
The Game of Twenty Questions: Do You Know
Where to Log?

Xu Zhao
University of Toronto

Kirk Rodrigues
University of Toronto

Yu Luo
University of Toronto

Michael Stumm
University of Toronto

Ding Yuan
University of Toronto

Yuanyuan Zhou
University of California

San Diego

ABSTRACT

A production system’s printed logs are often the only source

of runtime information available for postmortem debugging,

performance analysis and profiling, security auditing, and

user behavior analytics. Therefore, the quality of this data is

critically important. Recent work has attempted to enhance

log quality by recording additional variable values, but log-

ging statement placement, i.e., where to place a logging state-

ment, which is the most challenging and fundamental prob-

lem for improving log quality, has not been adequately ad-

dressed so far. This position paper proposes we automate the

placement of logging statements by measuring how much

uncertainty, i.e., the expected number of possible execution

code paths taken by the software, can be removed by adding

a logging statement to a basic block. Guided by ideas from

information theory, we describe a simple approach that auto-

mates logging statement placement. Preliminary results sug-

gest that our algorithm can effectively cover, and further im-

prove, the existing logging statement placements selected

by developers. It can compute an optimal logging statement

placement that disambiguates the entire function call path

with only 0.218% of slowdown.

ACM Reference format:

Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan,

and Yuanyuan Zhou. 2017. The Game of Twenty Questions: Do

You Know Where to Log?. In Proceedings of HotOS ’17, Whistler,

BC, Canada, May 08-10, 2017, 7 pages.

https://doi.org/10.1145/3102980.3103001

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5068-6/17/05.

https://doi.org/10.1145/3102980.3103001

1 INTRODUCTION

As today’s systems grow in scale and complexity, informa-

tion collected during their execution has become invaluable

for postmortem debugging, performance analysis and profil-

ing, security auditing, and user behavior analytics. The prob-

lem of how to collect this information, however, is challeng-

ing. There is a reluctance to use intrusive techniques, such

as deterministic replay [1–4], given their overhead and the

required non-trivial modifications to the software stack. In-

stead, developers rely on manually inserting logging state-

ments.

The quality and informativeness of output log data is

critically important. Most efforts to improve the quality of

existing log messages are based on automatically collect-

ing additional diagnostic information in each logging state-

ment [7, 11], or on adjusting the verbosity of these state-

ments [10]. They do not address the issue of where to place

logging statements – a more fundamental and yet much

more challenging problem. In earlier work [9], we proposed

automatically placing error logging statements at locations

where software error conditions (e.g., non-zero system call

return values) may occur. While this is a crucial first step to-

wards the placement of logging statements for postmortem

debugging, many failures, especially complicated ones with

long fault-propagation paths, require additional logs that cap-

ture non-error but still important execution states. In this

paper, we refer to such logs as INFO-logs, since they typi-

cally have INFO verbosity and are enabled by default in pro-

duction environments.1 In mature software systems, such as

HDFS, these INFO-logging statements are almost as preva-

lent as all the WARN/ERROR/FATAL logging statements

combined (816 versus 912 logging statements, respectively),

demonstrating that they are equally critical for effective post-

mortem diagnosis.

1More verbose levels, e.g., DEBUG, usually output events that are less im-

portant, and are typically disabled by default in production environments.

However, we are aware of some commercial systems that enable DEBUG-

level logs by default.

125

https://doi.org/10.1145/3102980.3103001
https://doi.org/10.1145/3102980.3103001

However, automatic placement of INFO-logging state-

ments is much more challenging than automatic placement

of error logging statements or enhancing existing logging

statements. First, without domain expertise, it is hard to know

which program locations are more “log-worthy” than oth-

ers. Even for programmers with domain expertise, deciding

whether or not to insert an INFO-logging statement at a par-

ticular location is like “shooting blind”, since it is often hard

to predict the usefulness of the statement prior to the software

release and the occurrence of unexpected failures. In contrast,

error logging statements are often much easier to place (e.g.,

wherever a generic error condition is encountered), and lan-

guages with built-in exception support, such as Java or Scala,

make it even easier as one can simply place error logging

statements in the exception-catch blocks.

Second, unlike inserting error logging statements, where

overhead is often not a concern because the system is already

in an erroneous state, each additional INFO-logging state-

ment introduces performance overheads and uses up storage

resources. This is perhaps why, despite the importance and

prevalence of INFO-logs, we are not aware of any guidelines

in any systems that specify where one should place INFO-

logging statements.

In this position paper, we propose to completely automate

the placement of logging statements for a variety of purposes,

including:

• Postmortem debugging, so that developers or administra-

tors can understand a failure by reconstructing the failed

execution path (from automatically placed logging state-

ments).

• Performance analysis and profiling, so that developers can

analyze the performance of a system, e.g., the latency

of each request (from automatically placed logging state-

ments).

• Security auditing, so that vendors can analyze exactly what

information each user was able to get access to and what

information each user was able to change. In case of a secu-

rity breach, vendors can identify what information leaked

out and what may have been compromised.

• User behavior analytics, so that vendors can analyze users’

behavioral patterns to optimize a product or service accord-

ingly.

Up to now, our focus has been on achieving the first objective,

which is also the focus of this paper.

Our key observation is that log data is used to determine

which requests, functions, and execution paths led to a fail-

ure. Information theory can help us place logging statements

so that (1) they provide the information needed, and (2) do

so in an efficient way. To motivate the approach, consider

how the problem of logging is similar to the game of twenty

questions, where a player’s goal is to identify an object in

twenty yes/no questions or less. Information theory suggests

the best strategy is to ensure each question eliminates at least

half of the remaining uncertainty (i.e., possibilities). Simi-

lar to the game, placing a logging statement is like asking a

yes/no question whose answer depends on whether the state-

ment gets executed or not.

However, there are two differences between the twenty

questions game and placing a logging statement. First, the

cost is not measured by the number of logging statements

being inserted, but by the number of log messages being

printed.2 Secondly, the placement of logging statements is

not targeted to a specific failure, but any failure that could

occur.

We propose an algorithm design that realizes the follow-

ing: given a performance overhead threshold (e.g., less than

2% slowdown), it computes the “best” placement of INFO-

logging statements such that uncertainty is minimized. In in-

formation theory, uncertainty is a measure of how sure you

are about the next bit of information to be received. Simi-

larly, we model the “uncertainty” of software by considering

the total number of distinct code paths a program execution

may have taken. Intuitively, a program with a small number

of possible paths has less uncertainty than one with more

paths. Note that execution paths can be measured at different

granularities. Function call path and branch-level profile are

examples of two granularities.

We have implemented a simple prototype that can auto-

matically place INFO-logging statements. Furthermore, we

show that the algorithm automatically places such statements

in the same program locations where programmers manu-

ally inserted logging statements, demonstrating that our idea

indeed matches developers’ intuition in logging. Since the

placement is automatic, the algorithm does not “forget” to

place a logging statement, which happens all too often in the

real-world where many logging statements are only added

as after-thoughts, i.e., they are added after a failure has oc-

curred [10]. We further show that our algorithm can im-

prove existing log-placements even in mature systems like

HDFS. Finally, we show that our algorithm can compute a

log-placement strategy that completely disambiguates the en-

tire call path of HDFS requests with only 0.218% of perfor-

mance slowdown.

2 SOFTWARE UNCERTAINTY

The central task of postmortem debugging is to determine

which path was taken by the failed execution. We refer to

the space of all possible execution paths as the uncertainty

space,X , or simply uncertainty, and x represents one specific

execution path. Shannon’s entropy [8] is a useful measure

2We assume that the size of the binary executable is not of primary concern

since the number of static logging statements will primarily affect binary

size.

126

1 boolean invalidateBlock(Block b,

2 DatanodeInfo dn) throws IOException {

3 DatanodeDescriptor node = getDatanode(dn);

4 if (node == null)

5 throw new IOException("Can't invalidate"+b

6 +"because datanode "+dn+" doesn't exist");

7

8 //Check how many copies we have of b

9 NumberReplicas nr = countNodes(b.stored);

10 if (nr.replicasOnStaleNodes() > 0) {

11 postponeBlock(b.corrupted);

12 return false;

13 } else if (nr.liveReplicas() >= 1) {

14 // We have at least one copy on live node,

can delete it.

15 addToInvalidates(b.corrupted, dn);

16 removeStoredBlock(b.stored, node);

17 return true;

18 } else {

19 return false;

20 }

21 }

Figure 1: Code snippet from HDFS.

of uncertainty that relies solely on the probability of each

possible outcome. It is defined as,

H (X) = −
∑

x ∈X

p (x) log2 p (x) (1)

where p (x) is the probability of observing the x th execution

path. For now we assume that we are able to observe all of

X , i.e., all possible paths, along with the probability of each

path being taken in a production environment. Obviously this

is impossible in practice, but it could be approximated by

obtaining traces from running realistic workload generators,

during Alpha and Beta testing, or even by continuously sam-

pling the paths in a production environment. This entropy,

H (X), measures uncertainty. Intuitively, it means that in or-

der to represent all possible outcomes in X , we will need

at least H (X) bits of information. Note that the granularity at

which the path is being recorded (i.e., at the branch, function,

or component level) is inconsequential to the algorithm.

Consider the HDFS method shown in Figure 1. Figure 2

shows the control flow graph (CFG) for this method. There

are four possible execution paths. If we assume each path

is equiprobable, the entropy of this method is 2.0, indicating

that on average we need two bits to represent each path. In re-

ality, the probability of these four paths is different. Path 3 oc-

curs most frequently as it represents the most common case.

The other three paths handle rare conditions: the datanode

13

3

5
9

11

1915

EXIT

P1 P2
P3 P4

Figure 2: The control flow graph of invalidateBlock().

Each node represents a basic block. The number in the node

is the line number of the first code line of the respective basic

block. P1, P2, P3, P4 number the four possible execution paths.

cannot be located (path 1), the block is corrupted (path 2), or

there does not exist any live replica of the block (path 4).3

Assume we observe that the probabilities of the four paths

are 1%, 4%, 90%, and 5%. Then Equation 1 gives us entropy

H = 0.605. This indicates there is less “uncertainty” when

executing this method in production than if the four paths

were equiprobable.

3 A LOG-PLACEMENT ALGORITHM

We now describe our log-placement algorithm. A log-

placement is a set of locations in the program where logging

statements are placed. Given a program and a performance

degradation threshold, the core idea of the algorithm is to de-

cide for each subsequent logging statement where in the pro-

gram to place the statement such that (1) the threshold is re-

spected, and (2) the log-placement minimizes uncertainty rel-

ative to all other placements that respect the threshold. This

requires us to be able to measure the overhead and uncer-

tainty of each log-placement so that we can identify the best

placement.

For each basic block, we consider two possibilities: to

place a logging statement there or not. Thus, we can enu-

merate all possible overall log-placements. Figure 3 shows

four of these for invalidateBlock().

Each log-placement clearly reduces the entropy, i.e., un-

certainty. Our algorithm allows us to measure the precise un-

certainty that remains in the program after placing each log-

ging statement. To do this, we first need to consider every se-

quence of logging statements the program could output, then

measure the entropy given each log sequence, and finally ag-

gregate the entropies by considering the probability of the

corresponding log sequence. More formally, the entropy of

a program under a log-placement strategy, L, can be defined

3Note that only path 1 is an actual error condition; path 2 and 4 are non-error,

but rare, conditions.

127

13

3

Figure 3: Four different log-placements for invalidateBlock(). A colored node indicates a logging statement has been

placed in the basic block. We also show the remaining uncertainty under each log-placement strategy.

by Equation 2:

HL (X) =
∑

l ∈L’s log sequences

p (l)H (Xl) (2)

where l is a possible log sequence output by the program’s

execution, p (l) is the probability of the program outputting

log sequence l , andH (Xl) is the entropy of the program when

the execution outputs sequence l .

For example, consider placement 2 in Figure 3. With this

log-placement, l could be one of the following: (1) empty,

i.e., no log is output after the method is executed, which is

the output of path 1; (2) <9>, which is the output of either

path 2 or 3; or (3) <9,19>, which is the output of path 4.

Recall that the four execution paths have probabilities 1%,

4%, 90%, and 5%, so the probabilities of an execution of

this method outputting the three log sequences are 1%, 94%,

and 5%, respectively. If the log output is either empty or

<9,19>, the entropy H (Xl) is 0, because one can unambigu-

ously know that the path is either path 1 or path 4. How-

ever, if the log output is <9>, then one still cannot determine

whether the execution took path 2 or 3; more precisely, the

remaining uncertaintyH (Xl) when l = <9> is 0.253, as calcu-

lated by Equation 1. We can now calculate the entropy of this

log-placement: HL (X) = p (empty) × H (Xempty) + p (<9>) ×

H (X<9>) + p (<9,19>) ×H (X<9,19>) = 0.237.

Both placement 3 and 4 in Figure 3 eliminate all uncer-

tainty since different execution paths will output different log

sequences.

One also has to consider the performance overhead of each

placement. We can simply run the program with the inserted

logging statements using workload generators, and measure

the average overhead. However, because we consider a large

number of placement strategies, running each against real

workload may be time consuming. We can first estimate the

overhead of each path as,

overhead(x) =
|L(x) | × LOG_LAT

runtime(x)
(3)

where |L(x) | is the number of log messages in path x for

placement strategy L, LOG_LAT is the approximate latency

of executing each logging statement, and runtime(x) is the

runtime of path x , measured when we collect its trace. For

example, in invalidateBlock(), the runtime of path 3 is

8.5 ms on our server cluster, and the execution of a logging

statement is at least 20 µs without printing any parameter

values. With these measurements, we can estimate that un-

der placement 2 and 3 in Figure 3, the overhead introduced

to this execution path is 0.25%. We can further estimate the

average overhead considering all possible execution paths to

be ∑

x ∈X

p (x) × overhead(x) (4)

This allows us to evaluate those placements with estimations

under the performance threshold.

Putting these steps together, our log-placement algorithm

consists of the following steps: (1) run the program under rep-

resentative workloads to collect the paths executed and their

individual latencies; (2) enumerate all log-placement strate-

gies, whether function level or basic block level, and calcu-

late the uncertainty and overhead of each strategy; (3) se-

lect the placement strategy with the least amount of uncer-

tainty among the ones that respect the overhead threshold;

and (4) further run the program with this placement under a

realistic workload to validate that it respects the threshold.

Consider invalidateBlock(). After evaluating all the

basic block level placement strategies, we found that place-

ment 4 in Figure 3 is the optimal strategy – it eliminates all

uncertainty, while only introducing 0.02% overhead. The low

overhead is because on the most frequent path, path 3, it does

not output any log info at all. In fact, placement 4 is exactly

how HDFS developers placed the logging statements. In the

basic block for line 11, developers placed the following log-

ging statement:

128

0.00 0.05 0.10 0.15 0.20 0.25
Performance Overhead Threshold (%)

0

1

2

3

4

5

R
e
m

a
in

in
g
 U

n
ce

rt
a
in

ty

Figure 4: The relationship between uncertainty and the

overhead threshold for function-level log-placements.

Log.info("postponing invalidation of "+b+" on "

+ dn + " because" + nr.replicasOnStaleNodes()

+ " replica(s) are located on nodes with"

+ " out-of-date block reports");

Similarly, before line 19, developers placed the following

logging statement:

Log.info("BLOCK* invalidateBlocks: "+b+" on "

+dn+" is the only copy and was not deleted");

This indicates that our algorithm matches developers’ man-

ual logging practice, showing the promise of automating log-

placement.

4 PRELIMINARY RESULTS

We have implemented our algorithm in Python. It takes

traces of execution paths, either at function or basic block

granularity, along with their execution latencies. The al-

gorithm calculates the probability of each execution path,

which is simply the number of appearances of this path di-

vided by the total number of paths. It then enumerates every

possible log-placement and calculates its total uncertainty

and average performance overhead as described in Section 3.

The algorithm terminates when all placements are enumer-

ated, then reports the log-placement that has the least amount

of uncertainty and respects the performance overhead thresh-

old.

In order to understand the trade-off between uncertainty re-

duction and the overhead of logging, we need to analyze the

log-placements generated by our algorithm in practice. To

do this, we ran SQL aggregate and join workloads from the

HiBench [6] benchmark suite on a three-node Hadoop clus-

ter, and traced the execution paths in HDFS. Every trace was

generated by logging the beginning and end of each method

from which we determined their sequence of execution in a

path as well as their overall latencies (after subtracting the in-

strumentation overhead). Since over 2,000 unique methods

were executed across all traces, it is too expensive, compu-

tationally, to evaluate every possible log-placement strategy.

Instead, we applied a few simple optimizations to reduce

the number of placements considered: first, we combined

sequences of methods that always appear together. Second,

we restricted the search to the set of methods guaranteed to

affect the entropy of each considered placement. We calcu-

lated this set by removing one method at a time from the

placement containing all methods, so long as the removal

did not increase the entropy. Unfortunately, this no longer

ensures the final placements are optimal, but nonetheless

demonstrates the trade-off. Under the optimizations, our tool

enumerated a total of 65,536 different log-placements.

Figure 4 serves to illustrate the relationship between un-

certainty and the overhead threshold. Intuitively, the program

contains the largest amount of uncertainty (4.500) when we

cannot tolerate any overhead for logging. At the other end of

the spectrum, we see that with only 0.218% of overhead, we

can disambiguate the program’s paths entirely with no uncer-

tainty. The small overhead is because our algorithm carefully

avoids placing logging statements on the hot path, and be-

cause our workload is I/O bound, so the computational cost

of logging does not affect the critical path. The shape of the

graph in the middle indicates the trade-off between uncer-

tainty and overhead.

We also compared our basic block level log-placement

with developers’ manual log-placement on HDFS. Currently

we do not have an automated way to collect basic block level

traces; therefore for each function, we simply checked to

see whether our algorithm could improve, without increasing

overhead, the existing log-placement under any path proba-

bilities, i.e., resulting in less uncertainty. we found 13 func-

tions where our algorithm reported that it can improve log-

placement. Here we show two of them. The first function is

shown below:

1 LocatedBlock locateFollowingBlock(..) {

2 .. catch (IOException e) {

3 LOG.info("Exception when adding block",e);

4 if (Time.now() - localstart > 5000) {

5 LOG.info("Waiting for replication for"

6 + (Time.now()-localstart)/1000 + "s");

7 }

8 try {

9 LOG.warn("Sleeping " + src);

10 Thread.sleep(sleeptime);

11 sleeptime *= 2;

12 } catch (InterruptedException ie) {

13 LOG.warn("Caught exception ", ie);

14 }

15 }

16 }

129

There are four logging statements and our algorithm sug-

gested that removing the one on line 3 would result in the

same amount of uncertainty, but less overhead. The second

example is shown below:

1 void shutdown() {

2 LOG.info("Waiting for threadgroup to exit,"

3 +" threads is "+threadGroup.activeCount());

4 if (threadGroup.activeCount() == 0)

5 break;

6 try {

7 Thread.sleep(sleepMs);

8 } ...

9 }

Our algorithm reported that if we remove the logging state-

ment on line 2, and add logging statements at line 5 and

line 7 respectively, we can remove uncertainty, i.e., dif-

ferentiate the paths at line 5 and line 7 without intro-

ducing additional overhead. But a careful reader will no-

tice that the existing logging statement at line 3 outputs

threadGroup.activeCount(), whose value can be used

to determine the branch direction at line 4. This shows a lim-

itation of our current implementation; i.e., we do not con-

sider which variable values should be included in logging

statements. The problem of including causally-related vari-

able values in a logging statement has been solved by Lo-

gEnhancer [11], and we are currently implementing it on top

of our algorithm.

5 FUTURE WORK

Our current prototype uses a brute force search algorithm.

Given N log points (whether functions, basic blocks, etc.),

the algorithm must evaluate 2N unique placements. Each

placement must be evaluated against every unique path in

order to determine the possible log outputs. This makes the

final complexity O (2N × |X |), where |X | is the number of

unique paths. As we saw in Section 4, this does not scale for

the benchmark experiment, necessitating a better algorithm

or a sufficient approximation.

In addition, we currently instrument the code manually to

collect path profiles. In the future, we plan to design and im-

plement a continuous tracing system that can be used to sam-

ple execution paths in a production environment.

The coverage of these traces may not be exhaustive, as

some functions or basic blocks will not be exercised by the

workload we use. We can add a logging statement for every

function that is not in the trace, together with branch vari-

ables and parameter values to disambiguate multiple paths.

Our algorithm does not currently consider which variable

values should be included in each logging statement, nor

does it consider the effect of logging such branch variables in

disambiguating paths. Furthermore, in contrast to manually

placed logging statements, the automatically placed state-

ments are not human-readable, as we do not currently au-

tomate the construction of meaningful static text. We plan to

address both issues in the future.

6 RELATED WORK

Some prior works studied the problem of log-placement.

Yuan et al. [9] analyzed existing logging practice and recog-

nized that a majority of failures manifest within a small sub-

set of generic error patterns. They further developed Errlog,

a tool that places error logging statements at strategic loca-

tions based on error patterns. Fu et al. [5] presented an em-

pirical study and summarized current logging practice in the

industry. Li et al. [7] enhanced the work of Fu et al. and of-

fered log suggestions based on existing log-placements using

a machine learning algorithm. In contrast, our log-placement

strategies are generated by analyzing program code and per-

formance traces. It does not require any existing logging

statements, and it can automate log-placement from scratch.

In addition, our algorithm can help improve existing log-

placements, whereas the learning based approach relies on

existing logging statements to learn its model. Finally, these

works do not consider performance overhead.

Others studied how to enhance existing logging state-

ments. LogEnhancer [11] enhances existing logging state-

ments by appending extra causally-related information

which disambiguates some execution paths. Yuan et al. stud-

ied existing logging practices and proposed a tool to adjust

the verbosity of each logging statement [10]. These works

are complimentary to this paper because they address differ-

ent aspects of log automation. Working together, the exercise

of log printing could be fully automated.

7 CONCLUDING REMARKS

We propose to automate the placement of logging statements

based on measuring the software’s uncertainty that can be

eliminated by different log-placement strategies which re-

spect a certain performance slowdown threshold. Prelimi-

nary results have demonstrated that our approach can auto-

mate the placement of logging statements and even surpass

the existing log-placements in mature systems. Future work

should include a more scalable version of the algorithm, a

continuous tracing system to sample execution paths, and au-

tomated generation of log message content including what

variables should be logged in order to disambiguate more

paths.

130

REFERENCES
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-

tacharoen. Performance Debugging for Distributed Systems of Black

Boxes. In Proceedings of the 19th ACM Symposium on Operating Sys-

tems Principles, SOSP ’03, pages 74–89. ACM, 2003.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for

Request Extraction and Workload Modelling. In Proceedings of the

6th Conference on Symposium on Opearting Systems Design & Imple-

mentation, OSDI ’04, pages 259–272. USENIX Association, 2004.

[3] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch. The Mys-

tery Machine: End-to-end Performance Analysis of Large-scale Inter-

net Services. In Proceedings of the 11th USENIX Conference on Oper-

ating Systems Design and Implementation, OSDI ’14, pages 217–231.

USENIX Association, 2014.

[4] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-Trace:

A Pervasive Network Tracing Framework. In Proceedings of the 4th

USENIX Conference on Networked Systems Design & Implementation,

NSDI ’07, pages 271–284. USENIX Association, 2007.

[5] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie.

Where Do Developers Log? An Empirical Study on Logging Practices

in Industry. In Companion Proceedings of the 36th International Con-

ference on Software Engineering, ICSE Companion 2014, pages 24–

33. ACM, June 2014.

[6] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench Bench-

mark Suite: Characterization of the MapReduce-based Data Analy-

sis. In 26th International Conference on Data Engineering Workshops,

ICDEW ’10, pages 41–51. IEEE Computer Society, 2010.

[7] H. Li, W. Shang, Y. Zou, and A. E. Hassan. Towards Just-in-time

Suggestions for Log Changes. Empirical Software Engineering, pages

1–35, October 2016.

[8] C. E. Shannon. A Mathematical Theory of Communication. The Bell

System Technical Journal, 27(4):623–656, October 1948.

[9] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, Y. Zhou, and S. Savage. Be

Conservative: Enhancing Failure Diagnosis with Proactive Logging. In

Proceedings of the 10th USENIX Symposium on Operating System De-

sign and Implementation, OSDI ’12, pages 293–306. USENIX Asso-

ciation, 2012.

[10] D. Yuan, S. Park, and Y. Zhou. Characterizing Logging Practices

in Open-Source Software. In Proceedings of the 34th International

Conference on Software Engineering, ICSE ’12, pages 102–112. IEEE

Press, 2012.

[11] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving Soft-

ware Diagnosability via Log Enhancement. In Proceedings of the 16th

International Conference on Architecture Support for Programming

Languages and Operating Systems, ASPLOS ’11, pages 3–14. ACM,

2011.

131

	Abstract
	1 Introduction
	2 Software Uncertainty
	3 A Log-Placement Algorithm
	4 Preliminary Results
	5 Future Work
	6 Related Work
	7 Concluding Remarks
	References

