelerators in the form of custom instructions and co-processors,
Categories and Subject Descriptors  C [3]: Real-time and embed-  @lthough these are complementary to the compiler techniques that
ded systems we propose. Finally, the initial work presented here suggests future
efforts into larger-scale compiler optimizations for soft-processors

. . . and other customizable architectures.
General Terms  Soft Processors, Compiler Techniques, Architec-

ture Exploration, FPGA
1.2 Related Work

Keywords MIPS, subsetting, delay slots, hazard detection, for- Some of the trade-offs we examine in this paper have been explored
warding, registers previously in other contexts. Shrivastagh al. demonstrated that
instruction scheduling can exploit incomplete bypassing in embed-
ded processors [13]. The CUSTARD [6] customizable soft proces-
1. Introduction sor has the abil[ty to .customize. forwarding lines, and provides a
variable size register file and optional branch and load delay slots—
As embedded systems designers increasingly employ FPGASs,although to our knowledge these have not been specifically evalu-
their designs are likely to contain one or maeft process@a— ated.
processors that are implemented in the programmable logic of the  Design decisions similar to some of those we discuss in this
FPGA [3, 16]. Soft processors are useful because they can easpaper were made for commercial soft processors, although there is
ily be programmed (rather than writing HDL), and a designer can no published evaluation that quantifies their value. For example, the
instantiate the exact number of processors required and can havesommercial NIOS 1l and Microblaze processors implement three-
them incorporated into the greater design to ease placement anchperand multiplication (rather than having special multiplication
routing. A key advantage of soft processors is that they can be registers such as the MIBS/Lo registers), and the NIOS Il has no
customized to match the target application or applications. For ex- delay slots while the Microblaze supports variants of branches with
ample, a great deal of recent research has focused on the abilityand without delay slots. Support for unaligned memory operations
to add custom instructiongo soft processors, where frequently has recently been added gac, but the corresponding hardware

executed code segments are replaced with encapsulated hardwargnplementation of those operations is patented by MIPS [10].
implementations that can be “called” by the soft processor to im-

prove performance [1,5,6,8,20]. However, for many desigther I
than improving the performance of a soft processor at all costs, the 1.3 Contributions

designer desires a soft processor that is “fast enough” for thettarg This paper makes the following three main contributions: (i) pro-
application, and would rather save area for other uses—perhaps toposal and evaluation of several techniques for custom code gen-
help fit the overall design into a given FPGA component. Recent eration for soft processors, including software-only and custom
research explores architectural area/performance/power tfede-o shifters, software hazard observation, and operand scheduling; (ii)
and customization opportunities for a wide range of soft processor evaluation of the area/performance trade-offs for several MIPS-
designs [18,19]. However, this work assumes a fixed ISA (MIPS ), specific ISA features, includingi/Lo registers, load and branch
and the evaluation is based on defggdt compilation—missing delay slots; (iii) composition of those techniques to improve on the
many important opportunities for further customization. state of the art of generating application-specific soft processors.



Table 1. Benchmark applications evaluated.

Dyn. Instr.
Source Benchmark Modified Counts ‘ F/D/R ‘ ‘R;;\EAX‘

- = EX/M/WB
MiBench [7] BITCNTS di 26,175 - -
CRC32 d 109,414 (a) serial (b) pipe3
QSORT d 42,754
SHA d 34,394
STRINGSEARCH d 88,937
FFT™ di 242,339
DIJKSTRA® d 214,408 .
PATRICIA di 84,028 (c) pipes
XiRisc [4] BUBBLE_SORT - 1,824
CRC - 14,353
- o) [o] o ] ] 5] e
FFT - 1,901 -
FIRF - 822 (d) pipe7
QUANT* - 2,342
IQUANT* - 1,896
TURBO - 195,914 Figure 1. Processor pipeline organizations studied. The pipeline
vie - 17,860 stages areF for fetch,D for DecodeR for registerEX for execute,
[ Freescale[IS]]  oWRY [ T [ 47.564] M for memory, andiB for write-back. The arrow indicates a path
RATESTLZ] | GoL [ di [ 129,750 for forwarding two operands at once.
| bcT [ di | 269,953]

* Contains multiply
d Reduced data input set sor is the smallest (889 LEs, 67.7 MHz): it has a multiplier and
I Reduced number of iterations a serial shifter. The pipelined processors all have forwarding lines
for both operands by default. The 3-stage pipeline has a shifter that
; is implemented with the multiplier, and is the most area-efficient
2. InfraSt,rU(_:ture for Varying Soft Processor processor generated by SPREE [19] (1174 LEs, 78.3 MHz). The 5-
Compilation, ISAs, and Architectures stage pipeline also has a multiplier-based shifter, and implements a

Our compiler infrastructure is based on modified versiongaaf compromise between area efficiency and maximum operating fre-
4.0.2,Binutils 2.16, andlewlib 1.14.0 that target variations of ~ duency (1283 LEs, 86.79 MHz). The 7-stage pipeline has a barrel
the MIPS | [11] ISA; integer division is implemented in software, shifter, is the largest processor, and has the highest frequersy (15
and for now interrupts are not supported. Using the 20 embeddedLEs, 100.59 MHz).

benchmark applications described in Table 1, we evaluate our com-

piler techniques for generating custom code for varying soft pro- 3 | ow-Level Software-Hardware Trade-Offs

cessor architectures. o ,

We use the SPREE system [18] to generate a wide range of A powerful trade-off fo_r sof_t processor designs is the |mpleme_n-
soft processor architectures (full details are available in a previoustat'on,Of common routines in either software (through regular in-
publication [17]). SPREE takes as input ISA and datapath descrip- Structions in the base ISA) or custom hardware (implemented as
tions and produces RTL which is synthesized, mapped, placed, andcustom instructions in addition to the base ISA). However, for area-
routed by Quartus 5.0 [2] using the default optimization settings. sensitive appl_lcatlons we find it can be compglhng to explore simi-
The generated processors target the Altera Stratix FPGAs, in par-lalr trade-offs in the actual base 'SA“ and arthtscture. For example,
ticular theEP1S40F780C5 device—a mid-sized device in the fam- ~ Previously we demonstrated that "subsetting” the base ISA—so
ily with the fastest speed grade. We determine the area and clockthat the hardware support for any instructions that are not used by
frequency of each soft processor design using the arithmetic mean@n @pplication is deleted from the processor—results in an average
across 10 seeds (which produce different initial placements before@r€a reduction of 25% and up to 60% for some applications [19].
placement and routing) to improve our approximation of the true In this section we evaluat_e two opportunities to further_ subset the
mean. For each benchmark, the soft processor RTL design is sim-/SA and hardware by having the compiler compensate in software:
ulated using Modelsim 6.0b [9] (i) to obtain the total number of (i) by removing the shift unit or replacing it with one or more much
execution cycles, and (i) to generate a trace which is validated Smaller fixed-amount shift units, and (ii) by removing the hazard

for correctness against the corresponding execution by an emula-détection logic and instead observing dependences by having the
tor (MINT [14]). compiler schedule instructions and insert no-ops.

For Altera FPGAs, the basic logic element (LE) is a 4-input . .
lookup table plus a flip-flop—hence we report the area of these 3.1 Shifter Implementations
processors irquivalent LEsa number that additionally accounts It has been shown that it is advantageous to implement shift op-
for the consumed area of any hardware blocks (e.g., memory anderations using a hard multiplier if one is available [18]. However,
multiplication units). For the processor clock rate, we report the for an area-limited design that does not contain a hard multiplier
maximum frequency supported by the critical path of the proces- (opting instead for software multiplication if needed), a dedicated
sor design. To combine area, frequency, and cycle count to evaluateshifter can consume more than 250 LEs. Instead we investigate the
an optimization, we use a metric afea efficiencyin million in- possibility of implementing various shift operations either partially
structions per second (MIPS) per thousand equivalent LEs. Finally, or entirely in software. Shifts can be implemented entirely in soft-
since power is dependent on the duration of execution of a bench-ware using non-shift operations suchzakl and subtract. Al-
mark, we instead repognergy per cyclén nano-Joules (nJ) per  ternatively, we could implement a small number of fixed-amount
cycle. shifts in hardware (in far less area than a full variable-amount

As shown in Figuré 1, the processors that we evaluate are un-shifter), and use those operations to build up other shift amounts
pipelined gerial), 3-stage-pipelinedplipe3), 5-stage-pipelined through software (eg., call a shift-right-by-four operation three
(pipeb), and 7-stage-pipelineg{pe7). The unpipelined proces- times to implement a shift-right-by-twelve operation).



325 Table 2. Selection and impact of the two fixed-amount hardware

5 30 shifters for each benchmark that provide the maximum cycle count
£ 272-2 improvement. The last column represents the fraction of original
S s shifts that are not directly translated to a number of fixed-function
2 " shifts.
©
g 175 1st Shifter 2nd Shifter Relative | 9% Shifts not
s 15 Shift Shift Increase Fully
o 125 =fixédb‘ Benchmark | Type | Amt. | Type | Amt. | inCycles | Translated
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§ g turbo srl 2 sll 8 2.39 51%
@ vic srl 1 sli 1 3.2 0
bitcnts srl 4 srl 1 1.33 0
X .. R . . CRC32 srl 8 sl 2 1 48%
Figure 2. Percentage of dynamic instructions that contain shift ot S T o 1 T 0 >
operations, broken down by those that have a fixed shift-amount sha s T S 5 168 9%
encoded in the instructiors{1, sra, andsrl), those that have a stringsearch| sra 24 Sll 2 1.02 18%
variable shift amount stored in a registeiL{v, srav, andsrlv), FFT_MI sl 1 sll 1 1.57 0
and thelui instruction which also has a fixed shift-amount (16 bits dijkstra st 1 El 1 111 o
Ieft) patricia srl 1 sl 24 1.8 61%
) gol sra 24 sll 1 1.66 33%*
dct srl 1 sli 1 1.47 0
dhry sra 24 sl 1 1.33 35%*

savings because they implement shifts with a multiplier that can
be eliminated when removing the support for the shift operations.
Given these potential savings, we are motivated to investigate ways
=¢::uency to eliminate shift instructions from the base ISA, while minimizing

B EnergyPerCycle the impact on overall performance.

In the absence of a dedicated shift unit, shift operations can be
supported through clever use of other instructions. Left shifts can
be replaced by repeatedly adding a number to itself as many times
as the shift amount (effectively doubling the number every time);
this technique can also be applied to the 16-bit left shift required

serial pipe3 pipe5 pipe7 by load-upper-immediatélui) instructions. The right shift opera-
- - - - - - tion is more challenging, but it can be replaced by a method simi-
Figure 3. Impact of removing the dedicated shifter unit, relative to |5y to software division that performs successive subtractions; note
the corresponding default processors with software multiplies. thatshift right arithmetic(sra) requires sign extension to the most
significant bits, whileshift right logical (sr1) does not. We found
that supporting shift operations only in software resulted in unac-
Figure 2 shows the percentage of dynamic instructions executedceptable cycle-time increases—orders of magnitude for many ap-

Normalized LEs / MHz / nJ/Cycle

for each benchmark that perform a shift operation, for exasiife plications; hence we are motivated to compromise with hardware
left logical (s11), shift right arithmetic(sra), andload upper im- support for a small number of fixed value shifters.

mediate(1ui, which shifts left by 16 bits). Some instructions have We investigate the impact of having up to two fixed-amount

a variable shift amount stored in a registerdv), as opposedto an  hardware shifters in lieu of a variable-amount shifter, as shown in
immediate shift amount encoded in the instructiena). The re- Table/ 2. We decided which are the best two fixed-amount shifters

sults demonstrate that while shift instructions can be quite common for each benchmark based on the projected total dynamic cycle
(an average of 15% of dynamic instructions across all benchmarks),savings of each. Note that this calculation accounts for the fact
the vast majority shift by a fixed amount. In general, any variable that any shift operation that requiresraultiple of one of hardware
shifts can potentially be implemented entirely in software, or else shift-amounts may be implemented through a software routine that
through use of a fixed-amount unit shifter—with the possible ex- calls the hardware shifters an appropriate number of times. From
ception of thePATRICIA benchmark for which variable shifts are  the table it is apparent that left and right logical shifts of 1 bit are
more common (2.5% of dynamic instructions). the most beneficial, followed by shifts of 24-bits. We also report
To further demonstrate the potential for eliminating shift in- the increase in dynamic cycles relative to the default implementa-
structions, Figure 3 shows the impact of removing the dedicated tion with software multiplication (and a variable-amount hardware
shifter unit for various processors, each relative to the correspond shifter). The increase in cycles ranges to negligible for 5 bench-
ing default processor with software multiplies. We observe that re- marks to a worst case of 2.58 folelS, and a mean increase of 1.57
moving the shifter results in significant area and energy savings across all benchmarks which seems to be reasonable enough to be
for all processors, although clock frequency is not significantly af- exploited as an area/performance trade-off. Finally, we report the
fected, even it varies somewhat due to the impact on overall place-percentage of original shifts that are not fully translated to a num-
ment and routingpipe3 andpipe5 benefit from the largest area  ber of fixed-function shifts instructions but rather require software
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pipe3

pipe5 pipe7
default no mult sril+slil/

no mult

sra24+srll/
no mult

sra24 /
no mult

no shifter /
no mult

Figure 5. Measurements of various soft processors with hazard de-
tection logic removed, normalized to the corresponding soft proces-
sors having hazard detection logic.

(a) Comparison of variants of theipe3 processor

[l default (instr. count
of hard mult)

M fixed-shifters (instr.
count of soft mult)

[l fixed-shifters (instr.

count of hard mult)

dences are observed. However, hazard detection logic consumes a
non-trivial fraction of processor area: roughly 10% or 110 LEs. Al-
ternatively, the compiler could become responsible for observing
register dependences, implemented through instruction scheduling
where possible and insertion 8é-op instructions as a last resort.
Figure 5 shows the potential benefits of removing hazard detec-
tion logic, which are an area savings of 10%pape3 andpipe5,

and 6% forpipe7, and an increase in clock frequency of 3% for
pipe3, and 6% forpipe5 andpipe7. The serial processor is

not affected by this transformation because it has no hazard de-
tection logic. Since these results are promising, in future work we
will investigate the impact on cycle count, code size, and overall
performance of compiler scheduling and no-op insertion. However,

Efficiency (MIPS/1000LEs)

bitcnts

*
9
c
| ©
=]
o

stringsearch
FFT_MI*
dijkstra*
patricia

(b) Area efficiency of up to 2 fixed-function shifters per bemark

Figure 4. Results showing: (a) the area cost for variants of the
pipe3 processor, including two popular fixed-amount shifter con-
figurations from Table 2; (b) the area efficiency fop#pe3 pro-

cessor in its default configuration or equipped with up to 2 fixed-
amount shifters. The source of instruction count to compute the
MIPS value is indicated. Starred benchmarks (*) require multipli-

note that such compiler scheduling can be non-trivial, for example
to account for variable-cycle operations such as shifts—a practi-
cal solution may be to only partially remove hazard detection for
simple cases.

4.

Impact of Unique ISA Features

Customizable and parametric processors are often built on a base

RISC ISA, which can then be extended with custom instructions.
routines (that may in turn use the fixed-function hardware shifters, Depending on the base ISA, there may be unique ISA features
in particular for divisions). which may or may not benefit a given application. Since our in-

Figure 4(a) shows the area impact of gradually decreasing hard-frastructure is based on the MIPS ISA, we investigate the MIPS-

ware support for shifting for theerial processor (default), in-  specific features of load and branch delays slbidl.o registers,
cluding two common choices of fixed-amount hardware shifter and unaligned memory references; for example, the Nios Il ISA is
pairs 6rl1l & s111, andsra24 & srl1). The frequency of those  similar to MIPS, although it does not support any of those features.
processors is increased by 1% when removing the multiplication Hence we are motivated to evaluate the impact of these features.
support and 8% on average when removing the shifter or having
fixed-function shifters. Figure 4(b) shows the area efficiency of pro 4.1 Load Delay Slots

cessors with up to 2 fixed-function shifters. To compute the area thg \ips instruction set has two delay slots: one that follows load
efficiency of this optimization, we first use the instruction count jnqirctions, and one that follows branch and jump instructions. A

of the benchmarks with software multiplies to compare constant delay slot is a placeholder in which an instruction may be sched-
amounts of work. We find that area efficiency is improved by 20% ;4. so long as it does not depend on the result of a load, or will be
on average across all benchmarks (with a standard deviation ofgyecyted regardless of whether the corresponding branch is taken;
38%). Also in Figure 4(b), we show the efficiency of processors it here is no appropriate instruction to occupy a delay slot, a no-op
with fixed-function shifters when using the instruction count of the ingiryction is used. Delay slots are useful in helping tolerate delays
default processors equipped with hardware shifters. We can see thaly,e o hazards in a processor’s pipeline. Note that there is a neg-
having soft multiplies and fixed-function shifters proves to be more |igipje hardware cost for supporting load delay slots, while branch
area efficient for 3 benchmarks that use a hardware shifter ( ggjay slots can complicate several aspects of pipeline control logic.
QSORTaNdDIJKSTRA). Figure 6(a) shows the impact on wall-clock time of removing
the load delay slots on theerial processor. Since this processor

is not pipelined and has a one-cycle memory access latency, load
A nice feature of SPREE is that it automatically generates haz- delay slots have no benefit and removing them only improves wall-
ard detection logic which stalls the pipeline so that register depen- clock time. We also evaluate removal of load delay slots for the

cations.

3.2 Removing Hazard Detection Logic
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Figure 6. Impact on the wall-clock time of removing delay slots, Figure 8. Impact of removing the branch delay slot.

normalized to the corresponding default compilation/processor
(with delay slots).

1005;:::;':1:00 branch delay slot is occupied by a no-op and the load is only
p_start N ) /
nop executed whenever the branch is not taken. As a solution to this
load problematic case we implemented a compiler setting where the load
nop delay slot is removed, but a load can never be used in a branch
delay slot. In Figure 6(b) we evaluate this setting (the 2nd bar), but
(a) With the load delay slot. find that it is a compromise: it always improves on the baseline but
loop_start: cannot achieve the full benefit of simply removing the load delay
branch loop_start slot in some benchmarks.
load

4.2 Branch Delay Slots

A branch delay slot provides an extra cycle to compute the tar-
get of the branch in a pipelined datapath, before the program
Figure 7. Code showing a load instruction scheduled into a branch counter is updated with either the branch target or fall-through
delay slot by the compiler as a side-effect of the removal of the load locations—hence the delay slot instruction following a branch
delay slot. must be executed regardless of whether the branch is taken. Ac-

counting for branch delay slots requires additional control logic

and increases the complexity of the processor, and hence is a po-
3-stage pipelined processpipe3, as shown in Figure 6(b): on  tential area/performance trade-off in itself. Figlre 8(a) shows the
average this results in a small (1%) reduction in wall-clock time due impact on the processor metrics of removing support for branch
to cycle count savings, although the savings for some benchmarksdelay slots, which is negligible except for a 13% increase in clock
is significant. For pipelined processors, the forwarding lines can frequency for the 7-stage pipeline. This frequency improvement is
reduce stalls and make load delay slots unnecessary (again, sincelue a change in the critical path of the processor that occurs only
we have a 1-cycle access to the memory system). for that particular processor.

For CRC32 removing the load delay slot leads to a slowdown In Figure 6(b), we show that removing the branch delay slot
of 14% due to unfortunate circumstances: as illustrated in Figure 7, for the 3-stage pipeline increases the number of cycles because our
the compiler scheduled a load in a branch delay slot, such that theprocessor simply assumes that branches are not taken—i.e. all in-
load is then unnecessarily executed along with every execution of structions executed after the branch must be squashed when the
the branch. In contrast, when a load delay slot is supported the branch is taken. In Figufe 8(b) removing branch delay slots from

(b) Without the load delay
slot.
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Figure 9. Schematic of théli/Lo circuitry. The solid line repre- 8 i L
sents the default MIPS implementation, while the dashed line rep- § i
resents the proposed eliminationHifiLo registers. S i
. i
the 7-stage processor reduces wall-clock time by an average of 8%, Low Hight Low Hight Low High+ Lo  High+
which is a significant improvement—this is due entirely to an in- — — — —
serial pipe3 pipe5 pipe7

crease in clock frequency, as the average cycle count actually in- ] ) o
creases in this case. We are currently implementing more sophis-(&) CAD metrics for processors that implement only one insibacto
ticated branch prediction support so that we may more thoroughly compute the low partLow) or two instructions to compute both the high

study the potential of customization of branches and their delay ﬁzglle?;veﬁ?;fo'ﬂ'gh + Low) relative to the corresponding default multiplier

slots.
1.2

4.3 3-Operand Multiply vs Hi/Lo Registers 11
On a 32-bit architecture, the multiplication of two registers results 2 17
in a 64-bit product of which the 32 most significant bits are called = 091
the high partand the 32 least significant bits are called toe g 0.8+
part. In a MIPS processor, special registers caliedandLo hold 2 07
the result of a multiplication so the destination of a multiplication 2 0.6
is implicit. To become accessible to the ALU, the high and low g o5
parts of the result must be loaded in the register file by two separate £ .41
instructionsmfhi andmflo. Figure 9 shows the two registers that € 03
are used exclusively for the multiplication (since our processors 2 o
support only software division). Those registers were originally 01
introduced to reduce the scheduling complexities of the multi-cycle o
multiply and divide instructions and because they had hardware serial pipe3 pipes pipe7

interlocks, while the rest of the processor did not. (b) Impact on wall-clock time normalized to the execution whie tefault
To evaluate the costs/benefit of this particular feature of the muyiplier averaged over all benchmarks that contain muttilons (see

ISA, we optionally support a three-operand multiply (similar to the  Tabld 1).
NIOS Il [3] or Microblaze [16] ISAs), where the destination reg-
ister may be any general-purpose register, and is explicitly defined Figure 10. Impact of 3-operand multiplies.
in the instruction encoding. Since only one 32 bit destination reg-
ister may be specified, we require two multiply instructions: one to
compute the high part of the multiplication, and one to compute the
low part. A side-benefit of this approach is that only one multipli-
cation instruction need be used if only the low part of the operation
is required. We found that only the low part of multiplication is
required forFFT, FIR, QUANT, IQUANT, and QSORTbenchmarks,
while FFT_MI, DIJKSTRA andDCT require 64 bit multiplication re- ~ While the instructiond w1, 1vr, swl, andswr have patent restric-
sults (the remaining benchmarks do not contain multiplies). tions and are thus not supported by SPREE, they can be generated

Figure 10(a) shows the impact of 3-operand multiplies relative by gcc. These perform unaligned memory loads and stores, effec-
to the corresponding default multiplier implementation for the dif- tively comprising memory references with shift operations. In ab-
ferent pipelined processors. While there is a modest area savingssence of those instructions, compilers typically use padding to align
(2% on average) due to elimination of the actirakndLo registers data to word boundaries. Since padding is not always possible, it is
(which are cheap in an Altera FPGA), processor frequency suffers important to measure the cost/benefit of these instructions. In Fig-
significantly in most cases because the write-back path from the ure 11, we show the reduction in dynamic instructions through the
multiplier to the register file becomes a critical path. However, we addition of these more powerful instructions. FeIRBO, SHA, and
find that the average Cyc|e countis reduced by 2% for the 3_0perandDHRY, this savings is Significant, but on average these instructions
multiplication (with a standard deviation of 3%), due to a reduction ©only reduce the cycle count by 0.5% and hence are not generally
on average of the number of instructions required for multiplica- worth supporting.
tion: when only the lower 32-bit result is required, only the one
3-operand multiply instruction is required, while for the 2-operand . . . .
muIFt)ipIy instructi%% amflo instructio(rq1 is additionally requireg. 5. Application-Specific Register Management

Figure 10(b) shows that wall-clock time is improved by 3% For a soft processor, the set of architected registers in the base ISA
on average for the 3-stage pipeline, but unchanged for the 7-stageand their conventional uses may not necessarily match the needs
pipeline. Taking area into consideration, our conclusion is that of the target application, or may miss opportunities for a more effi-
the 3-operand multiplication (along with the removal of Hig¢Lo cient architecture. In this section we present and evaluate two tech-
registers) is beneficial only for our 3-stage pipelined processor. nigues that customize the compiler’s use of registers to applica-

4.4 Unaligned Loads and Stores
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Figure 11. Percentage of dynamic instructions removed with the
addition of the patented instructions performing unaligned memory
accesses.
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Table 3. Percentage cycle count savings of forwarding lines and 3
operand scheduling, relative to the corresponding default pracesso 8 H_ H |r
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(b) Comparison of the area efficiency of thigpe3 processor with forwarding for
5.1 Operand Schedulin one operandfyvd A), plus operand schedulinrd A + 9, and with forwarding
P g ) . forboth operandsid AB.
To reduce stalls due to data hazards between registers in pipelined

tions: operand scheduling, and limiting the use of architected reg-
isters.

processors, designers employ forwarding lines to forward the result  Figyre 12. Impact of forwarding lines and operand scheduling.
computed in a later stage directly to an earlier stage, bypassing the

register file. In our soft processor designs, we optionally support
one pair of forwarding lines (see Figuré'1Bince operands for
instructions that implement a commutative operation (sucidds
may be freely exchanged, our insight is that we could bias operandsg single forwarding line at no hardware cost, it cannot equal the
with near-distance register dependences to favor a given operandyenefits of an additional forwarding line.
position in the instruction, potentially allowing us to reduce the Although our algorithm improves the effectiveness of a single
performance impact of removing one of the two forwarding lines fonyarding line, unexploited forwarding opportunities still remain
from our processors. Our algorithm for scheduling operands is as for two reasons: (i) for each instruction we can only choose one
follows. For each instruction, we traverse a history of instructions permutation of its operands; and (ii) our algorithm does not pre-
in the static program order—from the most recent to the oldest— jict control flow. Figureé 13 illustrates the three situations where
to find read-after-write dependences, and to adjust the order of thepissed forwarding opportunities occur. On average with the 3, 5
operands to take advantage of the supplied forwarding lines. Care isang 7 stage pipelines with a single forwarding line, the breakdown
taken not to affect the register allocation which could counter/undo f missed forwarding opportunities after operand scheduling is as
our operand scheduling. . follows: 8% for commutative operations with forward branches
Table[3 shows the impact of forwarding lines and operand (rigure 13(a)); 10% for commutative operations with backward
scheduling on the 3, 5, and 7 stage pipelines. We find that the ad-pranches (Figure 13(b)); 82% for non-commutative operands (Fig
dition of a single forwarding line improves the average cycle count re[13(c)). The most frequently occurring non-commutative in-
by 9 to 12 percent for the different processors, and that the addition srctions that result in missed forwarding opportunities are store
of compiler operand scheduling provides an additional 1 or 2 per- jnstructions b, sw), and the set-less-than instructiosi¢ and
cent average improvement (but up to 8% for some benchmarks). 51ty set a register if a comparison is true). These results mo-
Note that we observed thgtc already favors one operand, hence tjyate future improvements to our algorithm to schedule non-
our scheduling efforts are on top of that bias. Addition of a second commutative operands. One available option would be to change
forwarding line further improves cycle count by 3o 5 percent. In he |SA definition on a per-application basis to choose the best av-
summary, while operand scheduling provides an improvement over grage operand permutation for some non-commutative instructions.
Figure 12(a) shows the impact of forwarding lines on the maxi-
1 Additional forwarding lines are not possible in these dathp. mum frequency, the area and the energy per cycle of our pipelined
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Figure 14. Impact on wall-clock time of increasingly limiting the
processors. In all cases, area is increased by less than 10% and emumber of registers available to the compiler for fegial pro-
ergy per cycle by less than 5%. Surprisingly, certain processor con- cessor.
figurations have an improved maximum operation frequency which
should be considered within the noise margin of the placement and - )
routing of the FPGA. As seen in Figure 12(b), because of the area Ve Vverified that some benchmarks did not use any ofsthes7
cost of having two forwarding lines, compiler support allows some registers with the default _optlmlzed compilation. Removing some
benchmarks (such @sUBBLE_SORT, DES and STRINGSEARCH of the 10 callee saved registet®(t9) was not yet attempted.
to be equally or more efficient with a single forwarding line than
with two forwarding lines. While compiler support improves area 6. Combining Customization Techniques
efficiency of this processor by 2% on average (and up to 5% for
FIR), a single forwarding line remains less area efficient than two
forwarding lines overall (3% degradation).

In this section we evaluate the impact of combining the compiler
optimizations described in this paper, and their interaction with
application-specific architecture and ISA subsetting as detailed in a
previous publication [19].

In Figure 15, the first bar shows the area efficiency forpthee3
Not all applications require the use of all architected registers in processor, since overall it is the most area efficient over all our
a base ISA to maintain good performance, and for other applica- benchmarks. In other words, we would chogsige3 if we re-
tions limiting the number of registers accessible by the compiler quired the one most efficient processor to support all benchmarks.
has a tolerable impact on performance. For an FPGA-based softWe usepipe3 as the comparison basis for our application-specific
processor, since the register file is typically implemented using a optimizations. For the second bakS), we select the most area-
block memory, the memory space freed by reducing the number efficient processor architecture for each application (considering
of architected registers is not easily reclaimed by the rest of the as design options shifter implementations, pipeline depth and for-
FPGA design. However, these free register locations could poten-warding lines, hardware vs software multiplication support), in a
tially be exploited by new custom instructions or functional units, similar manner to earlier work [19] but with the addition of for-

5.2 Limiting Use of Architected Registers

for a tighter integration with the processor. warding lines as a design option. Choosing an application-specific
In this section we evaluate the impact of limiting the use of processor design improves efficiency by 17% on average, illustrat-
certain architected registers for the base MIPS ISA, ugoag ing the power of customization for soft processors. For the third

with full optimization (-03). In particular, for now we examine the  bar (AS + Subsgt to the best application-specific processor we ad-

MIPS convention of reserving two registers for operating system ditionally apply ISA subsetting (removal of the processor support

purposes K0-k1), and eight registers for caller-saving across a for any instructions that are unused by that application [19]). Sub-

function call €0-s7). We modifiedgcc to usek0-k1 as general setting further improves efficiency by an additional 8% on average,
purpose registers but observed no significant application speedupalthough for some applications, such g and BUBBLE_SORT,

over all our benchmarks, meaning that an increased number ofthe benefit is much greater since they have a large number of un-

registers was not helpful. We thus revergea to not usingk0-k1 used instructions.
and modified it so that it does not use some registers izthe7 For the fourth barAS + Op), to the best application-specific
register range. processor we apply the most effective combination of the follow-

For our embedded benchmark set, Figure 14 shows that sev-ing compiler techniques: (i) custom fixed-amount shifters, (ii) de-
eral applications do not fully take advantage of the 32 registers lay slot removal, (iii) 3-operand multiplication, and (iv) operand
assumed by the MIPS ISA: onlpES incurs an observable slow-  scheduling—the remaining optimizations (compiler-managed haz-
down when removing 2 registers from the default compilation. The ard detection, unaligned memory accesses, and register elimina-
fact that theBiITcNTS andPATRICIA benchmarks encounter a small  tion) are not evaluated here because the SPREE infrastructure does
speedup is an unexpected side-effect of register allocation, instruc-not yet either support or exploit them. The table in Figure 15 shows
tion scheduling and forwarding opportunities. The unpipelined pro- the combination of compiler optimizations selected for each ap-
cessor in Figure 14 suffers the most from fewer registers among ourplication. Our optimizations provide an average improvement of
reference processors because memory spills due to registergressu 5 MIPS/1000 LEs (8%) over the application-specific processor
result directly in additional processor waiting cycles for memory. (AS; the maximum improvement (for CRC32) is 20 MIPS/1000
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Figure 15. Area efficiency of theipe3 processor, best application-specific proces8d,(@nd the best application specific processor with:
subsetting AS + Subsgt compiler optimization (em AS + Opt); and both improvememS (+ Subset + Opt The table describes which
optimizations were beneficial and hence enabled for each benchmark.

LEs (37%), mostly due to the effectiveness of the fixed-function the best case). By including subsetting and our optimizations, the
shifters. mean improvement remains 8% but the maximum is 40%.

For the fifth and final barAS + Opt + Subsét we evalu- In the future, we will study in greater depth the potential for
ate the combination of our optimizations and subsetting on the optimizations that focus on branch prediction and the memory sys-
application-specific processors, which improves efficiency over tem. We also plan to develop methods for automatically deciding at
subsetting alone by 8% on average. We also find that our opti- compile time the best optimizations and architectural features for a
mizations and subsetting can be complementary: for example, for specific application.

FIR the efficiency of optimizations and subsetting is greater than
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