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Abstract show that the majority (77%) of these failures manifest

When systems fail in the field, logged error or warnindhrough a small numl:_)er of concrete error patterns (e.g.,
messages are frequently the only evidence available f§F"Or return codes, switch statement *fall-throughs”, etc
assessing and diagnosing the underlying cause. Consdlfortunately, more than half (57%) of the 250 exam-
quently, the efficacy of such logging—how often and howned _fc_';ulure_s did not log these detectablg errors, and their
well error causes can be determined via postmortem IggnPirical “time to debug” suffers dramatically as a result
messages—is a matter of significant practical importancéaking 2.2X longer to resolve on average in our study).
However, there is little empirical data about how well ex- Driven by this result, we further show that it is possible
isting logging practices work and how they can yet be imt© fully automate the insertion of such proactive logging
proved. We describe a comprehensive study characteri#atements parsimoniously, yet capturing the key informa-
ing the efficacy of logging practices across five large anion needed for postmortem debugging. We describe the
widely used software systems. Across 250 randomly sarf€sign and implementation of our todirrlog, and show
pled reported failures, we first identify that more than halfhat it automatically inserts messages that cover 84% of
of the failures could not be diagnosed well using existthe error cases manually logged by programmers across 10
ing log data. Surprisingly, we find that majority of thesediverse software projects. Further, the error conditians a
unreported failures are manifested via a common set &matically logged byErrlog capture 79% of failure con-
generic error patterns (e.g', system call return errom) th ditions in the 250 real-world failures we studied. Fina”y,
if logged, can significantly ease the diagnosis of these utSing a controlleduser studywith 20 programmers, we
reported failure cases. We further mechanize this knowflemonstrate that the error messages insertdgrtigg can
edge in a tool calleErriog, that proactively adds appro- cut failure diagnosis time by 60.7%.
priate logging statements into source code while adding
only 1.4% performance overhea_d. A co_ntr_olled user studz Background
suggests thakrrlog can reduce diagnosis time by 60.7%.

While there have been significant advances in post-
1 Introduction mortem debugging technology, the production environ-

ment imposes requirements—low overhead and privacy

Real systems inevitably experience failure—whether dug, ,gjtiyity_that are challenging to overcome in commer-
to hardware faults, misconfigurations or software bugg;;y settings.

However, resolvingvhy such a failure has occurred can
be extremely time-consuming, a problem that is furthe\yvi

exacerbated for failures in the field. Indeed, failures %11 allows a precise postmortem reproduction of the ex-
production systems are tibte noireof debugging; they ecution leading to a failure, in practice it faces a range

s!;nulthan:aouily r(taqwre |tm(rjned:jate retsolut|o|n and yettprod deployment hurdles including high overhead (such sys-
vide the feast Instrumented and most compiex Operationgly, g o st log most non-deterministic events), privacy

er_mronment for do_lng so. Even worse, _When a systery cerns (by definition, the replay trace should contain
fails at acustomer sitgproduct support engineers may not

. . . 2 ~all input) and integration complexity (particularly in eis
be given access to the failed system or its data—a situatiofy | +od environments with a range of vendors)
referred to colloquially as “debugging in the dark”. '

. : o . By contrast, the other major postmortem debugging ad-
This paper addresses a simple, yet critical, question; . ) .
why is it so difficult to debug production software sys- o o cooperative debugging, has broader commercial
ten):s? We examine 250 rangolinl sampled uSser-re %rtdgployment, but is less useful for debugging individual
I i y b reportediiures. In this approach, exemplified by systems such
failures from five software system#gache, squid,

Post gr eSQL, SVN, andCor eut i | s) [ and identify both as Windows Error Reporting [15] and the Mozilla Quality

the source of the failure and the particular informatiorlltha':eedbamk Agent [23], failure reports are collected (typi-

. L . o cally in the form of limited memory dumps due to privacy
would have been critical for its diagnosis. Surprisinglg, w o
concerns) and statistically aggregated across large num-

1The data we used can be found at: http://opera.ucsd.cldgiétm  bers of system installations, providing great utility ilag-

For example, while in principal, deterministic replay—
dely explored by the research community [3] L1} 29,




apr_table_t *groups_for_user(..., char *grpfile) { Remembering to Iog

if ((status = ap_pcfg_openfile(&f, p, grpfile)) = APR_SUCCESS) { - . . . .

return DECLINED? Yy ST ————— However, the utility of logging is ultimately predicated on

! atch only to do logging: .

} 7 +§p log ,’;,,o,(___,ggof,d,,ot what gets logged; how well have developers anticipated
b NO log! Simply open group file: %s", grpfile); the failure modes that occur in practice? As we will show
decline a client request ; ; ‘e i ;

/* Apache, mod_auth.c */ in this paper, there is significant room for improvement.

Figure[d shows one real world failure from thgache
web server. The root cause was a user's misconfiguration
causingApache to access an invalid file. While the er-
ror (a failedopen in ap_pcf g_openfi | e) was explicitly

Figure 1:A real world example fronApache on the absence
of error log message. After diagnosing this failure, theatigver
released a patch that only adds an error-logging statement.

Squid bug report: A total of 45 rounds of conversation! checked by developers themselves, they neglected to log
User: An array of Squid servers running together, from time to time h d th h di h
the number of “available file descriptors” drops down to zero.. the event and thus there was no easy way to_ Iscern the
No error messages or anything.. cause postmortem. After many exchanges with the user,
Dev: Cafl‘("fot reproduce ﬁthefa"urem ;\;kjordlgebusll 'Ieve' logs... the developer added a new error message to record the er-
Ask for user's configuration...Added additional log messages to - . . .
collect more information... Ask for DNS statistics... ror, _fma"y aIIowmg the prOblem to be qwckly dlagnosed'
if (status '= COMM_OK){ /* Squid, dns_internal.c */ Figurd2 shows another real world failure example from
- idnsSendQuery(q); ) thesqui d web proxy. A user reported that the server ran-
+ debug(78, 1)("Failed to connect to DNS server using TCP\n"); domly exhausted the set of available file descriptors with-
+idnsTepCleanup(a); A patch to do logging and give up d di h
return; resending a request immediately out any error message. In order to iscern the roc_)t cause,
} after a DNS lookup error. squi d developers worked hard to gather diagnostic infor-

Figure 2: A real world example fronsqui d to demonstrate mation (including 45 rounds of back-and-forth discussion

the challenge of failure diagnosis in the absence of erras-meWith the user), but the information (e.g., debug messages,
sages, one that resulted in a long series of exchanges (#8spu configuration setting, etc.) was not sufficient to resohee th

between the user and developers. issue. Finally, after adding a statement to log the checked
) ) ) ) ) error case in whicksqui d was unable to connect to a
ing which failures are most widely experienced (and thugns server (le.status | = COMOK), they were able

should be more carefully debugged by the vendor). Ung quickly pinpoint the right root cause—the original code
fortunately, since memory dumps do not capture dynamigq not correctly cleanup state after such an error.

execution state, they offer limited fidelity for explorirtget In both cases, the programs themselves already explic-

root cause of any individual failure. Finally, sites witse iy checked the error cases, but the programmer neglected
sitive customer information can be reticent to share arbi, jncjude a statement to log the error event, resulting in a
trary memory contents with a vendor. long and painful diagnosis.

_ One of the main objectives of this paper is to provide
The key role of logging empirical evidence concerning the value of error logging.

Consequently, software engineers continue to rely on tr Towever, Wh'k.e we hope_our results W|II.|ndee_d motlvate
ditional system logs (e.g., syslog) as a principal tool fo evelopers to improve this aspect of their coding, we also

troubleshooting failures in the field. What makes theséecogniz_e tha_t automated tools can play an important role
logs so valuable is their ubiquity and commercial acced-n reducing this burden.

tance. It is an industry-standard practice to request logsg automation vs log enhancement

when a customer reports a failure and, since their data typ- .
) . . al[37.3
ically focuses narrowly on issues of system health, log%ecently, Yuanet [..36] have studied how developers

are generally considered far less sensitive than other dar{1OOIIfy logging statements over time and proposed meth-

: . ogs and tools to improve the quality ekistinglog mes-
sources. Moreover, since system logs aretypu:allyhumané es by automatically collecting additional diagnostic i
readable, they can be inspected by a customer to este?n-g y y g g

lish their acceptability. Indeed, large-scale system eesnd ormation in each message. Unfortunately, while such ap-

such as Network Appliance, EMC, Cisco and Dell reporProaChes provide clear enhancements to the fidelity pro-
: ' vided by a given log message, they cannot help with the

that such logs are available from the majority of their cus-
: all too common cases (such as seen above) when there are
tomers and many even allow logs to be transmitted auto-
. . . nolog messages at all.
matically and without review [10]. . . .
Even thouah! t directly pinpoint th However, the problem of inserting entirely new log
venthoughiog messages maynot directly pinpoin essages is significantly more challenging than mere log
root cause (e.g. hardware errors, misconfigurations, so

b 2 fail th i ful clues t nhancement. In particular, there are two new challenges
ware bugs) of a failure, they provide useful clues onarrovévoSeol by this problem:

down the diagnosis search space. As this paper will sho
later, failures in the fieldvith error messages have much e Shooting blind Prior to a software release, it is hard
shorter diagnosis time than those without. to predict what failures will occur in the field, mak-



Fault Errors Failure #Default log points*

root cause.= start to ' ﬁ : resl Appl. Loc Total | Err+Warn
(stwbug, hwfault,  misehave e (o e Apache | 249K | 1160 | 1102 (95%)
mis-configuration) Squid 121K | 1132 | 1052 (92%)
Figure 3:Classic Fault-Error-Failure model. Postgres | 825K | 6234 | 6179 (99%)
SVN 288K | 1836 | 1806 (98%)
ing it difficult to know in advance where to insert log Coreutils | 69K | 1086 | 1080 (99%)

messages to best diagnose future failures. Table 1: Applications used in our study and the number of log

e Overhead concernsBlindly adding new log mes- points (i.e. logging statgments). *: the number of log p®int
sages can add significant, unacceptable performan\‘ﬁ'éder the default verbosity mode. “Err+Warn”: number of log
overhead to software’s normal execution points with warning, error, or fatal verbosities.

#Failures
Fundamentally, any attempt to add new log messages Appl. bopulation™ | sampled| With 1gs
needs to balance utility and overhead. To reach this goal,
Kis h ilv inf db ical . ] Apache | 838 65 24 (37%)
our work is heavily informed by practical experience. Just Squid 630 50 20 (40%)
as system builders routinely design around the_ constraints | postgres | 195 45 24 (53%)
of technology and cost, so too must th.ey con.S|der the _role SVN 321 45 25 (56%)
of cultural acceptance when engineering a given solution. | Coreutils | 212 45 15 (33%)
Thus, rather than trying to create an entirely new logging | Total 2246 250 108 (43%)

technique that must then vie for industry acceptance, ] . .
focus instead on how to improve the quality and utility (\)I;LFabIe 2: The number of sampled failures and the subset with

h tem | that Ireadv bei di i Ffailure-related log messages. A failure is classified asiVaigs”
_e _sys emlogs that are aiready being used in practice. i?glny log point exists on the execution path between the faul
similar reasons, we also choose to work “bottom-up”

) ) - ~the symptom. *: the total number of valid failures that haeei
trying to understand, and then improve, how existing logfixed in the recent five years in the Bugzilla.

ging practice interacts with found failures—rather than at o
tempting to impose a “top-down” coding practice on soft- T0 dive in one step further, detected errors can be han-

ware developers. dled in three different way<i) Early termination a pro-
gram can simply exit when encountering an er(y.Cor-
3 Where to Log? rect error handling a program recovers from an error ap-

Before we decide where to add log points, it is useful t
understand how a failure happens. In his seminal wor.
two decades ago, ‘]C Laprie decomposed the stru(_:tura hese distinctions provide a framework for considering
elements of system failures—fault, error and fallure—mt(Ehe

a model that is widely used toddy [20]. As shown in Fig'erroligsa:rzr?lgﬁrrgﬁ 0|“r|1(t)s f(\:vrolg%g!,ng(')ilrrs[spagg\iliitget?: ;e
ure[3, daultis a root cause, which can be a software bug, a y 09 y P ' Y,

. . : . rogram is about to terminate then there is a clear causal
hardware malfunction, or a misconfiguration. A fault ca . .
. relation between the error and the eventual failure. More-
produce abnormal behaviors referred toea®rs. How- i
. . ver, even when a program attempts to handle an error, its
ever, some of these errors will have no user-perceivable . :
: exception handlers are frequently buggy themselves since
side-effects or may be transparently handled by the sy

. - . they are rarel well tested [30,117.116]. Consequently, log-
tem. Itis only the subset of remaining errors which further . ye y wetlt ] q A
L ing is appropriate in most cases where a program detects
propagate and become visible to users that are referred10 L . .
. ) . an error explicity—as long as such logging does not in-
asfailures, such as crash, hang, incorrect result, incom- )
roduce undue overhead. Moreover, logging such errors

plete functionality, etc. : :
. . has no runtime overhead in the common (no error) case.
To further inform our choice of where to place log state-

ments, we divide errors into two categories: . .
) . : 4 Learning from Real World Failures

(i) Detected errors (i.e., exceptions)Some errors are

checked and caught by a program itself. For example, fthis section describes our empirical study of how effec-
is a commonly accepted best practice to check library dive existing logging practices are in diagnosis. To drive
system call return values for possible errors. our study, we randomly sampled 250 real world failures
(i) Undetected errors Many errors, such as incorrect reported in five popular systems, including four servers
variable values, may be more challenging to detect meckApache htt pd, squi d, Post greSQL, andSVN) and a
anistically. Developers may not know in advance whattility toolset (GNU Cor eut i | s), as shown in Tablel 1.
should be a normal value for a variable. Therefore, some The failure sample sets for each system are shown in
errors will always remain latent and undetected until thefable[2. These samples were from the corresponding
eventually produce a failure. Bugzilla databases (or mailing lists if Bugzilla was not

andling a program does not handle the error correctly

iropriately, and continues executiafiii) Incorrect error
d results in an unexpected failure.



available). The reporting of a distinct failure and its Finally, there is the possibility of observer error in the
follow-up discussions between the users and developeggalitative aspects of our study. To minimize such ef-
are documented under the same ticket. If a failure is #cts, two inspectors separately investigated everyrgilu
duplicate of another, developers will close the ticket byand compared their understandings with each other. Our
marking it as a “duplicate”. Once a failure got fixed, de<failure study took 4 inspectors 4 months of time.

velopers will often close the ticket as “fixed” and post

the patch of the fix. We randomly sampled those non‘—l'1 Failure Characterization

duplicate, fixed failures that were reported within the re£ACTOSS €ach program we extract its embedded log mes-
cent five years. We carefully studied the reports, discu§29€s and then analyze how these messages relate to the

sions, related source code and patches to understand f@lures we identified manually. We decompose these re-

root cause and its propagation leading to each failure. sults through a series of findings for particular aspects of

In our study, we focus primarily on theresenceof a logging behavior.

failure-related log message, and do not look more deepfyFinding 1: Under the default verbosity mdfjealimost
into the content of the messages themselves. Indeed, @L(97%) logging statements in our examined software are

log message first needs to be present before we consi&°" qnd warnir)g messages (including fatal ones)his
the quality of its content, and it is also not easy to objec"-esun is shown in Tablgl 1. Verbose or bookkeeping mes-

tively measure the usefulness of log content. Moreover@des are usually not enabled under the default verbosity

Yuan et. al’s recent LogEnhancer work shows promisgode due to overhead concemns. This supports our expec-
in automatically enhancing each existing log message Bgtlon that error/warning messages are frequently the only

recording the values of causally-related variatles [37]. evidence for diagnosing a system failure in the field.

Threats to Validity: ~As with all characterization stud- e Finding 2: Log mes- 300
ies, there is an inherent risk that our findings may be spéf’lge_S produge a sub- 2 338
cific to the programs studied and may not apply to othegt‘tantlal b_eneﬁt_, redug— 2

software. While we cannot establish representativene median diagnosis = 100

. . 50
categorically, we took care to select diverse programslme between 1.4 and

. 0 -
written for both server and client environments, in botlgezt)':nfest (on av;}erage Fi AZ?(;he ?’?UI?I Po§tgres
concurrent and sequential styles. At the very least the Fi aslgr) as s ot\(vn dilzgur:(?sis'tin‘?gfrrgeZia;’?glng on
software are widely used; each ranks first or second ffj F1gurels, supporting g '

market share for its product’s category. However ther@4" motivating hypothesis about the importance of appro-
' j:,(iate logging. This result is computed by measuring each

23X w/log —=
w/o log

are some commonalities to our programs as all are written. =~ ™= T X :
ailure’s “duration” (i.e., the duration from the time the

in C/C++ and all are open source software. Should lo ure | ted to the fi t patch | ided
ging practice be significantly different in “closed source” ailure is reported to the time a correct patch is provided).

development environments or in software written in otheyv_(;"ht?e_ln d'V'd? :hg ;‘aﬂure setinto two gtro(;Jps: d(1; tr:gse
languages then our results may not apply. with Tallure-refated log messages reported an (2) those
) o ) without, and compare the median diagnosis time between
Another potential source of bias is in the selection of,a o groups. Obviously, some failures might be eas-
failures. Quantity-wise we are on a firmer ground, as Ungy tq diagnose than the others, but since our sample set
der standard assumptions, the Central Limit Theorem pres reatively large we believe our results will reflect any

dicts a 6% margin of error at the 95% confidence level oss qualitative patterns (note, our results may be biased
for our 250 random sampleis [28]. However, certain faili¢ he gifficulty of logging is strongly correlated with the

ures might not be reported to Bugzilla. Bothache and  ¢4,re difficulty of diagnosis, although we are unaware of

Post gr es have separate mailing lists for security issues;;my data or anecdotes supporting this hypothesis).

Configuration errors (including performance tunings) are Finding 3: the majority (57%) of failures do not have

usually reported to the user-discussion forums. Therefos;e. ' . :
. . ¢ ailure-related log messageseaving support engineers

our study might be biased towards software bugs. How, d developers to search for root causes “in the dark”.

ever, before a failure is resolved, it can be hard for users %
’ ' %}uis result is shown in Tabld 2. Next, we further zoom in

determine the na_ture qf the cause, therefore our study Stto understand why those cases did not have log messages
cover many configuration errors and security bugs. and whether it is hard to log them in advance.

Another concern is that we might miss those very hard . . ) -
failures that never got fixed. However, as the studied aé—':mdmg 4: Surprisingly, the programs themselves have

o L i o aught early error-manifestations in the majority (61%) of
plications are yveII mamtamedevgntws the de_termmmg the casesThe remaining 39% are undetected until the fi-
factor of the likelyhood for a failure to be fixed. High nal failure point. This is documented in Figdde 5, which
severity failures, regardless of its diagnosis difficuétye ' ’

likely to b_e diagnpsed and fixed. Therefore the failures 2Throughout the entire paper, we assume the default veybsitle
that we miss are likely those not-so-severe ones. (i.e., no verbosity), which is the typical setting for pration runs.




tl)g(étl%go) Generic Exception Conditions totaIIDEteC|t\(/ev(/j IIC—I)Ergr:rs
m_z ly termination [113(45%), Log: 102 -
o e oYy termnatonjii3(s. Lod Function return errors 69 (45%)| 50 (72%)
gl aaae%) 7(=0+7)(3%), Log: 0 Exception signals(e.g., SIGSEGV)| 22 (14%)| 22 (100%)
~ , Unexpected cases falling into defal 87 (18%)| 12 (44%)
Handle to H 16(=9+7)(6%), Log: 1
S et ) . og_ Resource leak 1(1%) |1 (100%)
\ Resource leak 12(2+10)5%).Log:2 | Fajled input validity check 17 (11%))| 8 (47%)
96(39%) [incorrect resus oo=21+48)(28%), L: 2 Failed memory safety check 7 (4%) |7 (100%)
\‘ Log 0™ | [Incompl. results J19(=3+16)(@%), Log:0 | Abnormal exit/abort from execution 11 (7%) | 8 (73%)
E
[Unneces. resuls]14(=6+8)6%), Log: 1 | Total [154 [ 108 (70%) |

Figure 5:Fault manifestation for our sampled failures. (=x+y):
x failures from detected errors and y failures from undetect
errors. “Log: N™: N cases have failure-related log messages

Table 5:Logging practices for common exceptions.

essary obstacles to debugging; Figlle 1 documents one

Detected Error Undetected Error such omis_sion iMpache). Logging overhead is not a big

Appl. Early Handle | Generic | Semantic| concern since the programs subsequently terminate.

terminat. | incorrect. | except. | except. For the second category (i.e., those failure cases where
Apache 23 18 9 15 programs decided to tolerate the errors but unfortunately
Squid 23 9 10 8 did so incorrectly), the majority of the cases did not log
Postgres 24 4 5 12 the detected errors.
SVN ) 26 0 7 12 Table[4 also shows th&ost gr es and SVN are much
Coreutils 17 . 100 8 _ 100 more conservative in surviving detected errors. Among
Total 113(73 A’)15 441(27 %) | 39(41%) 9657(59 %) their 54 detected errors, developers chose early termina-

tion in 93% (50/54) of the detected errors. In compari-

Table 3: Error manifestation characteristics of examined softson, for the other three applications, only 63% of the de-

ware. All detected errors were caught by generic exceptiotected errors terminate the executions. We surmise this

checks such as those in Table 5. Some undetected errors cojdchecause data integrity is the first class requirement for
have been detected in the same way.

Post gr es andSVN—when errors occur, they seldom al-

App. Early Termination Handle Incorrectly low executions to continue at the risk of data damaging.

no log w/ log nolog | w/log e Finding 5: 41 of the 250 randomly sampled failures are
Apache 3 20 14 4 caused by incorrect or incomplete error handling. Un-
Squid 4 19 8 1 fortunately, most (85%) of them do not have logis
Postgres 0 24 4 0 indicates that developers should be conservative in error
i\(;r':utils :1,) ii g 2 handl!ng code:_ at least log the detepted errors since error
Total T1(10%) | 102(90%) | 35(85%) | 6(15%) _han_dllng code is often buggy. Theui d example shown
Detected 113 a1 in Figure[2 documents such an example.

Adding together the two categories, there are a total of

Table 4:Logging practices when general errors are detected.45 cases that did not log detected errors. In addition, there

shows how our sampled failures map to the error manifed'e also 39 failures shown in Talile 3 in which the pro-
tation model presented in Sectioh 3. TdHle 3 breaks the@§ams could have detected the error via generic checks
down by application, where the behavior is generally cor(€-9- System call error returns). Therefore we have:
sistent. This indicates that programmers did reasonabd#y Finding 6: Among the 142 failures without log mes-
well in anticipating many possible errors in advance.
However’ as shown in F|gu 5 programmers do nd185) of them. In particular, 54% (46) of them all’eady did
comprehensivelyog these detected errors. FortunatelySuch checks, but did not log the detected errors.
the result also indicates that log automation can be laogging Practice RecommendationOverall, these find-
rescue—at least 61% of failures manifest themselvengs suggest that it is worthwhile to conservatively log de-
through explicitly detected exceptions, which provide nattected errors, regardless of whether there is error-haadli

ural places to log the errors for postmortem diagnosis.

sages, there were obvious logging opportunities for 60%

code to survive or tolerate the errors.

Further drilling down, we consider two categories of ) _ )
failures for which programmers themselves detected ef-2 L0gging Generic Exceptions

rors along the fault propagation path: early terminatioMable[® documents these generic exception patterns, many
and incorrect handling. As shown in Table 4, the vast masf which are checked by the studied programs but are not
jority (90%) of the first category log the errors appropridlogged. We explain some of them and highlight good prac-
ately (10% miss this easy opportunity and impose unnetices that we encountered.



int main(...) {
_err=svn_export(...);
if (err) {print the keep
" err->message returning
} only at this place to main
svn_err_t* svn_export(...) {
SVN_ERR(svn_versioned(...))
}

svn_err_t* svn_versioned(...) {
SVN_ERR(svn_entry(&entry,...));
if (lentry) {
svn_err_t* err=svn_error
return err;

#define SVN_ERR(expr)
do {
svn_error_t* temp=(expr);
if (temp)

return svn_error_return(temp);
} while (0)

optionally add stack
information into temp

N

te(“%s is not under version control’,..);

} i >,
return SVN_NO_ERROR; |fog into err->message |

Figure 6: SVN's good logging practices for checking and |
ging function return errors.

void hash_lookup(Hash_t *table, ..){
*bucket = table->bucket + --- ;

NULL .
can be NV [* coreutils, hash.c */

(a) NO signal handler: OS prints segf.

void death(int sig) {
if (sig == SIGBUS)
fprintf(log, "Recv Bus Error.\n");

else
fprintf(log, "Recv Sig %d\n", sig)j
PrintCPUusage();
dumpMallocStatus();
#ifdef STACK_TRACE

static void reaper(...) {
while((pid = waitpid(-1, &s,..)) > 0) {
ereport(“(%d) was terminated by
signal %d”, pid, WTERMSIG(S)); -
) sendi
} /* Postgresgl, postmaster.c */ }
(b) Bad logging practice (c) Good logging practice

Figure 7:Logging practices for exception signals.

Context
info

/* Squid, main.c */

(1) Function return errors: It is a common practice to

Statement cov.*| 10 (18%)| Decision cov. | 12 (21%)
Condition cov. 2 (4%) | Weak mutation| 4 (7%)
Mult. cond. cov.| 2 (4%) Loop cov. 1 (2%)
Concurr. cov. 1(2%) | Perf. profiling | 1 (2%)
Functional cov. | 34 (60%) | Total failures | 57

Table 6: The number of hard-to-check failures that could have
been caught during testing, assuming 100% test coverade wit
each criteria. *: can also be detected by decision coveesge t

(3) Unexpected cases falling through into defa@dbome-
times when programs fail to enumerate all possible cases
in a switch statement, the execution may unexpectedly fall

Og'through into the base “default” case, and lead to a failure.

In our study, 18% of detected errors belong to this cate-
gory, but only 44% of them are logged.

(4) Other exceptionsPrograms also perform other types
of generic exception checks such as bound-checks, input
vadility checks, resource leak checks, etc., (Table 5) but
they often forget to log detected errors, losing opportuni-
ties to gather evidences for postmortem diagnosis.

4.3 Logging for Hard-to-check Failures

As shown earlier in Tablg]3, 57 failures are hard to de-
tect via generic exception checks. We refer therhasl-
to-check errors When a production failure occurs, it is
usually due to an unusual input or environment triggering
some code paths that are not covered during in-house test-

check for function (e.g., system call) return errors. In ourng' Tabld® shows that 21% of the 57 hard-to-check fail-

study, 45% of detected errors were caught via function r

Sire cases execute some branch edges that we surmise have
Mever been executed during testing (otherwise, the bugs on

percentage (28%) of them did not log such errors.

Good practice: SVN uniformly logs function return er-
rors. First, as shown in Figuké 6, almost &N function
calls are made through a special mask\_ERR, which

those edges would definitely have been expcﬁse‘ld)ere-
fore, if we log on those branch decisions that have not been
covered during testing, i.e., cold paths, it would be useful
for diagnosis. Of course, special care needs to be taken if

checks for error return. Second, if a function returns asome cold paths show up too frequently during runtime.
error to its caller, it prepares an error message in a buffe.r
err->message. Every error is eventually returned backI
to mai n through the call path vi&VN_ERR and thenmai n
prints out the error message. Consequently, as shown in

Table4, almost all exceptions detected$wN are logged 5 Errlog : A Practical Logging Tool

before early termination. Driven by the findings in our study, we further build an

(2) Exception signals:In general, many server programsaummaﬂc Ioggi_ng to_oI calle&'_rrlog, which analyze_s the
register their own signal handlers to catch fatal signaf$ource code to identify potential unlogged exceptions (ab-
(e.g., S| GSEGV, SI GTERM). In our study, about 14% of normal or unusual conditions), and then inserts log state-

detected errors were caught by the programs’ own signﬁle”ts- Thereforekrrlog can automatically enforce good
handlers, and fortunately all were logged. logging practices. We implement our source code analysis
algorithms using the Saturinl[2] static analysis framework.

. Errlogfaces three major challenges: (1) Where are such
|90tential exceptions? (2) Has the program itself checked
or the exception? If so, has the program logged it after
hecking it? (3) Since not every potential exception may
e terminal (either because the program has mechanisms
0 survive it or it is not a true exception at all), how do we

'Finding 7: Logging for untested code paths would col-
ect diagnostic information for some of them.

However, all examined software (except foqui d)

practices in three of them: (&preutil s does not have
a signal handler. OS prints a generic “segmentation faul
message. (bjost gr es’s log does not provide much bet-
ter information than the default OS’s signal handler. (c?
Good practice: squi d logs system status and context in-
formation such as CPU and memory usage, as well as theapye to software's complexity, cost of testing, and timevtarket
stack frames, when catching exception signals. pressure, complex systems can rarely achieve 100% testgeve




Exception Pattern How to identify in source code
Mechanically search for libc/system calls. If a libc/systeall’s error return value is not
Function return error | checked by the progrankrriog injects new error checking code. Such a check won't ingur
too much overhead as it is masked by the overhead of a funcaibn
DE | Failed memory safety Search for checks for null pointer dereference and outeofdld array index. If no such safety

check check existsErrlog doesNOT add any check due to false positive concerns.
Abnormal exit/abort | Search for “abort, exit,exit”. The constrainEC for this pattern is “true”.
Exception signals Intercept and log abnormal signals. Our logging code usesanebuffer and is re-entrant.
Unexpected casep Search for the “default” in a switch statement or a switée-logic, such asf.. el se
falling into default if.. else...,where atleastthe same variable is tested in edcbondition.

LE Search for text inputs, using a simple heuristic to look fang comparisons (e.g., strcmp).

Invalid input check The exception is the condition that these functions retapt-matched” status. In our study,
47% of the “invalid input checks” are from these standarshgtmatching functions.

Errlog monitors resource (memory and file descriptor) usage ansl tiogm with context
information. Errlog uses exponential-based sampling to reduce the overheatio{$8.3).

AG Resource leak

Table 7:Generic exception patterns searcheddsglog. These patterns are directly from our findings in Table 5 icti®a[4.

avoid significant performance overhead without missingC), whereP is the program location of an exception
important diagnostic information? check, andECis the constraint that causes the exception to
To address the first challenggrrlog follows the obser- happen. In the example shown in Figlid2s the source
vations from our characterization study. It identifies po€ode location of I'f (st at us! =COMOK) ", and EC is
tential exceptions by mechanically searching in the sourcg at us! =COMOK. EC is used later to determine under
code for the seven generic exception patterns in Table 5. which condition we should log the exception and whether
addition, since many other exception conditions are prdhe developer has already logged the exception.
gram specificErrlog further “learns” these exceptions by Search for generic exceptionsTableT shows the generic
identifying the frequently logged conditions in the targeexception pattern&rriog automatically identifies, which
program. Moreover, it also optionally identifies untestecre directly from the findings in our characterization study
code area after in-house testing. ) - )
For the second challenggrrlog checks if the exception 9-1.1 Learning Program-Specific Exceptions
check already exists, and if so, whether a log statemeftrlog-LE further attempts to automatically identify
also exists. Based on the resulSrlog decides whether program-specific exceptiomgthout any program-specific
to insert appropriate code to log the exception. knowledge If a certain condition is frequently logged
To address the third challengErriog provides three by programmers in multiple code locations, it is likely
logging modes for developers to choose from, based da be “log-worthy”. For example, the condition
their preferences for balancing the amount of log messagesat us! =COMOK in Figure(2 is asqui d-specific excep-
versus performance overhedgtrlog-DE for logging def-  tion that is frequently followed by an error message. Simi-
inite exceptionsErrlog-LE for logging definite and likely lar to previous work([12] that statically learns program in-
exceptions, ané&rrlog-AG for aggressive logging. More- variants for bug detectiorrriog-LE automatically learns
over, Errlog's runtime logging library uses dynamic sam-the conditions that programmers log on more than two oc-
pling to further reduce the overhead of logging withoutasions. To avoid false positiveSriog also checks that
losing too much logging information. the logged occasions outhumber the unlogged ones.
Usage Users ofErrlog only need to provide the name of The need for control and data flow analysis It is
the default logging functions used in each software. Foron-trivial to correctly identify log-worthy conditions.
example., the following command is to uerlog on the For _e_xam_ple,_ the ex_ception tmp=pcre_malloc(..):
CVS version control system: condition in Figure[B is that | i tmp == NULL)
Errlog --logfunc="error" path-to-CVS-src pcre_mal | oc returns NULL, goto out_of_memory;

; P nott np==NULL. Errlogfirstan- | ...
whereer ror is the logging library used bgvs. Errlog alyzes the control-flow to iden- out_of memory:

_then automatically analyzes the code and modifies it tﬁfy the condition that immedi- L_&or (‘out of memory”);
insert new log statementstrrlog can also be used as a ; }

. ately leads to an error messageFigure 8: Example
tool that recommends where to log (e.g., a plug-in to th

IDE) to the developers, allowing them to insert loggin It then analyzes the data-flow, showing the need of oo
Pers, g . 999 a backward manner, on eachtrol & data flow analysis.
code to make the message more meaningful.

variable involved in this condition to identify its source.
5.1 Exception Identification However, such data-flow analysis cannot be carried ar-
In this step,Errlog scans the code and generates the fobitrarily deep as doing so will likely miss the actual
lowing predicate:exception(progranpoint P, constraint exception source. For each variatde Errlog's data-




flow analysis stops when it findslae-in variable as its To check for these two conditiongrrlog first captures
source, i.e., a function parameter, a global variable, the path-sensitive conditions to reaetandL asCp and
constant, or a function return value. In Figlre Br- C_ respectively. It then turns the checking of the above
rlog first identifies the condition that leads to the eriwo conditions into a satisfiability problem by checking
ror message beingnmp==NULL. By analyzing the data- the following using a SAT solver:

flow of t np, Errlog further finds its source being the re- 1 c, A ECA—C_ is notsatisfiable.

turn value ofpcre_mal | oc. Finally, it replaces the np 2. Cp A—C_ is satisfiable.

with pcre_mal | oc() and derives the correct error con-
dition, pcr e_mal | oc() ==NULL. Similarly, the condition
st at us! =COMCX in Figure[2 is learnt because at us

is a formal parameter of the function. exception is propagated to the caller via return code. It

Idgntifying helper Iogging_ functions  Errlog only re- checks if there is a return statement associated B@ln
quires developers to provide the name of the default 1og; ¢irmijar way as it checks for a log point. It remembers

_glgg Luncuon. I-Ilowever, 'rr]‘ alll thle large sfoftwgre Wﬁ Studine return value, and then analyzes the caller function to
led, there are also many helperlogging functions that Simy, o o\ if this return value is logged or further propagated.

ply wrap around the default onerriog identifies them g0, analysis is recursively repeated in every function.
by recursively analyzing each function in the bottom-u

order along the call graph. If a functidn prints a log
message under the conditionue, F is added to the set
of logging functions.

Sllows devalopersto explity specily domain-spegite ex SIS Eog also adds the check

ception conditions in the form of code comments right be- Each logging statement records (i) a log ID unique to

fore the exception condition check. Our experiments a%ach log point, (i) the call stack, (if) casually-relateti-
conducted without this option. ble values identified using LogEnhancer![#7](iv) a

global counter that is incremented with each occurrence
5.1.2 Identifying Untested Code Area (optional) of any log point, to help postmortem reconstruction of

Errlog-AG further inserts log points for code regions notIhe message order. For each system-cal_l reFurn error, the
covered by in-house testing. We use the test coverage tdg|" "° IS lso recorded. No static text string is printed at
G\U gcov [14] and the branch decision coverage criteriaUNtime. Errlog will compose a postmortem text message
For each untested branch decisidrrlog instruments a Y Mapping the log ID andr r no to a text string describ-
log point. For multiple nested branche&rrlog only in-  INd the exception. For examplé/riog would print the
serts a log point at the top level. This option is not enableff!1oWing message for anpen systgm-call.err_or.open i

in our experiments unless otherwise specified. system call error: No such file or directory: ./filepath ...

5.3 Run-time Logging Library

5.2 Log Printing Statement Insertion Due to the lack of run-time information and domain

Filter the exceptions already logged by a programThis ~ knowledge during our static analysiirlog may also log

is to avoid redundantlogging, which can result in overheafion-exception cases, especially wirlog-LE and Er-

and redundant messages. Determining if an excefition70g-AG. If these cases occur frequently at run time, the

has already been logged by a log pdinis challenging. time/space overhead becomes a concern.

First, L may not be in the basic block immediately after To address this issu&rrlog's run-time logging library

E. For example, in FigurEl 8, the exception check and itBorrows the idea of adaptive sampling[19]. It exponen-

corresponding log point are far apart. Therefore, simplfjially decreases the logging rate when a log pdinis

searching folL within the basic block followingE is not  reached from the same calling context many times. The

enough. Second might be logged by the caller function rationale is that frequently occurred conditions are less

via an error return code. Third, everlifs executed when likely to be important exceptions; and even if they are, it

E occurs, it might not indicate thd is logged since. IS probably useful enough to only record it¥f2dynamic

may be printed regardless of whettteoccurs or not. occurrences. To reduce the possibility of missing true ex-
Errlog uses precise path sensitive analysis to determirf€ptions, we also consider the whole context (i.e., the call

whether an exception has been logged. For each identifi§iRCK) instead of just each individual log point. For each

exceptiotiP, EC), Errlog first checks whether there is a calling context reaching eadhwe log its 2'th dynamic

log pointL within the same functioR that: i) will execute ~Occurrences. We further differentiate system call retrn e

if EC occurs, and ii) there is a path reachifgut notL ~ rors by the value oér r no. For efficiencyErrloglogs into

(WhiCh implies tha‘_— is not always executed regardless of 4LogEnhancer[37] is a static analysis tool to identify usefriable
EC). If such anL exists, thereC has already been logged. values that should be logged with eastistinglog message.

The first condition is equivalent to i), while the second
condition is equivalent to ii).
If no such log point exists&rrlog further checks if the

Ff_og placement If no logging statement is found for an
exceptionE from the analysis above&rriog inserts its
own logging library function, El og( | ogl D) ”, into the
basic block after the exception check. If no such check




Errlog-DE Errlog-LE Errlog-AG

App. func. | mem. ab_no. sig- Total switch- |input |learned Total res. | Lol

ret. |safe. |exit |nals default | check | errors leak
Apache 30 41 9 22 |102 (0.09X) 117 389 |360 968 (0.83X) 24 | 992 (0.86X)
Squid 393 [112 |29 3 537 (0.47X) 116 147 |17 817 (0.72X) 26 | 843 (0.74X)
Postgres ||619 |166 |28 9 822 (0.13X) 432 7 1442 | 2703 (0.43X)|| 65 | 2768 (0.44X)
SVN 33 6 1 3 43 (0.02X) 53 1 8 105 (0.06X) 31 | 136 (0.07X)
Coredtil cp || 34 4 9 2 49 (0.73X) 13 5 0 67 (1.00X) 4 71 (1.06X)
CVsS 1109 | 360 |23 3 1495 (1.30X) || 52 49 645 2241 (1.95X) || 32 | 2273 (1.97X)
OpenSSH (| 714 |31 26 3 774 (0.32X) 112 31 63 980 (0.40X) 23 | 1003 (0.41X)
lighttpd 171 |16 30 3 220 (0.27X) 67 27 6 320 (0.39X) 37 | 357 (0.44X)
gzip 45 3 32 3 83 (0.85X) 40 3 16 142 (1.45X) 14 | 156 (1.59X)
make 339 |6 16 3 364 (2.72X) 29 12 10 415 (3.10X) 6 421 (3.14X)
Total 3487 | 745 |203 |54 |4489 (0.30X)|| 1031 |671 |2567 |8758 (0.58X)|| 262 | 9020 (0.60X)

Table 8:Additional log points added b#rrlog. The “total” of LE and AG include DE and DE+LE, respectivedy)d are compared
to the number of existing log points (Talble 1 and 9). Note thast of these log points ar®t executed during normal execution.

in-memory buffers and flushes them to disk when they be-, -, = PE Bl LE [ frequent pattern
come full, execution terminates, and when receiving user
defined signals. 2, 80 %
Note that comparing with other buffering mechanismg ©0 %
such as “log only the first/last N occurrences”, adaptivé 40 %
sampling offers a unique advantage: the printed log poir%'fs 20 %
can be postmortem ranked in the reverse order of their
occurrence frequencies, with the intuition that frequent! ’ @, &9(,/ by, b D b % /gz &, ’b‘%
logged ones are less likely true errors. % @ o%,; ?‘oo, ¢

7,
(A
S

. Figure 9: Coverage of existing log points brrlog. For Er-
6 In-lab EXpe”ment rlog-LE, we break down the coverages into log points identified

We evaluateErrlog using both in-lab experiments and aby generic exceptions and those learned by frequent loging
controlled user study. This section presents the in-lal§™s. AG has similar coverages as LE.

experiments._ In _addition to the applications we used ity faijure diagnosis as they were added by domain ex-
our charac;terl_zat|on study, we also evaluiteog with 5 perts, and many of them were added in the form of after-
more applications as shown in Table 9. thoughts. This is confirmed by our Finding 2: existing
6.1 Coverage of Existing Log Points log messages would reduce the diagnosis time by 2.2X.

Itis hard to objectively evaluate the usefulness of log meg-herefore, comparing with existing log points provides an

sages added b§rrlog without domain knowledge. How- objective measurement on the effectivenesmifog.

ever, one objective evaluation is to measure how many Figurel9 shows tharrlog, especially withErrlog-LE,

of the existing log points, added manually by developergan automatically cover an average of 84% of existing log

can be added b&rrlog automatically. Such measurementpoints across all evaluated software. In comparidom,

could evaluate how mudBrriog matches domain experts’ 10g-DE logs only definite errors and achieves an average

logging practice. of 52% coverage, still quite reasonable since on average it
Note that while our Sectiof] 4 suggests that the curre@dds less than 1% overhead.

logging practices miss many logging opportunities, we do

not imply that existing log points are unnecessary. On the.2 Additional Log Points

contrary, existing error messages are often quite helpfyl 5qdition to the existing log pointErriog also adds

— #Default Log Points|  New log points, shown in Tablé 8. Even thougirlog-LE
App. description LOC | 5@ Errswam adds 0.06X—-3.10X additional log points, they only cause
CVS version cont. sys. 111K | 1151| 1139 (99%) an average of 1.4% overhead (Secfiod 6.3) because most
OpenSSH secure connection81K | 2421 | 2384 (98%) of them are not triggered when the execution is normal.
lighttpd | webserver | 54K 1813 | 792 (97%) Logging for untested branch decisionTable[I0 shows
9z1p comp/decom. filex22K 198 195 (97%) Errlog-AG’s optional logging for untested branch deci-
make builds programs | 29K | 134 | 129 (96%) sions, which is not included in the results above. For

Apache, Post gres, SYNandCoreutils, we used the

Table 9: The newsoftware projects used to evaludelog, in !
test cases released together with the software.

addition to the five examined in our characterization study.



App. Uncovered decisions # log points App Tot. | w/ exist- Errlog-
Apache 57.0% (2915) 655 ' fails |ing logs DE LE AG
Postgres 51.7% (51396) 11810 Apache |58 |18 (31%)| 28 (48%)| 43 (74%)| 48 (83%)
SVN 53.7% (14858) 4051 Squid |45 |15 (33%)| 23 (51%)| 37 (82%)| 37 (82%)
Coreutils 62.3% (9238) 2293 Postgres| 45 | 24 (53%)| 26 (58%)| 32 (71%)| 34 (76%)
, , o SVN 45 |25 (56%)| 30 (67%)| 33 (73%)| 33 (73%)
Table 10:Optional logging for untested branch decisions. Coreutils| 45 | 15 (33%)| 28 (62%)| 34 (76%)| 37 (82%)

Software Adaptive sampling* No sampling | Total [ 238*] 97 (41%)[135 (57%) 179 (75%) 189 (79%)

DE LE AG DE LE
Apache 1% | <1% | 2.7% || <1% | <1% Table 13: Errlog's effect on the randomly sampled 238 real-
Squid <1% | 1.8% | 2.1% || 4.3% | 9.6% world failure cases. *: 12 of our 250 examined failure cases
Postgres 15% | 1.9% | 2.0% || 12.6% | 40.1% cannot be evaluated since the associated code segments are f
SVN <1% | <1% | <1% || <1% | <1% different platforms incompatible with our compiler.
?:Q/S ii;‘; 222 222 iiz//:: gg;‘: tures a true error since doing so requires domain expertise.

Openssh scl 2.0% | 4.6% | 4.8% || 5.2% | 27.1% Therefore we simply treat the log points that are executed

lighttpd <1% | <1% | 2.2% || <1% | <1% during our performance. testin_g as noisy messages as we
gzip 1% | <1% | <1% || <1% | <1% are not aware of any failures in our performance testing.
make 39% | 4.0% | 4.8% || 4.2% | 6.8% Among the five applications we used in our failure study,
Average 1.1% | 1.4% | 2.1% || 3.5% | 9.4% only a total of 35 log points (out of 405 error condition

bi _ , checks) are executed, between 3-12 for each application.
Table 11:The performance overhead added Bylog's 109 a7 hreaks down these 35 log points by different pat-
ging. *: By default, Errlog uses adaptive sampling. We also - .

i i : terns. Examples of these include using the error return of
show the overhead without using sampling only to demorestrat . N . .
the effect of adaptive sampling. st at system call to verify a file’s non-existence in normal
. . executions. Since we use adaptive sampling, the size of
func.| mem.| switch | input | learned| .. | run-time log is small (less than 1MB).
ret. | safe. | default) check) errors Sampling overhead comparison We also evaluate the
Logpts| 5 8 > ! 10 35 efficiency of adaptive sampling by comparing it with “no
Table 12:Noisy log points exercised during correct executionsSampling” in Tabl&Tll. “No sampling” logging recorels-
ery occurrence of executed log points into memory buffer

6.3 Performance Overh_ead . and flushes it to disk when it becomes full. We do not eval-
We evaluateErriog's logging overhead during the soft- “ L L
uate “no sampling” orErrlog-AG as it is more reasonable

ware’s normal execution. Server performance is mea- ) .
: : . 0 use sampling to monitor resource usage.
sured in peak-throughput. Web servers includipgche . . : ,
Adaptive sampling effectively reduceErrlog-LE’s

ht t pd, squi d, andl i ght t pd are measured withb [4]; S .
Post gres is evaluated withpgbench [24] using the overhead from nq-sampllngsg.4% to 1.4%._The majority
select-only workloadSVN and CvS with a combination of th.e overhgad is caused by a few Iog points on an ex-
of check-out, merge, copy, et&penSSHs scp with re- ecution’s c_r|t|cal pths. For example,.m)st ares. th?
peatedly transferring filegzi p andcp with processing mdex—_readlng f“”C“O"?’ where a Ic_>ck s held, coptalns a
log point. By decreasing the logging rate, adaptive sam-

large files;make with compilingPost gr eSQL. ; 2
'Ig'abIeEI:L showsErrlog’sp Ioggging overhead during the pling successfully reduces no-sampling’s 40.1% overhead
P 1.9%. In comparison, the effect of sampling is less ob-

normal execution. For all evaluated software, the defauﬁ . ) ' .
ious formake, where its short execution time is not suf-

Errlog-LE imposes an average of 1.4% run—timeoverheaq,c.ent for adantive samoling to adiust its sampling rate
with a maximum of 4.6% foscp. The most aggressive et or adaplive ping | JUSHILS ping '
Analysis time SinceErrlog is used off-line to add log

mode, Errlog-AG, introduces an average of 2.1% over- at s prior t ft | th vsis time i
head and a maximum of 4.8%. The maximum runtim@ 2.cMents prior 1o sottware refease, the analysis time 1S
ess critical. Errlog takes less than 41 minutes to analyze

memory footprint imposed bErrlogis less than 1MB. .
scp andnake have larger overhead than others in Ta_each evaluated software exceptpost gr es, which took

ble[T1. It is becausecp is relatively CPU intensive 3.8 hours to analyze since it has 1 million LOC. Siikre

(lots of encryptions) and also has a short execution timéI.Og scans the source cc_)de IN one-pass, Its analy5|s_ time
Compared to I/O intensive workloads, the relative Iog_roughly scales linearly with the increase of the code size.
ging overhead added Wyrriog becomes more significant 6.4 Real World Failures

in CPU intensive workloads. Moreover, short executiomable[I3 showsErrlog's effect to the real-world failures
time may not allowErrlog to adapt the sampling rate ef- we studied in Sectidfl 4. In this experiment we turn on the
fectively. nake also has relatively short execution time. logging for untested code regionfrriog-AG. Originally,
Noisy messagedore log messages are not always bette#1% of the failures had log messages. Whitrlog, 75%

However, it is hard to evaluate whether each log point caand 79% of the failures (witkrrlog-LE and AG, respec-
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Name |Reprg Description .

apache| v’ A configuration error triggered a NULL § 40 ‘ Errlog = ‘

crash pointer dereference. 2 30 No Errlog m

apache| v’ The name of the group-file contains a typo £ 20

no-file in the configuration file. 2 10 ﬁ

chmod | x fail silently on dangling symbolic link. =

cp v" |fail to copy the content of /proc/cpuinfo. overall apacheapachechmod squid  cp

squid | x when using Active Directory as authentica- crash no-file
tion server, incorrectly denies user’s authgn- Figure 10:User study result, with error bars showing 95% con-
tication due to truncation on security toker.  fidence interval.

Table 14:Real-world failures used in our user study. ~ Bias in user selection: The participants might not rep-
_ _ resent the real programmers of these software. Only four
tively) have failure-related log messages. users indicated familiarities with the code of these soft-

Effectiveness ofErrlog for Diagnosis We evaluate the ware. However, we do provide each user a brief tutorial
usefulness of the added log messages in diagnosis usitthe relevant code. Moreover, studiés|[34] have shown
SherLog [35], a log-inference engine. Given log mesthat many programmers fixing real-world production fail-
sages related to a failure, SherLog reconstructs the exgres are also not familiar with the code to be fixed because
cution paths must/may have taken to lead to the failurgnany companies rely on sustaining engineers to do the fix.
Our evaluation shows that 80% of the new messages c&staining engineers are usually not the developers who

help SherLog to successfully infer the root causes. wrote the code in the first place.
Bias in methodology: As our experiment is a single-
7 User Study blind trial (where we, the experimenters, know the ground

We conduct a controlled user study to measure the effefUth), there is a risk that the subjects are influenced by the
tiveness oErrlog. TabledI# shows the five real-world pro- interaction. Therefore we give the users written instruc-
duction failures we used. Except faagache crash”, the tions for each failure, with the only difference being the
other four failed silently. Failures are selected to covePresence/absence of the log message; we also minimize
diverse root causes (bugs and misconfigurations), sym@Ur interactions with the user during the trial.
toms, and reproducibilities. We test on 20 programmer8esults Figure[I0 shows our study result. On average
(no co-author of this paper is included), who indicated thgtrogrammers took 60.7% less time diagnosing these fail-
they have extensive and recent experience in C/C++.  ures when they were provided with the logs addedEby
Each participant is asked to fix the 5 failures as best a#g (10.374-2.18 minutes versus 262+ 3.75 minutes, at
she/he could. They are provided a controlled Linux work95% confidence interval). An unpaired T-test shows that
station and a full suite of debugging tools, includigog. the hypothesisErrlog saves diagnosis time” is true with a
Each failure is given to a randomly chosen 50% of the praerobability of 99.9999999% (p=87 x 10~19), indicating
grammers withErrlog inserted logs, and the other 50%the data strongly supports this hypothesis.
without Errlog logs. All participants are given the expla- Overall, since factors such as individuals’ capability are
nation of the symptom, the source tree, and instructiorsmortized among a number of participants, the only con-
on how to reproduce the three reproducible failures—this gfant difference between the two control groups is the ex-
actually biased again&irrlogsince it makes the n&rlog  istence of the log messages provideddylog. Therefore
cases easier (it took us hours to understand how to repnge believe the results refleErriog's effectiveness.
duce the twazpache failures). The criteria of a successful Less formally, all the participants reported that they
diagnosis is for the users fix the failure. Further, there is found the additional error messages providedHsylog
a 40 minutes time limit per failure; failing to fix the fail- significantly helped them diagnose the failures. In partic-
ure is recorded as using the full limit. 40 minutes is a bestlar, many participants reported thaElflog added) logs
estimation of the maximum time needed. are in particular helpful for debugging more complex sys-
Note that this is a best-effort user study. The potentidkms or unfamiliar code where it required a great deal of
biases should be considered when interpreting our resultine in isolating the buggy code path.”
Below we discuss some of the potential biases and how we However, for one failure,dpache crash”, the benefit of
addressed them in our user study: Errlog is not statistically significant. The crash is caused
Bias in case selectionWe did not select some very hard-by aNULL pointer dereferenceErriog's log message is
to-diagnose failures and only chose two unreproduciblerinted simply becaussl GSEGV is received. Since users
ones, since diagnosis can easily take hours of time. Thiwuld reproduce the crash and ud®B, they could rela-
bias, however, is likelyagainst Errlog since our result tively quickly diagnose it even without the log.
shows thatErrlog is more effective on failures with a  In comparison,Errlog achieves maximum diagnosis
larger diagnosis time. time reduction in two cases:stui d” (by 72.3%) and
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“apache no-file” (by 73.7%). Thesqui d bug is a tricky reset the sampling rate for long running programs.

one: due to the complexity in setting up the environ- In addition, adaptive sampling might preclude some
ment and user privacy concerns, it is not reproducible byseful forms of reasoning for a developer. For instance,
the participants. Without logs, most of the control grouphe absence of a log message no longer guarantees that
took time-consuming goose chases through the comptie program did not take the path containing the log point
cated code. In contrast, the error message fimog, (assuming the log message has already appeared once).
caused by the abnormal returngfpr i nt f, guided most Moreover, even with the global order of each printed mes-
of the users from the other group to quickly spot the unsafsage, it would be harder to postmortem correlate them
use ofsnpri nt f that truncated a long security token.  given the absence of some log occurrences.

In the “apache no-file” case (the one shown in Fig- To address this limitation, programmers can first use
ure[1), apache cannot open a file due to a typo in theadaptive sampling on every log point during the test-
configuration file. Without any error message, some prang and beta-release runs. Provided with the logs
grammers did not even realize this was caused by a migrinted during normal executions, they can later switch to
configuration and started to debug the code. In contragion-sampling logging for those not-exercised log points
the error message provided Byrlog clearly indicates the (which more likely capture true errors), while keep using
open system call cannot find the file, allowing most pro-sampling on those exercised ones for overhead concerns.
grammers in this group to quickly locate and fix the typo3) CanErrlogcompletely replace developers in logging?

The semantics of the auto-generated log messages are still
8 Limitations and Discussions not comparable to those written by developers. The mes-
. . sage semantic is especially important for support engi-
(1) What failures cannot benefit froffrriog? Not all the neers or end users who usually do not have access to the

failures can be successfully diagnosed wiiilvlog. First, source code.Errlog can be integrated into the program-

I I 0, -
Errlog fails to insert log messages for 21% of the ranming IDE, suggesting logging code as developers program

domly sampled failures (Table113). The error conditions . . .
. : o aad allowing them to improve inserted log messages and

of these failures are subtle, domain-specific, or are caused . roner verbosity levels

by underlying systems whose errors are not even proper?y gn prop y ' .

propagated to the upper level applications] [2@rriog (4) How about verbose log messageshis paper only

could be further used with low-overhead run-time invariStudies log messages under the default verbosity mode,

ants checking [13] to log the violations to the invariants. Which is the typical production setting due to overhead
Second, while log messages provide clues to narroﬁpncemSIEB]' Indeed, verbose logs can also help debug-

down the search, they may not pinpoint the root Causg.ing production failures as developers might ask user to
’ produce the failure with the verbose logging enabled.

Sectior 51 shows that for 20% of the failures, the addel . A ;
owever, such repeated failure reproduction itself is un-

log messages are not sufficient for the diagnosis. Su i-able for th i the first ol How to effectivel
examples include (i) concurrency bugs where the threa esirabie for the users in the first place. How'o efiectively
insert verbose messages remains as our future work.

interleaving information is required and (ii) failures whe
key execution states are already lost at the log point. Nofg) What is the impact of the imprecisions of the static
that a majority & 98%) of failures in the real world are analysis? Such imprecisions, mainly caused by pointer
caused by semantic bugs, misconfigurations, and har@liasing in C/C++, might result in redundant logging and
ware errors but not by concurrency bugs|[27]. insufficient logging. However, given that Saturn’s intra-
However, this does not medrriog can only help di- proce_dural a_nal_ysi_s precisely trac_ks pointer aliasés [2],
agnosing easy failures. Log messages collect more diagch impact is limited only to the inter-procedural anal-
nostic information, not to pinpoint the exact root cause/SiS (Where the error is propagated via return code to the
Evidences provided by logs along the fault propagatiof@!/lers to log). In practice, however, we found program-
chain, despite how complicated this chain is, will likelyMers seldom use aliases on an error return code.
help narrowing down the search space. Therefore ev
for concurrency bugs, an error message is still likely to b Related Work
useful to reduce the diagnosis search space. Log enhancement and analysis Some recent proposals
(2) What is the trade-off of using adaptive samplingZharacterize, improve, and analy@dstinglog messages
Adaptive sampling might limit the usage of log messagedor failure diagnosis[[3€, 37, 35, B2]. LogEnhander![37]
If the program has already exercised a log point, it is possadds variables into each existing log message to col-
ble that this log will not be recorded for a subsequent errolect more diagnostic information; Our previous wdrk][36]
Long running programs such as servers are especially vistudied developers’ modifications to existing logging code
nerable to this limitation. To alleviate this limitationew and found that they often cannot get the logging right at
differentiate messages by runtime execution contexts ithe first attempt. SherLo@[85] is a postmortem debugger
cluding stack frames argt r no. We can also periodically that combines runtime logs and source code to reconstruct
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the partial execution path occurred in the failed executiotior other purposes, such as bug detectidgrriog uses
However, all of these studies only deal witkistinglog ~ code analysis for a different objective: log insertion for

messages, and do not address the challenge of wherefuture postmortem diagnosis. Therefore many design as-

add new logs as discussed in Secfibn 2. pects are unique t&rrlog, such as checking whether the
The different objective makes our techniques very diféxception is logged, learning domain-specific errors, etc.

ferent from the systems listed above. For example, both )

SherLog and LogEnhancer start from an existing log mestO  Conclusions

sage to backtrack the execution paths. In compari§en, This paper answers a critical question: where is the proper
rlog scans the entire source code to identify different eXpcation to print a log message that will best help post-
ception patternsErriog also learns the program-specificmortem failure diagnosis, without undue logging over-
errors, identifies the untested code areas, checks wheth@iad? We comprehensively investigated 250 randomly
exceptions are already logged, and logs with adaptive sa®ampled failure reports, and found a number of exception
pling at runtime. All these techniques are uniqu&tdog  patterns that, if logged, could help diagnosis. We further
for its objective. developecErrlog, a tool that adds proactive logging code
Detecting bugs in exception handling code Many with only 1.4% logging overhead. Our controlled user
systems aim to expose bugs in the exception handlirgjudy shows that the logs added Byrlog can speed up
code [17[26, 22,16, 33], including twio [17,126] that statthe failure diagnosis by 60.7%.

ically detect the unchecked errors in file-system cdgfe.
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