
Don’t Get Caught In the Cold, Warm-up Your JVM

Understand and Eliminate JVM Warm-up Overhead in Data-parallel Systems

David Lion, Adrian Chiu, Hailong Sun*, Xin Zhuang, Nikola Grcevski†, Ding Yuan

University of Toronto, *Beihang University, †Vena Solutions

Abstract

Many widely used, latency sensitive, data-parallel dis-

tributed systems, such as HDFS, Hive, and Spark choose

to use the Java Virtual Machine (JVM), despite debate

on the overhead of doing so. This paper analyzes the ex-

tent and causes of the JVM performance overhead in the

above mentioned systems. Surprisingly, we find that the

warm-up overhead, i.e., class loading and interpretation

of bytecode, is frequently the bottleneck. For example,

even an I/O intensive, 1GB read on HDFS spends 33%

of its execution time in JVM warm-up, and Spark queries

spend an average of 21 seconds in warm-up.

The findings on JVM warm-up overhead reveal a con-

tradiction between the principle of parallelization, i.e.,

speeding up long running jobs by parallelizing them

into short tasks, and amortizing JVM warm-up overhead

through long tasks. We solve this problem by designing

HotTub, a new JVM that amortizes the warm-up over-

head over the lifetime of a cluster node instead of over

a single job by reusing a pool of already warm JVMs

across multiple applications. The speed-up is significant.

For example, using HotTub results in up to 1.8X speed-

ups for Spark queries, despite not adhering to the JVM

specification in edge cases.

1 Introduction

A large number of data-parallel distributed systems are

built on the Java Virtual Machine (JVM) [25]. These sys-

tems include distributed file systems such as HDFS [28],

data analytic platforms such as Hadoop [27], Spark [64],

Tez [62, 76], Hive [32, 77], Impala [13, 36], and key-

value stores such as HBase [29] and Cassandra [15]. A

recent trend is to process latency-sensitive, interactive

queries [37, 65, 75] with these systems. For example, in-

teractive query processing is one of the focuses for Spark

SQL [10, 64, 65], Hive on Tez [37], and Impala [36].

Numerous improvements have been made to the per-

formance of these systems. These works mostly fo-

cused on scheduling [2, 4, 31, 38, 56, 84], shuffling

overhead [17, 19, 40, 45, 81], and removing redundant

computations [61]. Performance characteristics stud-

ies [44, 46, 55, 57] and benchmarks [18, 23, 34, 80]

have been used to guide the optimization efforts. Most

recently, some studies analyzed the performance impli-

cations of the JVM’s garbage collection (GC) on big data

systems [24, 47, 48, 59].

However, there lacks an understanding of the JVM’s

overall performance implications, other than GC, in

latency-sensitive data analytics workloads. Conse-

quently, almost every discussion on the implications of

the JVM’s performance results in heated debate [35,

41, 42, 43, 58, 69, 83]. For example, the developers of

Hypertable, an in-memory key-value store, use C++ be-

cause they believe that the JVM is inherently slow. They

also think that Java is acceptable for Hadoop because

“the bulk of the work performed is I/O” [35]. In addi-

tion, many believe that as long as the system “scales”,

i.e., parallelizes long jobs into short ones, the overhead

of the JVM is not concerning [69]. It is clear that given

its dynamic nature, the JVM’s overhead heavily depends

on the characteristics of the application. For example,

whether an interpreted method is compiled to machine

instructions by the just-in-time (JIT) compiler depends

on how frequently it has been invoked. With all these dif-

ferent perspectives, a clear understanding of the JVM’s

performance when running these systems is needed.

This research asks a simple question: what is the per-

formance overhead introduced by the JVM in latency-

sensitive data-parallel systems? We answer this by pre-

senting a thorough analysis of the JVM’s performance

behavior when running systems including HDFS, Hive

on Tez, and Spark. We drove our study using represen-

tative workloads from recent benchmarks. We also had

to carefully instrument the JVM and these applications

to understand their performance. Surprisingly, after mul-

tiple iterations of instrumentation, we found that JVM

warm-up time, i.e., time spent in class loading and in-

terpreting bytecode, is a recurring overhead, which we

made the focus of this study. Specifically, we made the

following three major findings.

First, JVM warm-up overhead is significant even in

I/O intensive workloads. We observed that queries from

BigBench [23] spend an average of 21 seconds in warm-

up time on Spark. Reading a 1GB file on HDFS from

a hard drive spends 33% of its time in warm-up. We

consider bytecode interpretation as an overhead because

there is a huge performance discrepancy compared with

JIT-compiled code (simply referred as compiled code in

this paper) [39, 73]. For instance, we find that CRC

checksum computation, which is one of the bottlenecks

in HDFS read, is 230x faster when executed by compiled

code rather than interpretation.

In addition, the warm-up time does not scale. Instead,

it remains nearly constant. For example, the warm-up

time in Spark queries remains at 21 seconds regardless

of the workload scale factor, thus affecting short running

jobs more. The broader implication is the following:

There is a contradiction between the principle of

parallelization, i.e., speeding up long running jobs

by parallelizing them into short tasks, and amortiz-

ing JVM warm-up overhead through long tasks.

Finally, the use of complex software stacks aggravates

warm-up overhead. A Spark client loads 19,066 classes

executing a query, which is 3 times more than Hive de-

spite Spark’s overall latency being shorter. These classes

come from a variety of software components needed by

Spark. In practice, applications using more classes also

use more unique methods, which are initially interpreted.

This results in increased interpretation time.

To solve the problem, our key observation is that

the homogeneity of parallel data-processing jobs enables

significant reuse rate of warm data, i.e., loaded classes

and compiled code, when shared across different jobs.

We designed HotTub, a new JVM that eliminates warm-

up overhead by reusing JVMs from prior runs. It has the

following advantages. First, it is a drop-in replacement of

existing JVMs, abstracting away the JVM reuse, without

needing users to modify their applications. In addition, it

maintains consistency of an application’s execution, i.e.,

the behavior is equivalent to the application being exe-

cuted by an unmodified JVM except for the performance

benefit [26]. Finally, it has a simple design that does

not require a centralized component, and it selects the

“best” JVM that will likely result in the highest re-usage

of loaded classes and compiled code.

Evaluating HotTub shows that it can significantly

speed-up latency sensitive queries. It reduces Spark’s

query latency on 100GB by up to 29 seconds, and speeds

up HDFS reads on 1MB data by a factor of 30.08. In ad-

dition to warm-up time, the large speed up comes from

more efficient use of cache, TLB, and branch predictor

with up to 36% of miss rate reductions.

This paper makes the following contributions.

• It is the first analysis on the JVM’s performance over-

head in latency sensitive, data-parallel workloads. We

are also the first to identify and quantify the warm-up

overhead on such workloads.

• It presents HotTub, the first system that eliminates

warm-up overhead while maintaining consistency.

• It also implements a set of improved JVM performance

counters that measure the warm-up overhead. In par-

ticular, it is the first to provide fine-grained measure-

ment of interpretation time.

The source code of HotTub and our JVM instrumen-

tations in OpenJDK’s HotSpot JVM are publicly avail-

able 1.

This paper has the following limitations. First, HotTub

is less useful in long running workloads as the warm-up

time is amortized by the long job completion time. In

addition, HotTub does not completely comply with the

Java Virtual Machine Specification [25] with regards to

applications that use static variables whose initialization

is timing dependent, which is rare and well-known to be

a bad programming practice [1, 70].

This paper is organized as follows. Section 2 de-

scribes the instrumentations to the JVM used to measure

its warm-up overhead. Section 3 presents the analysis of

JVM performance. Section 4 and Section 5 describe Hot-

Tub’s design, implementation, and limitations. We eval-

uate HotTub in Section 6. We survey the related work in

Section 7 before we conclude.

2 Measure Warm-up Overhead

In this section we discuss how we instrument the JVM

to measure its class loading and bytecode interpretation

time with per-thread granularity. Section 3 describes how

we use these instrumentations to study JVM overhead

in data-parallel systems. We use OpenJDK’s HotSpot

1https://github.com/dsrg-uoft/hottub

https://github.com/dsrg-uoft/hottub

JVM's call stack

	1	push	%rax

	2	..

	3	push	%rdx

	4	callq	_record_mode_change

	5	callq	_pop_ret_addr

	6	movq	%rax,	%r11

	7	pop	%rdx

	8	..

	9	pop	%rax

10	jmp	%r11

parameters

ret. addr.: 0x670	
save

regs.

restore

regs.

0x670: ret_handler

return addr. stack

 (thread local)

..	..

0x8f0

0x8f0: original ret. addr.

1

2

3

4

5

ret addr.
..	..

0x2a8

0x2a8

stack addr.

addr.

0x2a0

Figure 1: Intercepting mode changing returns.

JVM, version 1.8.0 build 25.66. HotSpot is the primary

reference Java Virtual Machine implementation [47].

Measuring per-thread class loading time is relatively

straightforward. HotSpot already provides per-JVM

class loading counters. We simply change the counter

data structures to be thread local.

Measuring bytecode interpretation time is challeng-

ing. The JVM may be interpreting bytecode, execut-

ing JIT-compiled methods, or executing C/C++ compiled

“native” code (referred as native execution). It requires

us to instrument every mode change, i.e., transitions be-

tween interpreter execution and compiled/native execu-

tion. (We are not concerned with the transitions between

compiled execution and native execution as our goal is

to measure interpretation time.) If a mode change occurs

via call, e.g., an interpreted method calls a compiled

method or vice versa, it is straightforward to instrument,

as it must first go through fixed program points known as

adapters in HotSpot. Adapters are necessary because the

interpreter uses a different stack layout from compiled

or native execution. However, if a mode change occurs

via ret, it is extremely difficult to instrument because

the callee merely pops its stack frame, regardless of its

caller. There is no one program point for ret that allows

us to instrument the change back to the caller’s mode.2

We instrument mode changing returns by replacing

the original return address on the call stack with the ad-

dress of our instrumented code. Figure 1 shows how it

works in 5 steps: (1) when a mode changing call is

executed, e.g., interpreter method A calls a compiled or

native method B, we instrument this transition and also

save the return address back to A (0x8f0) into a sepa-

rate, thread local stack. (2) We replace the original re-

turn address with the address of our instrumented func-

2The interpreter can also directly jump into compiled code via on-

stack-replacement (OSR) [22, 33], a technique that immediately allows

a hot loop body to run with compiled code during execution of the

method. OSR also has to go through adapters, which we instrument, as

the stack layout needs to be changed.

tion ret_handler (0x670). (3) When B returns, it first

jumps to ret_handler, which saves the registers that it

is going to use. It records the mode change back to A,

and pops the original return address (0x8f0) (step (4)).

It then restores the saved registers, and in step (5) jumps

to the original return address in A. ret_handler is im-

plemented in 15 assembly instructions.

We have to carefully handle a few edge cases where

the return address is used for special purposes. For GC,

the JVM needs to walk each Java thread’s stack to find

live objects. Each frame’s return address is used to iden-

tify its caller. Therefore we cannot leave the address of

ret_handler on the stack; at the start of a GC pause,

we restore the original return address. To quickly locate

the original return address, we also save the address of

the return address on the call stack (0x2a8 in Figure 1).

Similarly, the JVM uses the return address to propagate

exceptions to caller methods. Therefore we restore the

original return address upon throwing an exception.

The instrumentation incurs negligible overhead.

When both class loading and interpreter counters are en-

abled on a range of HDFS workloads we used, the over-

head is always less than 3.3%.

Note that class loading and interpreter times overlap,

but our counter identifies this overlap. Therefore when-

ever we report JVM warm-up overhead as a single num-

ber, it is the sum of class loading and interpreter time

subtracted by their overlap. However, we found only a

small portion (14.8% in HDFS workload) of them over-

lap because class loading methods are quickly being JIT-

compiled due to their frequent invocations.

3 Analysis of Warm-up Overhead

This section presents an in-depth analysis on JVM warm-

up overhead in data-parallel systems. We first describe

the systems used and our analysis method before pre-

senting the analysis result. We also discuss existing in-

dustry practices that address the warm-up overhead and

their limitations.

3.1 Methodology

We study HDFS, Hive running on Tez and YARN, and

Spark SQL running with Spark in standalone mode.

HDFS is a distributed file system. It is the default file sys-

tem for many data parallel systems, including Spark and

Hive. Both Spark and Hive process user queries by par-

allelizing them into short tasks, and are designed specif-

ically for interactive queries [37, 65, 75]. They differ

in how they parallelize the tasks: each Spark job runs

in only one JVM on each host (known as an executor),

and utilizes multiple threads where each task runs in sin-

gle thread (a JVM is a single process). In contrast, Hive

on Tez runs each task in a separate JVM process known

as YARN container. The versions we used are Hadoop-

2.6.0, Spark-1.6.0, Hive-1.2.1, and Tez-0.7.0.

We benchmark Spark and Hive using BigBench [23].

It consists of 30 queries ranging over structured, semi-

structured, and unstructured data that are modeled af-

ter real-world usage [23]. Its queries on structured data

are selected from TPC-DS [79], which is widely used

by SQL-on-Hadoop vendors like Cloudera [53], Horton-

works [54], Databricks [21, 66], and IBM [12] to drive

their optimization efforts.

All experiments are performed on an in-house cluster

with 10 servers. Four of them have 2 Xeon E5-2630V3,

16 virtual core, 2.4GHz CPUs with 256GB DDR4 RAM.

The others have a single Xeon E5-2630V3 CPU with

128GB DDR4 RAM. Each server has two 7,200 RPM

hard drives, is connected via 10Gbps interconnect, and

runs Linux 3.16.0. The server components are long run-

ning and fully warmed-up for weeks and have serviced

thousands of trial runs before measurement runs.

We run the queries on seven scale factors on Spark:

100, 300, 500, 700, 1K, 2K, 3K, and five scale factors on

Hive: 100, 300, 500, 700, 1K. Each scale factor corre-

sponds to the size of input data in GB (a scale factor 100

uses 100GB as input size, whereas 3K uses 3TB). For

each scale factor, we repeat each query 10 times and take

result from the fastest run in order to eliminate trials that

might have been perturbed by other background work-

loads. In addition, we only analyze the 10 queries with

the fastest job completion time out of the total 30 queries

in BigBench, because of our focus on latency sensitive

queries. (These queries are query 1, 9, 11, 12, 13, 14, 15,

17, 22, and 24.) BigBench is designed to be comprehen-

sive, therefore many queries are long, batch processing

queries instead of interactive queries. In addition, we

found that at least 8 queries lead to heavy swapping at

large data sizes, indicating that our system is not repre-

sentative to run these queries.

We instrument each thread in the system with the per-

thread class loading, interpreter, and GC performance

counters to measure the JVM overhead of each parallel

task. However, understanding the overall slow down of

the entire job is non-trivial as the JVM overhead of multi-

ple tasks can overlap. We borrow the blocked time analy-

sis from Ousterhout et al. [55] to estimate the slow down

to the entire job from per-task measurement. It works

by first subtracting the time each task spends in the mea-

sured event (e.g., class loading) from its total execution

 0

 1

 2

 3

 0 2 4 6 8 10

Se
co

nd
s

Size (GB)

cl seq. read
int seq. read
cl par. read

int par. read
cl write

int write

Figure 2: JVM warm-up time in various HDFS workload. “cl”

and “int” represent class loading and interpretation time respec-

tively. The x-axis shows the input file size.

time, and then simulates the scheduling of these tasks

with the reduced execution time. We implemented a sim-

ple scheduling simulator with 500 LOC in Perl and sim-

ulated the original tasks with an accuracy of over 96%.

Limitations. Our measurement of JVM overhead is a

conservative underestimate. First, we do not measure

the effect of the background threads that are used to JIT-

compile bytecode. Similarly, we only measure the stop-

the-world GC pause, ignoring background GC activities.

This background work will compete with the application

for CPU resources. In addition, our instrumentation may

not cover all threads. For example, some libraries can

create their own threads which we do not instrument. We

use our best effort to address this problem: we instru-

mented the JVM thread constructor to observe the cre-

ation of every application thread, and instrument those

that at least load classes. However, there are still threads

that are not instrumented.

3.2 HDFS

We implement three different HDFS clients: sequential

read, parallel read with 16 threads, and sequential write.

We flush the OS buffer cache on all nodes before each

measurement to ensure the workload is I/O bound. Note

that interpreter time does not include I/O time because

I/O is always performed by native libraries.

Figure 2 shows the class loading and interpreter time

under different work loads. The average class loading

times are 1.05, 1.55, and 2.21 seconds for sequential

read, parallel read, and sequential write, while their av-

erage interpreter times are 0.74, 0.71, and 0.92 seconds.

The warm-up time does not change significantly with dif-

ferent data sizes. The reason that HDFS write takes the

JVM longer to warm-up is that it exercises a more com-

plicated control path and requires more classes. Parallel

read spends less time in the interpreter than sequential

 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1 0 2 4 6 8 10

W
ar

m
-u

p
(%

 R
un

tim
e)

Size (GB)

seq. read
seq. write
par. read

Figure 3: The JVM warm-up overhead in HDFS workloads

measured as the percentage of overall job completion time.

Client init
File open

Read

 0 1 2 3 4Time (s)

Class loading
Interpreter
Compile/native

Figure 4: Breakdown of sequential HDFS read of 1GB file.

read because its parallelism allows the JVM to identify

the “hot spot” faster.

Figure 3 further shows the significance of warm-up

overhead within the entire job. Short running jobs are

more significantly affected. When the data size is under

1GB, warm-up overhead accounts for more than 33%,

48%, and 30% of the client’s total execution time in se-

quential read, parallel read, and sequential write. Se-

quential write suffers the least from warm-up overhead,

despite its higher absolute warm-up time, because it has

the longest run time. In contrast, parallel read suffers

the most from warm-up overhead because of its short la-

tency. According to a study [82] published by Cloudera,

a vast majority of the real-world Hadoop workloads read

and write less than 1GB per-job as they parallelize a big

job into smaller ones. The study further shows that for

some customers, over 60% of their jobs read less than

1MB from HDFS, whereas 1MB HDFS sequential read

spends over 60% of its time in warm-up.

Next we break down class loading and interpreter time

using the 1GB sequential read as an example. Figure 4

shows the warm-up time in the entire client read. A ma-

jority of the class loading and interpreter execution oc-

curs before a client contacts a datanode to start reading.

Further drilling down, Figure 5 shows how warm-up

time dwarfs the datanode’s file I/O time. When the datan-

ode first receives the read request, it sends a 13 bytes

ack to the client, and immediately proceeds to send data

packets of 64KB using the sendfile system call. The first

ack
sendfile 1

sendfile 2-38
wait

sendfile 39-109

parse DN ack
read pckt. 1
read pckt. 2
read pckt. 3

 0 10 20 30 40 50Time (ms)

Class loading
Interpreter
Compiled/native

Datanode

Client

Figure 5: Breakdown of the processing of data packets by

client and datanode.

Read Search Define Other Total

Time (ms) 170 276 411 171 1,028

Table 1: Breakdown of class loading time.

sendfile takes noticeably longer than subsequent ones as

the data is read from the hard drive. However, the client

takes even longer (15ms) to process the ack because it

is bottlenecked by warm-up time. By the time the client

finishes parsing the ack, the datanode has already sent

11 data packets, thus the I/O time is not even on the

critical path. The client takes another 26ms to read the

first packet, where it again spends a majority of the time

loading classes and interpreting the computation of the

CRC checksum. By the time the client finishes process-

ing the first three packets, the datanode has already sent

109 packets. In fact, the datanode is so fast that the Linux

kernel buffer becomes full after the 38th packet, and it

had to block for 14ms so that kernel can adaptively in-

crease its buffer size. The client, on the other hand, is

trying to catch up the entire time.

Figure 5 also shows the performance discrepancy be-

tween interpreter and compiled code. Interpreter takes

15ms to compute the CRC checksum of the first packet,

whereas compiled code only takes 65µs per-packet.

Break down class loading. The HDFS sequential read

takes a total of 1,028 ms to load 2,001 classes. Table 1

shows the breakdown of class loading time. Reading the

class files from the hard drive only takes 170ms. Because

Java loads classes on demand, loading 2,001 classes is

broken into many small reads. 276ms are spent searching

for classes on the classpath, which is a list of filesystem

locations. The JVM specification requires the JVM to

load the first class that appears in the classpath in the case

of multiple classes with identical names. Therefore it

has to search the classpath linearly when loading a class.

Another 411ms is spent in define class, where the JVM

parses a class from file into an in-memory data structure.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

100 300 500 700 1000 2000 3000
Scale Factor (GB)

T
im

e
(s

)

Spark

Compiled/native
GC

Interpreter
Class loading

100 300 500 700 1000
Scale Factor (GB) Hive

Figure 6: JVM overhead on BigBench. Overhead breakdown of BigBench queries across different scale factors. The queries are

first grouped by scale factor and then ordered by runtime. Note that Hive has larger query time compared with Spark.

3.3 Spark versus Hive

Figure 6 shows the JVM overhead on Spark and Hive.

Surprisingly, each query spends an average of 21.0 and

12.6 seconds in warm-up time on Spark and Hive respec-

tively. Similar to HDFS, the warm-up time in both sys-

tems does not vary significantly when data size changes.

Software layers aggravate warm-up overhead. The

difference in the warm-up times between Spark and

Hive is explained by the difference in number of loaded

classes. The Spark client loads an average of 19,066

classes, compared with Hive client’s 5,855. Conse-

quently, Spark client takes 6.3 seconds in class loading

whereas the Hive client spends 3.7 seconds. A majority

of the classes loaded by Spark client come from 10 third-

party libraries, including Hadoop (3,088 classes), Scala

(2,328 classes), and derby (1,110 classes). Only 3,329 of

the loaded classes are from Spark packaged classes.

A large number of loaded classes also results in a large

interpreter time. The more classes being loaded leads to

an increase in the number of different methods that are

invoked, where each method has to be interpreted at the

beginning. On average, a Spark client invokes 242,291

unique methods, where 91% of them were never com-

piled by JIT-compiler. In comparison, a Hive client only

invokes 113,944 unique methods, while 96% of them

were never JIT-compiled.

Breaking down Spark’s warm-up time. We further

drill down into to one query (query 13 on SF 100) to

understand the long warm-up time of Spark. While dif-

ferent queries exhibit different overall behaviors and dif-

ferent runtime, the pattern of JVM warm-up overhead is

similar, as evidenced by the stable warm-up time. Fig-

ure 7 shows the breakdown of this query. The query com-

pletion time is 68 seconds, and 24.6 seconds are spent on

warm-up overhead. 12.4 seconds of the warm-up time

Client

Executor

0 6.3 12.4
46.9

59.2
61.5

68

Time (s)

Class loading
Interpreter

Compiled/native

Figure 7: Breakdown of Spark’s execution of query 13. It only

shows one executor (there are a total of ten executors, one per

host). Each horizontal row represents a thread. The executor

uses multiple threads to process this query. Each thread is used

to process three tasks from three different stages.

are spent on the client while the other 12.2 seconds come

from the executors. Note that a majority of executors’

class loading time is not on the critical path because ex-

ecutors are started immediately after the query is sub-

mitted, which allows executors’ class loading time to be

overlapped with the client’s warm-up time. However, at

the beginning of each stage the executor still suffers from

significant warm-up overhead that comes primarily from

interpreter time.

Hive. Hive parallelizes a query using different JVM pro-

cesses, known as containers, whereas each container uses

only one computation thread. Therefore within each con-

tainer the warm-up overhead has a similar pattern with

the HDFS client shown earlier. Hive and Tez also reuses

containers to process tasks of the same query, therefore

the JVM warm-up overhead can be amortized across the

lifetime of a query.

3.4 Summary of Findings

Our analysis reveals that the JVM warm-up time is com-

monly the bottleneck of short running jobs, even when

the job is I/O intensive. For example, 33% of the time

in an HDFS 1GB sequential read is spent in warm-up,

and 32% of the Spark query time on 100GB data size

is on warm-up. The warm-up time stays nearly con-

stant, indicating that its overhead becomes more signif-

icant in well parallelized short running jobs. In prac-

tice, many workloads are short running. For example,

90% of Facebook’s analytics jobs have under 100GB in-

put size [3, 9], and majority of the real-world Hadoop

workloads read and write less than 1GB per-task [82].

Furthermore, Ousterhout et al. [56] show a trend of in-

creasingly short running jobs with latency in the hun-

dreds of milliseconds. This shows that both the data size

and latency of data-parallel workloads are trending to be

smaller. We also observe that multi-layered systems ex-

acerbates the warm-up overhead, as they tend use more

classes and methods, increasing class loading and inter-

pretation times.

3.5 Industry Practices

While JVM performance has been actively studied over

the last 20 years, most of the improvements focused on

GC [24, 47, 48, 59] and JIT [39, 71, 73, 72, 74] instead of

warm-up. One reason is that it is assumed that workloads

are using long-running JVMs. For example, traditional

JVM benchmarks, such as DayTrader [7] and SpecJB-

B/SpecJVM [67, 68], all assume the use of long run-

ning JVMs. This study has shown that this paradigm has

changed on data-parallel systems, and efforts to address

warm-up overhead should be increased moving forward.

Nevertheless, there exists some industry practices to

address warm-up overhead. Despite the study showing

clear overhead issues in Spark and Hive on Tez, both in

fact already implement measures to reduce JVM warm-

up overhead at the application layer. Both reuse the

same JVM on each host to process the different tasks of

each job (query in our case), thus amortizing the warm-

up overhead across the life-time of a job. Spark runs

one JVM or executor on each node that has the same

life time as the job. Hive on Tez runs each task on

a separate JVM (i.e., YARN container) and will try to

keep reuse containers for new tasks. (Container reuse is

the key feature introduced in Tez compared to Hadoop

MapReduce.) A client could be designed to take multi-

ple jobs from users and run them seemingly as one long

job, which would allow multiple jobs to continue to use

the same JVM.3 However, it requires domain expertise to

determine whether such reuse is safe. One must consider

what static data should be re-initialized or which threads

need to be killed. The use of third-party libraries further

exacerbate the problem as they may contain stale static

data and create additional threads. This is perhaps the

reason that these systems do not allow JVM to be reused

across different jobs unless the client is specifically de-

signed to process multiple jobs. Nailgun [52] maintains

a long-running JVM, and allows a client to dynamically

run different applications on it. However, it does not take

any measure to ensure that the reuse is consistent and the

burden is on the users to decide whether a reuse is safe.

In fact, naively reuse (unmodified) JVM does not even

work when running the same Hive query twice, as the

second run will crash because some static data in YARN

needs to be properly reinitialized.

There are also a few solutions that change the JVM to

address the warm-up overhead. The most advanced ones

are perhaps on mobile platforms. The previous version of

the Android runtime (ART) [6] (Android Marshmallow)

would compile the entire app when it is first downloaded

to gain native performance, but it suffered from the var-

ious limitations including large binary size and slow up-

dates [5]. The latest version of ART (Nougat) [6] uses

a new hybrid model. It first runs an app with an inter-

preter and JIT-compiles hot methods, similar to Open-

JDK’s HotSpot JVM. However, ART also stores profiling

data after the app’s run, allowing a background process

to compile the select methods into native code guided

by the profile. These methods now no longer suffer the

warm-up overhead the next time this app is used. ART

also statically initializes selected classes during the com-

pilation and stores them in the application image to re-

duce class loading time.

The Excelsior JET [20], which is a proprietary JVM,

compiles the bytecode statically into x86 native code be-

fore running the application, similar to older versions of

ART. This eliminates both class loading and interpreted

overhead, but this is at the cost of losing the performance

benefit provided by profile-guided JIT compiler.

Other programming methods exist to reduce warm-up

time. One can try to make JIT-compile more aggressively

by changing the threshold with -XX:CompileThreshold.

It is also possible to trigger class loading manually be-

fore classes are actually needed by either referencing the

class or directly loading it. This is only useful if done off

of the critical path. An example is that Spark’s executor

3The container reuse in Tez is less predictable and cannot be taken

advantage of by a smart user unlike with Spark, as there is a threshold

for how long a container will be kept.

$ java

if (reusable

 JVM exists)

true

start new JVM
reset

false

JVM pool

app. run

JVM

reinit. before reuse

Figure 8: Architecture of HotTub.

is created before it actually receives any work allowing

it to load classes. Similarly, one could potentially trigger

JIT-compilation manually by invoking a method many

times. Not only is this only useful if done off the critical

path, but there are also other limitations. One has to en-

sure that the invocation has no side effects to the program

state. Furthermore, one must also be wary of the param-

eters and path the method takes because the JIT-compiler

is heavily guided by run-time profile, and unrealistic in-

vocations could result in code less optimized for cases a

developer cares about.

4 Design of HotTub

The design goal for HotTub is to allow applications to

share the “warm” data, i.e., loaded classes and compiled

code, thus eliminating the warm-up overhead from their

executions. We considered two design choices: explic-

itly copy data among JVMs, or reuse the same JVMs

after properly resetting states. We began implementa-

tion of the first design, trying to save class metadata and

JIT-compiled code to disk for reuse in the next JVM

process, similar to Android runtime [6]. We were able

to share loaded classes, but eventually rejected this de-

sign because it is too complicated to maintain the consis-

tency of all the pointers between the JVM address spaces.

For example, the JIT-compiler does not produce relocat-

able code; a compiled method may directly jump to an-

other compiled method. To maintain consistency, we ei-

ther have to allocate all the loaded classes and compiled

methods at the exact same addresses, which is inflexi-

ble, or fix all the pointer values, which is impractical as

we have to interpret every memory address in compiled

code. We chose the “reuse” design, which proved to be

simpler, and we can leverage existing JVM features, such

as garbage collection, to properly throw out stale data.

Figure 8 shows the architecture of HotTub. It is a

drop-in replacement – users simply replace java with

HotTub and can run their Java application with normal

command. Running java will spawn a HotTub client,

which attempts to contact a warmed-up JVM, known as

a HotTub server, to run on. We refer to a reusable JVM

as server because it is designed to be long running. Af-

ter a server has completed a run, it will send the return

1 struct sockaddr_un add; // create unix sock.

2 char* sum = md5(classpath);

3 while (true) {

4 for (int i = 0; i < POOL_SIZE; i++) {

5 strcpy(add.sun_path,strcat(sum,itoc(i)));

6 if (connect(fd, add, sizeof(add))==0)

7 return reuse_server_and_wait(fd);

8 if (server_busy(i))

9 continue;

10 /* No JVM/server created. */

11 if (fork() == 0) // spawn new jvm in child

12 exec("/HotTub/java", args);

13 /* else, parent, go back to find server */

14 }

15 }

Figure 9: HotTub’s client algorithm.

code to the client allowing the client to return normally

to the user. The server will then run garbage collection,

and reset the JVM state in preparation for the next client.

Next we discuss HotTub’s client algorithm as shown

in Figure 9. First, an important consideration is the reuse

policy, i.e., which applications are allowed to share the

same JVM. In order to gain the most benefit from an ex-

isting JVM it is ideal to run as similar a workload as pos-

sible on it. An application that performs similar logic and

traverses the same code paths will reuse the same classes

and compiled code. However, if the new application is

significantly different from the previous one, then these

benefits are reduced. In HotTub, a client first computes

a checksum of the classpath and every file containing

classes, which are generally JAR (Java Archive) files, on

the classpath. Only the servers with the same checksum

are candidates for reuse. While this limits reuse poten-

tial, it ensures large overlap of warm data. It also ensures

that clients always uses the same classes, avoiding incon-

sistency problems.

In addition, the client appends an integer between 0

and POOL_SIZE to the checksum (line 5 in Figure 9),

creating an ID to use as an address to contact a specific

server. The client tries to connect to each ID in this range,

and reuses the first connected server. If connect fails be-

cause the server is currently busy the client tries the next

server. If connect fails because no server exists, or all

servers are busy, the client forks a child process to cre-

ate the server (line 11-12). The reason that we need to

fork and exec java in the child, instead of directly exec

java without fork, is that the user could be waiting for

the java command to finish. Forking allows the parent to

return after the application finishes, while the child pro-

cess, which is now a warmed-up JVM, waits for reuse.

This design has a number of benefits. First, it is

simple. The clients and servers on each node do not

require a central coordinator, avoiding a potential bot-

tleneck or central point of failure. In addition, it se-

lects the longest running server that will likely result in

the highest reusage of warm data. This is because the

longest running server has had the most time to warm-

up, JIT-compiling the most methods and loading the most

classes. Finally, reusing the same JVM process across

applications also offers caching benefits – between con-

secutive application runs the warm data stays in CPU

caches because its memory address remains the same,

and the OS does not need to flush the TLB.

4.1 Maintain Consistency

The main challenge to HotTub’s design is to ensure that

the application’s execution on HotTub is consistent with

the execution on an unmodified JVM. Data on stack and

heap does not impose inconsistency problem, because at

the end of a JVM application’s execution, all of the ap-

plication’s stack frames have naturally ended. HotTub

further garbage collects the heap objects with root refer-

ences from the stack, therefore all of the heap objects that

are application specific are also cleared. The remaining

items, namely the loaded classes, compiled code, static

variables, and file descriptors, need to be shared between

reuse. Next we describe how HotTub maintains their

consistency between reuse.

Class consistency. HotTub must ensure that any class

it reuses is the same as what would be loaded by an un-

modified JVM, as classes could potentially change in be-

tween runs, or during runs. Maintaining class consis-

tency also ensures the consistency of compiled code as

it is compiled from the class bytecode. The checksum

mechanism used by the client only ensures the consis-

tency of classes on the application classpath, which are

loaded by the default class loader. While this accounts

for the majority of loaded classes, an application can also

implement a custom class loader, which has user-defined

searching semantics, or dynamically generate a class.

Fortunately, any classes loaded by a custom class

loader will not impose inconsistency issues for HotTub

because a custom class loader must be instantiated by

user code. This makes reuse impossible as every run will

create a new instance of the class loader with no data

from the previous run, causing it to load any class nor-

mally. Similarly, classes that are dynamically generated

are loaded by custom class loaders in practice and are

not an issue for consistency. However, there is no perfor-

mance gained from reusing any classes that are loaded

by custom class loaders as they are simply not reused.

Static variable consistency. At the end of application

execution, static variables have values from the previous

execution. Therefore HotTub needs to reinitialize them

first to their default type value and then reinitialize them

with their class initialization code. HotTub uses a simple

policy. When the server is about to be reused, it reinitial-

izes the static variables all at once by invoking the static

initializer, namely <clinit>, of each class.

HotTub needs to maintain the correct order of the invo-

cations to <clinit> of different classes. For example,

class A’s initialization may depend on class B having al-

ready been initialized. HotTub maintains the correct or-

der by recording the order of class initializations when

they are first initialized, and replaying the initializations

in the same order before each reuse.

Unfortunately, reinitializing all the static data before

the start of application is not consistent with the JVM

specification [25] when the initialization of static vari-

ables have timing dependencies. Consider the following

Java example:

1 Class A {

2 static int a = 0;

3 void foo () { a++; }

4 }

5 Class Bad { // bad practice

6 static int b = A.a;

7 }

According to the JVM specification, the value of variable

b in class Bad depends on when class A gets initialized.

For example, if foo() has been called 3 times before Bad

is referenced, then b will be initialized to 3. HotTub will

initialize it to 0 in this case.

However, it is worth noting that static initialization

that has timing depedency is a well known bad program-

ming practices [1, 70]. It makes programs hard to reason

about and difficult to test. Furthermore, multi-threading

makes the matter worse as foo() in the previous exam-

ple can be executed concurrently. In our experiments,

we carefully examined the static initializers of the exper-

imented systems, and none of them use such practice.

Another potential issue is when there exists a depen-

dence cycle in the class initialization code of multiple

classes, HotTub could lead to inconsistent behavior. For

example, consider the following code snippet:

1 Class A {

2 static int a = 10;

3 static int b = B.b;

4 }

5 Class B {

6 static int a = A.a; // set to 10 in

HotSpot; 0 in HotTub

7 static int b = 12;

8 }

There exists a circular dependency between class A and

B in their static variables. Assume class A begins initial-

ization first. Under HotSpot, it will first initialize A.a to

10 (line 2), and starts to initialize class B because A.b de-

pends on it. When executing line 6, HotSpot detects that

there is a circular dependency, and it will proceed to fin-

ish the initialization of the current class (class B), setting

B.a to 10 and B.b to 12, before continuing the initial-

ization of class A. HotTub, however, will run each static

initializer from beginning to the end before moving on to

the next one. Therefore in this case, it will first initial-

ize class B because B’s initialization finished before A’s

in the initial run. Since class A has not been initialized

yet, HotTub will set B.a to the initial value of A.a, which

is 0, leading to an inconsistent value on B.a. Note that

circular dependence in static initializers is also a known

bad practice, and the JVM specification explicitly warns

about its dangers and discourages its use [25].

File descriptor consistency. HotTub will close the file

descriptors (fd) opened by the application at the reset

phase so that they will not affect the next client run. The

only remaining open fds are those opened by the JVM

itself, mostly for JAR files. HotTub also closes stdin,

stdout, and stderr at the end of an application’s execution

in the reset stage. After the client selects a server JVM

for reuse, the client first sends all fds it has opened to

the server, including stdin, stdout, and stderr, so that the

server can inherit these file descriptors and have the same

same open files as the client.

However, it is possible that a file descriptor opened by

the client conflicts with an open file descriptor used by

the server JVM. For example, if the user invokes Hot-

Tub with the command $ java 4>file, HotTub can-

not reuse a server with fd 4 in use. Therefore when

selecting a server for reuse, HotTub also checks if the

server has open fds that conflict with a client’s redirected

fd, and only reuse servers that do not have such a conflict.

Handling signals and explicit exit. HotTub has to han-

dle signals such as SIGTERM and SIGINT and explicit

exit by the application, otherwise it will lose the tar-

get server process from our pool. If application regis-

ters its own signal handler, HotTub forwards the signal.

Otherwise, HotTub handles signals and application exits

by unwinding the stack of non-daemon Java threads and

killing them. Java “daemon” threads are not normally

cleaned at JVM exit as they simply exit with the pro-

cess. However, for consistency, HotTub must kill these

threads. This sets the JVM to the same state as if the ap-

plication finishes normally. The server then closes con-

nection to client, so the client exits normally. However,

if the application calls _exit in a native library, HotTub

cannot save this server process from being terminated.

4.2 Limitations

HotTub cannot handle SIGKILL. Therefore, if the user

sends kill -9 to a HotTub server we will lose it for

future reuse. However, it is most likely that the user

only wants to kill the client java process, which will not

cause us to lose the server because the server and client

are in different processes.

Unfortunately, this use of separate processes can raise

problems if a user expects the application to run in the

same process as java. For example, YARN terminates

a container by first sending SIGTERM to the process

identified by a PID file, followed by SIGKILL. This

would not cause HotTub to violate consistency, as the

server will be killed and the client subsequently exits on

a closed connection. However, this will disable HotTub

from reusing the server. Therefore we had to modify the

management logic in YARN to disable “kill -9”.

The use of HotTub raises privacy concerns. HotTub

limits reuse to the same Linux user, as cross user reuse

allows a different user to execute code with the privi-

leges of the first user. However, our design still violates

the principle “base the protection mechanisms on per-

mission rather than exclusion” [63]. Although we care-

fully clear and reset data from the prior run, an attacker

could still reconstruct the partial execution path of the

prior run via timing channel. For example, by measur-

ing the execution time of the first time invocation of a

method the attacker can infer whether this method has

been executed, and thus JIT-compiled, in the prior run.

In our current implementation we are not zeroing out the

heap space after GC. This allows malicious users to use

native libraries to read the heap data from prior runs.

HotTub cannot maintain consistency if the application

rewrites the bytecode or compiled code of a class on the

classpath after it has been loaded, and does not write the

modifications back to the class file. In such cases, the

in-memory bytecode or compiled code will be different

from the checksum computed by HotTub. It is difficult to

detect the bytecode rewriting because the application can

always bypass the JVM using a native library to modify

any memory locations in the address space. However,

modifying the bytecode of a loaded class is undefined

behavior as the JVM may be already using a compiled

method, thus the changes to bytecode will have no effect.

In practice we have never encountered such cases. Note

that the HotSpot JVM performs its own form of bytecode

rewriting, which is not a problem for HotTub as this is

only done for performance optimizations and preserves

the original semantic.

HotTub currently only targets the Java Virtual Ma-

chine runtime. Other runtimes such as Microsoft’s Com-

mon Runtime Language (CLR) [51] also exhibits similar

warm-up overhead properties. Similar to class loading

done by the JVM, CLR must load portable executable

(PE) file, which is similar to a Java classfile, that con-

tains metadata required at runtime such as type defini-

tions and member signatures. To the best of our knowl-

edge CLR operates similar to typical JVMs, where an

interpreter will execute bytecode or an intermediate lan-

guage, until a JIT-compiler can produce native code for

the method. Having these properties should exhibit simi-

lar warm-up overhead of class loading and interpretation

in CLR, so implementing HotTub for CLR could poten-

tially produce similar speed-ups.

5 Implementation of HotTub

The client is implemented as a stand-alone program with

800 lines of C code, and the server is implemented on top

of OpenJDK’s HotSpot JVM by adding approximately

800 lines of C/C++ code. We use Unix domain sockets

to connect a client with servers. A nice feature of Unix

domain socket is that it allows processes to send file de-

scriptors. Therefore the client simply send its open file

descriptors, including stdin, stdout, stderr together with

other redirected ones, to the server. This avoids sending

the actual input and output data across processes. Next

we discuss the implementation details of HotTub.

Threads management. HotTub does not use any addi-

tional thread in JVM for its management task. Instead,

it uses the Java main thread. At the end of the applica-

tion execution after the main() method finishes, we do

not terminate the Java main thread. Instead we uses it

to perform the various reset tasks including (1) kill other

Java threads, (2) set all static variables to their default

type value, (3) garbage collect the heap, (4) optionally

unload native libraries.4 It then waits for a client connec-

tion. When it receives another client connection, it reini-

tializes the static variables, sets up the file descriptors

properly, sets any Java properties, sets any environment

variables, and finally invokes the main() method.

Complication arises when the JVM receives a signal

or a thread calls System.exit. In these cases, we

need to use the thread that receives the signal or calls

System.exit to clean up the all Java threads.

Static reinitialization. HotTub handles a few technical

challenges when implementing the replay of class initial-

ization. One challenge is with enumeration classes. For

4Theoretically we should unload native libraries because HotTub

does not verify their consistencies. However we observe that native li-

braries typically do not impose inconsistency issues, e.g., they typically

do not use static data. Therefore we make unloading them optional.

Completion time (s) Unmod. HotTub Speed-up

HDFS read 1MB 2.29 0.08 30.08x

HDFS read 10MB 2.65 0.14 18.04x

HDFS read 100MB 2.33 0.41 5.71x

HDFS read 1GB 7.08 4.26 1.66x

Spark 100GB best 65.2 36.2 1.80x

Spark 100GB median 57.8 35.2 1.64x

Spark 100GB worst 74.8 54.4 1.36x

Spark 3TB best 66.4 41.4 1.60x

Spark 3TB median 98.4 73.6 1.34x

Spark 3TB worst 381.2 330.0 1.16x

Hive 100GB best 29.0 16.2 1.79x

Hive 100GB median 38.4 25.0 1.54x

Hive 100GB worst 206.6 188.4 1.10x

Table 2: Performance improvements by comparing the aver-

age job completion time of an unmodified JVM and HotTub.

For Spark and Hive we report the average times of the queries

with the, best, median, and worst speed-up for each data size.

each class in Java there exists a java.lang.Class ob-

ject that contains information about the class, such as the

methods and fields it contains, so that it can be queried

for reflection inspections. For enumeration classes, this

object contains a mapping of each enumeration constant

string name to its object. Because after reinitialization

there will be new objects allocated for each enumeration

constant, HotTub also has to update the mapping in this

java.lang.Class object in each class.

Another challenge is the JIT-compiler’s inlining of

static final references, i.e., a compiled method could di-

rectly reference the address of a static final object. How-

ever, after reinitialization, a new object will be created so

that the old reference is no longer valid. HotTub solves

this by disabling the inlining of static final references.

6 Performance of HotTub

We conduct a variety of experiments on HotTub to eval-

uate its performance on the following dimensions: (1)

speed-up over an unmodified JVM repeating the same

workload; (2) speed-up when running different work-

loads; (3) management overhead imposed by HotTub

(e.g., reset, client/server management). All experiments

are performed on the same environment and settings as

described in Section 3.

6.1 Speed-up

Table 2 shows HotTub’s speed-up compared with un-

modified HotSpot JVM. We run the same workload five

times on an unmodified JVM and six times on HotTub.

Perf. counter
Executor Client

U H U/H U Rate H Rate Rate Diff. U H U/H U Rate H Rate Rate Diff.

L1-dcache-misses 171M 81M 2.1x 1.839% 1.994% -8.416% 154M 21M 7.3x 6.254% 6.115% 2.218%

L1-icache-misses 40M 13M 3.1x - - - 44M 6M 7.3x - - -

page faults 543K 122K 4.4x - - - 851K 227K 3.7x - - -

dTLB-load-misses 4,431M 3,087M 1.4x 0.080% 0.051% 36.418% 2,999M 375M 8.0x 0.327% 0.295% 9.894%

iTLB-load-misses 704M 228M 3.1x 3.424% 3.294% 3.805% 755M 97M 7.8x 3.359% 3.054% 9.078%

branch-misses 1,158M 597M 1.9x 0.913% 0.646% 29.234% 974M 119M 8.2x 3.270% 2.971% 9.141%

Table 3: Comparing cache, TLB, and branch misses between HotTub (H) and an unmodified JVM (U) when running query 11 of

BigBench on Spark with 100GB data size. The numbers are taken from the average of five runs. All page faults are minor faults.

“Rate diff.” is calculated as (U Rate - H Rate)/(U Rate), which shows the improvement of HotTub on the miss rate. Perf cannot

report the number of L1-icache loads or memory references to know the corresponding rates.

 0

 50

 100

 150

 200

 250

 300

 350

100 3000

T
im

e
(s

)

Scale Factor (GB)

Unmodified
Compiled/native

Interpreter
Class loading

Figure 10: HotTub successfully eliminates warm-up over-

head. Unmodified query runtime shown against a breakdown of

a query with reuse. There are 10 queries run on 2 scale factors

for BigBench on Spark. Interpreter and class loading overhead

are so low they are unnoticeable making up the difference.

We compare the average runtime of the five unmodified

runs with the five reuse HotTub runs, excluding the ini-

tial warm-up run. For Spark and Hive, we run the same

10 queries that we used in our study. Note that in this ex-

periment the systems we run are unmodified, unlike the

ones we used in Section 3 that had to be instrumented.

Therefore the unmodified systems’ runtimes are slightly

faster than the ones in Section 3.

The results shows that HotTub significantly speeds up

the total execution time. For example, HotTub reduces

the average job completion time of the Spark query with

the highest speed-up by 29 seconds on 100GB data, and

can speed-up HDFS 1MB read by a factor of 30.08.

Amongst nearly 200 pairs of trials, a job running in a

reused HotTub JVM always completed faster compared

to an unmodified JVM.

Enabling our performance counters, we observe that

indeed HotTub eliminates the warm-up overhead. In all

the experiments, the server JVM spends less than 1%

of the execution time in class loading and interpreter.

Figure 10 shows Spark queries running on HotTub with

nearly zero warm-up overhead.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 2 4 6 8 10 12 14 16 18 20
R

un
tim

e
(m

s)
Iteration

Figure 11: HotTub iterative runtime improvement. A Sequen-

tial 1MB HDFS read performed repeatedly by HotTub. Itera-

tion 0 is the application runtime of a new JVM, while iteration

N is the Nth reuse of this JVM.

Figure 11 shows how the runtime decreases over the

number of reuses. While the significant speedup comes

from the first time reuse, it also shows that for this par-

ticular short running job the JVM will not be completely

warm by the end of the first run and require multiple it-

erations before reaching peak performance. Figure 11

also shows that it takes 12 iterations before the JVM be-

comes fully warmed-up. This further suggests that short

running jobs cannot even reach max JVM performance

by the end of its execution, which further emphasizes the

necessity of reusing JVMs on short jobs. Long running

jobs, however, will likely fully warm up the JVM before

their execution ends on first run.

To understand HotTub’s performance behavior in de-

tail, we further compare the hardware performance coun-

ters. Table 3 shows the result. HotTub already signifi-

cantly reduces the number of memory accesses because

the classes are already loaded and bytecode compiled.

For the Spark executor there are almost half as many

cache references reported by perf and the Spark client

shows an even higher reduction, up to 9x. The reduction

in accesses appears large, but is consistent with the 1.74x

speed-up experienced by running this query on HotTub.

Testing

q11 q14 q15 q09 q01

T
ra

in
in

g
q11 1.78 1.67 1.51 1.49 1.55

q14 1.64 1.65 1.47 1.49 1.50

q15 1.72 1.67 1.62 1.54 1.62

q09 1.57 1.59 1.55 1.53 1.53

q01 1.76 1.74 1.65 1.54 1.74

Table 4: Speed-up sensitivity to workload differences using

the five fastest BigBench queries on Spark with 100GB data.

It further reduces the number of various cache misses.

The reduction comes from multiple sources. First, Hot-

Tub results in less memory accesses and smaller foot-

print because some data is no longer needed to be ac-

cessed (e.g., bytecode that are already compiled will not

be accessed). Second, because the applications run in the

same JVM process, warm data does not need to be real-

located between the runs, therefore the cached data can

be reused and the number of cold misses get reduced.

The OS also does not need to flush the TLB between

the runs. Finally, the reduction of instruction cache and

iTLB misses is likely afforded by eliminating interpreter

execution and JIT-compiler’s instruction cache usage op-

timization. For example, JIT-compiler will arrange the

basic blocks in the order of frequently taken branches.

The numbers in Table 3 also show that HotTub reduces

the accesses and misses in the Spark client much more

than the executor. This is likely due to the nature of the

work each component does. The executor is processing

large amounts of data, taking the majority of time and

memory references, even in a reused run, while the client

performs much less work. Since the warm-up overhead

reduction is constant, it follows that the executor should

be less affected, while the client will be heavily affected

as it spent more of its time performing warm-up.

6.2 Sensitivity to Difference in Workload

Table 4 compares HotTub’s performance sensitivity to

the workload differences between training and testing

runs. We warm up the JVM by repeatedly run a sin-

gle “training query” four times, and apply it once on the

“testing query”. Note that we cannot apply the test run

more than once for this experiment because the JVM will

then be warming up with the testing query. We repeat this

process five times and take the average runtime of the

testing queries, and then report the speed-up of this av-

erage runtime over the runtime of unmodified JVM run-

ning the testing query. The result shows that, for our

tests, HotTub can achieve at least 1.47 speed-up.

Query 11 and 1 observe the largest speed-up when

the training and testing queries are the same. The other

queries observe best speed-up when running on a JVM

trained from a different query. This is due to the large

variance observed in our experiment. All of the mea-

sured runtime of testing queries fall into the range of

(mean − variance,mean+ variance), where mean and

variance are of the five measured runs where the train-

ing and testing queries are the same. This also indicates

that different queries use many similar classes and code.

6.3 Management Overhead

Compared with an unmodified JVM, HotTub adds over-

head in three phases: when a client connects to a server,

when the server runs class initialization, and when the

server resets the static data. The first two are on the criti-

cal path of the application latency while the third merely

affects how early this JVM can be reused again. The

overhead for connecting to a server when there are no

servers in the pool is 81ms. Once servers are available

for re-use, the connection overhead drops to 300µs. The

overhead added to the critical path from class reinitial-

ization is, on average, 350ms for Hive on Tez contain-

ers, 400ms for Spark executors, and 720ms for Spark

clients. The time taken to reset static data is dominated

by garbage collection and only takes no more than 200ms

because the application’s stack frames have ended, thus

there are few roots from which GC has to search from.

Root objects are objects assumed to be reachable, such

as static variables or variables in live stack frames.

HotTub also adds overhead on the memory usage of

the system as the server processes remain alive after the

application finishes. The number of servers to be left

alive on a node can be configured by the user, for our

evaluation we arbitrarily chose 5. An unused server takes

up approximately 1GB of memory.

7 Related Work

We discuss prior studies on the performance of the JVM

and data-parallel distributed systems. Commercial and

industry solutions have been discussed in Section 3.5.

Our work distinguishes itself as it the first to study the

performance implications of JVM warm-up overhead on

data-parallel systems.

Performance of garbage collection (GC). Recently, a

few proposals are made to improve the GC performance

for big data systems [24, 47, 48, 59]. Gog et al. ob-

serve that objects often have clearly defined lifetimes in

big data analytics systems [24]. Therefore they propose

a region-based memory management [78] system where

developers can annotate the objects with the same life-

time. Maas et al. [47, 48] observe that different JVMs

running the same job often pause to garbage collect at

the same time given the homogeneous nature of their ex-

ecutions, therefore they propose a system named Tau-

rus that coordinates the GC pauses among different JVM

processes. Our work is complementary as we focus on

studying the JVM warm-up overhead, while Broom and

Taurus only focused on GC. HotTub can also be inte-

grated together with Broom and Taurs to provide com-

prehensive speed-up of the JVM runtime. Comparing

the design of Taurus and HotTub also reveals interest-

ing trade-offs. Taurus does not modify the JVM itself,

therefore users will have less reliability concerns in de-

ployment. However, its capability to control the JVM

is restricted to the interfaces JVM exposed. Taurus re-

quires the JVMs in the network to coordinate via a con-

sensus protocol, whereas HotTub uses a simpler design

that makes it standalone and does not require network

communication. Consequently HotTub can also benefit

non-distributed applications.

Other papers studied GC performance on non-

distributed workload. Appel [8] uses theoretical anal-

ysis to argue that when physical memory is abundant,

GC can achieve high performance comparable to other

memory management techniques. Hertz et al. further

validated this via more thorough experimental evalua-

tion [30], but they also found that the performance of GC

deteriorate quickly when free memory becomes scarce.

Others have compared the performance of general GC al-

gorithms (e.g., generational GC) versus customized ones

and concluded that general algorithms achieve good per-

formance in most cases [11, 14, 85].

Performance studies on data-parallel systems. A

handful of works have thoroughly analyzed the perfor-

mance of data-parallel systems [44, 46, 55, 57]. However

they did not study the JVM performance impact. Ouster-

hout et al. comprehensively studied the performance of

Spark [55], and revealed that network and disk I/O are no

longer the bottleneck. Interestingly, they found that CPU

is often the bottleneck, and a large amount of CPU time

is spent in data deserialization and decompression. How-

ever, because they only analyzed Spark itself, they did

not further drill down to provide a low level understand-

ing of such high CPU time. Using the same workload,

our study suggests that the class loading and bytecode

interpretation are likely the main cause of deserialization

and decompression. Pavlo et al. [57] compared Hadoop

MapReduce with DBMS, and found that data shuffling

is often the bottleneck for MapReduce. Jiang et al. [44]

analyzed the performance of Hadoop MapReduce. Mc-

Sherry et al. [50] surveyed the existing literature on data-

parallel systems and their experimental workload, and

concluded that many of the workloads use small data in-

put sizes that can be well handled by a single threaded

implementation. This has similar implications as the

other studies on real-world analytic jobs where most jobs

are short running because of the small input size [82],

where the JVM warm-up time is even more significant.

Other works on improving data-parallel systems per-

formance focused on scheduling [2, 4, 31, 38, 56, 84],

high performance interconnect [17, 19, 40, 45, 81], op-

timization for multi-cores [16, 49, 60], and removing re-

dundant operations [61]. Our work is complementary as

it focuses on JVM-level improvements.

8 Concluding Remarks

We started this project with the curiosity to understand

the JVM’s overhead on data-parallel systems, driven

by the observation that systems software is increasingly

built on top of it. Enabled by non-trivial JVM instrumen-

tations, we observed the warm-up overhead, and were

surprised by the extent of the problem. We then pivoted

our focus on to the warm-up overhead by first presenting

an in-depth analysis on three real-world systems. Our

result shows the warm-up overhead is significant, and

can be exacerbated as jobs become more parallelized and

short running. We further designed HotTub, a drop-in re-

placement of the JVM that can eliminate warm-up over-

head by amortizing it over the lifetime of a host. Eval-

uation shows it can speed-up systems like HDFS, Hive,

and Spark, with a best case speed-up of over 30.08X.

Acknowledgements

We greatly appreciate the insightful feedbacks from the

anonymous reviewers and our shepherd Andrea Arpaci-

Dusseau. We thank Yu Luo, Serhei Makarov, Michael

Stumm, Jenny Ren, Kirk Rodrigues, Guangji Xu, Yon-

gle Zhang, and Xu Zhao for the useful and thought stim-

ulating discussions. We thank Yu Luo for setting up and

maintaining the server cluster environment used in our

experiments. His help was invaluable. This research is

supported by NSERC Discovery grant, NetApp Faculty

Fellowship, and an NSERC USRA award. Hailong Sun

is supported by National Key Research and Development

Program of China (2016YFB1000804)and National Nat-

ural Science Foundation of China (61370057).

References

[1] A case against static initializers. http://

sensualjava.blogspot.com/2008/12/case-

against-static-initializers.html.

[2] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N.

Vijaykumar. Tarazu: Optimizing mapreduce on hetero-

geneous clusters. In Proceedings of the Seventeenth In-

ternational Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS

XVII, 2012.

[3] G. Ananthanarayanan, A. Ghodsi, A. Wang,

D. Borthakur, S. Kandula, S. Shenker, and I. Sto-

ica. Pacman: Coordinated memory caching for parallel

jobs. In Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation,

NSDI’12, 2012.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Sto-

ica, Y. Lu, B. Saha, and E. Harris. Reining in the outliers

in map-reduce clusters using mantri. In Proceedings of

the 9th USENIX Conference on Operating Systems De-

sign and Implementation, OSDI ’10, 2010.

[5] Android ART Just-In-Time (JIT) Compiler. https://

source.android.com/devices/tech/

dalvik/jit-compiler.html.

[6] Android runtime (ART). https://source.

android.com/devices/tech/dalvik/index.

html.

[7] Apache Geronimo DayTrader Benchmark. http://

geronimo.apache.org/GMOxDOC20/

daytrader.html.

[8] A. W. Appel. Garbage collection can be faster than stack

allocation. Inf. Process. Lett., 25(4).

[9] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,

and A. Rowstron. Scale-up vs scale-out for hadoop: Time

to rethink? In Proceedings of the 4th Annual Symposium

on Cloud Computing, SOCC ’13, 2013.

[10] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.

Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,

and M. Zaharia. Spark SQL: Relational data processing in

spark. In Proceedings of the 2015 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD

’15, 2015.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsid-

ering custom memory allocation. In Proceedings of the

17th ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications, OOP-

SLA ’02, 2002.

[12] Big SQL 3.0: Hadoop-DS benchmark-Performance

isn’t everything. https://developer.ibm.com/

hadoop/blog/2014/12/02/big-sql-3-0-

hadoop-ds-benchmark-performance-isnt-

everything/.

[13] M. K. A. B. V. Bittorf, T. Bobrovytsky, C. C. A. C. J.

Erickson, M. G. D. Hecht, M. J. I. J. L. Kuff, D. K. A.

Leblang, N. L. I. P. H. Robinson, D. R. S. Rus, J. R. D.

T. S. Wanderman, and M. M. Yoder. Impala: A modern,

open-source sql engine for hadoop. In Proceedings of

the 7th Biennial Conference on Innovative Data Systems

Research, CIDR ’15, 2015.

[14] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths

and realities: The performance impact of garbage collec-

tion. In Proceedings of the Joint International Confer-

ence on Measurement and Modeling of Computer Sys-

tems, SIGMETRICS ’04/Performance ’04, 2004.

[15] Cassandra. http://cassandra.apache.org.

[16] R. Chen, H. Chen, and B. Zang. Tiled-mapreduce: Op-

timizing resource usages of data-parallel applications on

multicore with tiling. In Proceedings of the 19th Interna-

tional Conference on Parallel Architectures and Compi-

lation Techniques, PACT ’10, 2010.

[17] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,

K. Elmeleegy, and R. Sears. Mapreduce online. In Pro-

ceedings of the 7th USENIX Conference on Networked

Systems Design and Implementation, NSDI ’10, 2010.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM Symposium on

Cloud Computing, SoCC ’10, 2010.

[19] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea. Cam-

doop: Exploiting in-network aggregation for big data ap-

plications. In Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation, NSDI

’12, 2012.

[20] Excelsior JET - Java Virtual Machine (JVM) and Native

Code Compiler. https://www.excelsiorjet.

com/.

[21] Exciting performance improvements on the horizon

for spark sql. https://databricks.com/

blog/2014/06/02/exciting-performance-

improvements-on-the-horizon-for-

spark-sql.html.

[22] S. J. Fink and F. Qian. Design, implementation and eval-

uation of adaptive recompilation with on-stack replace-

ment. In Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed

and Runtime Optimization, CGO ’03, 2003.

[23] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess,

A. Crolotte, and H.-A. Jacobsen. Bigbench: Towards

an industry standard benchmark for big data analyt-

ics. In Proceedings of the 2013 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD

’13, 2013.

[24] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytin-

iotis, G. Ramalingam, M. Costa, D. G. Murray, S. Hand,

http://sensualjava.blogspot.com/2008/12/case-against-static-initializers.html
http://sensualjava.blogspot.com/2008/12/case-against-static-initializers.html
http://sensualjava.blogspot.com/2008/12/case-against-static-initializers.html
https://source.android.com/devices/tech/dalvik/jit-compiler.html
https://source.android.com/devices/tech/dalvik/jit-compiler.html
https://source.android.com/devices/tech/dalvik/jit-compiler.html
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
https://source.android.com/devices/tech/dalvik/index.html
http://geronimo.apache.org/GMOxDOC20/daytrader.html
http://geronimo.apache.org/GMOxDOC20/daytrader.html
http://geronimo.apache.org/GMOxDOC20/daytrader.html
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
https://developer.ibm.com/hadoop/blog/2014/12/02/big-sql-3-0-hadoop-ds-benchmark-performance-isnt-everything/
http://cassandra.apache.org
https://www.excelsiorjet.com/
https://www.excelsiorjet.com/
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html
https://databricks.com/blog/2014/06/02/exciting-performance-improvements-on-the-horizon-for-spark-sql.html

and M. Isard. Broom: Sweeping out garbage collection

from big data systems. In 15th Workshop on Hot Topics

in Operating Systems, HotOS ’15, 2015.

[25] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buck-

ley. The Java R©Virtual Machine specification - Java SE

8 Edition. https://docs.oracle.com/javase/

specs/jvms/se8/html/.

[26] C. Gray and D. Cheriton. Leases: An efficient fault-

tolerant mechanism for distributed file cache consistency.

In Proceedings of the Twelfth ACM Symposium on Oper-

ating Systems Principles, SOSP ’89, 1989.

[27] Hadoop. https://hadoop.apache.org.

[28] Hadoop Distributed File System (HDFS). http://

hadoop.apache.org/docs/stable/hdfs_

design.html.

[29] Hbase. http://hbase.apache.org/.

[30] M. Hertz and E. D. Berger. Quantifying the performance

of garbage collection vs. explicit memory management.

In Proceedings of the 20th Annual ACM SIGPLAN Con-

ference on Object-oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’05, 2005.

[31] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.

Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A plat-

form for fine-grained resource sharing in the data center.

In Proceedings of the 8th USENIX Conference on Net-

worked Systems Design and Implementation, NSDI ’11,

2011.

[32] Hive. http://hive.apache.org.

[33] U. Hölzle and D. Ungar. A third-generation self im-

plementation: Reconciling responsiveness with perfor-

mance. In Proceedings of the Ninth Annual Confer-

ence on Object-oriented Programming Systems, Lan-

guage, and Applications, OOPSLA ’94, 1994.

[34] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai. Hibench:

A representative and comprehensive hadoop benchmark

suite. In Proc. ICDE Workshops, 2010.

[35] hypertable: why we chose CPP over Java. https://

code.google.com/p/hypertable/wiki/

WhyWeChoseCppOverJava.

[36] Impala – Cloudera. http://www.cloudera.com/

content/www/en-us/products/apache-

hadoop/impala.html.

[37] Interactive query with apache hive on apache

tez. http://hortonworks.com/hadoop-

tutorial/supercharging-interactive-

queries-hive-tez/.

[38] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Tal-

war, and A. Goldberg. Quincy: Fair scheduling for dis-

tributed computing clusters. In Proceedings of the ACM

SIGOPS 22Nd Symposium on Operating Systems Princi-

ples, SOSP ’09, 2009.

[39] K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma,

O. Gohda, T. Inagaki, A. Koseki, K. Ogata, M. Kawahito,

T. Yasue, T. Ogasawara, T. Onodera, H. Komatsu, and

T. Nakatani. Effectiveness of cross-platform optimiza-

tions for a java just-in-time compiler. In Proceedings of

the 18th Annual ACM SIGPLAN Conference on Object-

oriented Programing, Systems, Languages, and Applica-

tions, OOPSLA ’03, 2003.

[40] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar,

H. Wang, H. Subramoni, C. Murthy, and D. K. Panda.

High performance rdma-based design of hdfs over infini-

band. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and

Analysis, SC ’12, 2012.

[41] Quora: In what cases is Java faster than C. https://

www.quora.com/In-what-cases-is-Java-

faster-if-at-all-than-C.

[42] Quora: In what cases is Java slower than C by a big

margin. https://www.quora.com/In-what-

cases-is-Java-slower-than-C-by-a-big-

margin.

[43] StackOverflow: Why do people still say Java is slow?

http://programmers.stackexchange.com/

questions/368/why-do-people-still-

say-java-is-slow.

[44] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance

of mapreduce: An in-depth study. Proc. VLDB Endow.,

3(1-2).

[45] MapReduce-4049: Plugin for generic shuffle ser-

vice. https://issues.apache.org/jira/

browse/MAPREDUCE-4049.

[46] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon.

Parallel data processing with mapreduce: A survey. SIG-

MOD Rec., 40(4).

[47] M. Maas, K. Asanović, T. Harris, and J. Kubiatowicz.

Taurus: A Holistic Language Runtime System for Co-

ordinating Distributed Managed-Language Applications.

In Proceedings of the Twenty-First International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’16, 2016.

[48] M. Maas, T. Harris, K. Asanović, and J. Kubiatowicz.

Trash day: Coordinating garbage collection in distributed

systems. In 15th Workshop on Hot Topics in Operating

Systems, HotOS ’15, 2015.

[49] Y. Mao, R. Morris, and M. F. Kaashoek. Optimizing

mapreduce for multicore architectures. Technical report,

Massachusetts Institute of Technology, 2010.

[50] F. McSherry, M. Isard, and D. G. Murray. Scalability!

But at what COST? In 15th Workshop on Hot Topics in

Operating Systems, HotOS ’15, 2015.

[51] Microsoft Common Language Runtime (CLR).

https://msdn.microsoft.com/en-us/

library/8bs2ecf4(v=vs.110).aspx.

https://docs.oracle.com/javase/specs/jvms/se8/html/
https://docs.oracle.com/javase/specs/jvms/se8/html/
https://hadoop.apache.org
http://hadoop.apache.org/docs/stable/hdfs_design.html
http://hadoop.apache.org/docs/stable/hdfs_design.html
http://hadoop.apache.org/docs/stable/hdfs_design.html
http://hbase.apache.org/
http://hive.apache.org
https://code.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava
https://code.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava
https://code.google.com/p/hypertable/wiki/WhyWeChoseCppOverJava
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/impala.html
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/impala.html
http://www.cloudera.com/content/www/en-us/products/apache-hadoop/impala.html
http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/
http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/
http://hortonworks.com/hadoop-tutorial/supercharging-interactive-queries-hive-tez/
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
http://programmers.stackexchange.com/questions/368/why-do-people-still-say-java-is-slow
http://programmers.stackexchange.com/questions/368/why-do-people-still-say-java-is-slow
http://programmers.stackexchange.com/questions/368/why-do-people-still-say-java-is-slow
https://issues.apache.org/jira/browse/MAPREDUCE-4049
https://issues.apache.org/jira/browse/MAPREDUCE-4049
https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx

[52] Nailgun: Insanely fast Java. http://

www.martiansoftware.com/nailgun/

background.html.

[53] New benchmarks for sql-on-hadoop: Impala 1.4 widens

the performance gap. http://blog.cloudera.

com/blog/2014/09/new-benchmarks-for-

sql-on-hadoop-impala-1-4-widens-the-

performance-gap/.

[54] New benchmarks for sql-on-hadoop: Impala 1.4 widens

the performance gap. http://blog.cloudera.

com/blog/2014/09/new-benchmarks-for-

sql-on-hadoop-impala-1-4-widens-the-

performance-gap/.

[55] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and

B.-G. Chun. Making sense of performance in data an-

alytics frameworks. In Proceedings of the 12th USENIX

Conference on Networked Systems Design and Implemen-

tation, NSDI ’15, 2015.

[56] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica.

Sparrow: Distributed, low latency scheduling. In Pro-

ceedings of the Twenty-Fourth ACM Symposium on Oper-

ating Systems Principles, SOSP ’13, 2013.

[57] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. De-

Witt, S. Madden, and M. Stonebraker. A comparison of

approaches to large-scale data analysis. In Proceedings

of the 2009 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’09, 2009.

[58] Performance comparison -

c++/java/python/ruby/jython/jruby/groovy. http://

blog.dhananjaynene.com/2008/07/

performance-comparison-c-java-python-

ruby-jython-jruby-groovy/.

[59] Project tungsten: Bringing spark closer to bare metal.

https://databricks.com/blog/2015/04/

28/project-tungsten-bringing-spark-

closer-to-bare-metal.html.

[60] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,

and C. Kozyrakis. Evaluating mapreduce for multi-

core and multiprocessor systems. In Proceedings of the

2007 IEEE 13th International Symposium on High Per-

formance Computer Architecture, HPCA ’07, 2007.

[61] A. Rasmussen, V. T. Lam, M. Conley, G. Porter,

R. Kapoor, and A. Vahdat. Themis: An i/o-efficient

mapreduce. In Proceedings of the Third ACM Symposium

on Cloud Computing, SoCC ’12, 2012.

[62] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy,

and C. Curino. Apache tez: A unifying framework

for modeling and building data processing applications.

In Proceedings of the 2015 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD

’15, 2015.

[63] J. H. Saltzer. Protection and the control of information

sharing in Multics. Commun. ACM, 17(7).

[64] Spark. http://spark.apache.org.

[65] Spark will offer interactive querying of live data.

https://www.linux.com/news/spark-20-

will-offer-interactive-querying-live-

data.

[66] Spark SQL performance test. https://github.

com/databricks/spark-sql-perf.

[67] Specjbb2015. https://www.spec.org/

jbb2015/.

[68] SPECjvm2008. https://www.spec.org/

jvm2008/.

[69] StackOverflow: Is Java really slow? http://

stackoverflow.com/questions/2163411/

is-java-really-slow.

[70] Static initializers will murder your family. http://

meowni.ca/posts/static-initializers/.

[71] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,

M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.

Overview of the IBM Java Just-in-time Compiler. IBM

Syst. J., 39(1).

[72] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and

T. Nakatani. Design and evaluation of dynamic optimiza-

tions for a java just-in-time compiler. ACM Trans. Pro-

gram. Lang. Syst., 27(4).

[73] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and

T. Nakatani. A dynamic optimization framework for a

java just-in-time compiler. In Proceedings of the 16th

ACM SIGPLAN Conference on Object-oriented Program-

ming, Systems, Languages, and Applications, OOPSLA

’01, 2001.

[74] T. Suganuma, T. Yasue, and T. Nakatani. A region-based

compilation technique for a java just-in-time compiler.

In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Implementation,

PLDI ’03, 2003.

[75] Spark and Tez are successors of MapReduce. http://

blogs.gartner.com/nick-heudecker/

spark-tez-highlight-mapreduce-

problems/.

[76] Tez. https://tez.apache.org/.

[77] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,

S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:

A warehousing solution over a map-reduce framework.

Proc. VLDB Endow., 2(2).

[78] M. Tofte and J.-P. Talpin. Region-based memory manage-

ment. Information and Computation, 132(2):109 – 176,

1997.

[79] Transaction Processing Performance Council (TPC)

BenchmarkTMDS (TPC-DS): The New Decision Sup-

port Benchmark Standard. http://www.tpc.org/

tpcds.

http://www.martiansoftware.com/nailgun/background.html
http://www.martiansoftware.com/nailgun/background.html
http://www.martiansoftware.com/nailgun/background.html
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.cloudera.com/blog/2014/09/new-benchmarks-for-sql-on-hadoop-impala-1-4-widens-the-performance-gap/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
http://blog.dhananjaynene.com/2008/07/performance-comparison-c-java-python-ruby-jython-jruby-groovy/
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
http://spark.apache.org
https://www.linux.com/news/spark-20-will-offer-interactive-querying-live-data
https://www.linux.com/news/spark-20-will-offer-interactive-querying-live-data
https://www.linux.com/news/spark-20-will-offer-interactive-querying-live-data
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
http://stackoverflow.com/questions/2163411/is-java-really-slow
http://stackoverflow.com/questions/2163411/is-java-really-slow
http://stackoverflow.com/questions/2163411/is-java-really-slow
http://meowni.ca/posts/static-initializers/
http://meowni.ca/posts/static-initializers/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
http://blogs.gartner.com/nick-heudecker/spark-tez-highlight-mapreduce-problems/
https://tez.apache.org/
http://www.tpc.org/tpcds
http://www.tpc.org/tpcds

[80] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,

W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu,

K. Zhan, X. Li, and B. Qiu. Bigdatabench: A big data

benchmark suite from internet services. In Proceedings

of the 2014 IEEE 20th International Symposium on High

Performance Computer Architecture, 2014.

[81] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal.

Hadoop acceleration through network levitated merge. In

Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Anal-

ysis, SC ’11, 2011.

[82] What do real-life apache hadoop workloads look like?

http://blog.cloudera.com/blog/2012/09/

what-do-real-life-hadoop-workloads-

look-like/.

[83] Why Java will always be slower than C++. http://

www.jelovic.com/articles/why_java_is_

slow.htm.

[84] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and

I. Stoica. Improving mapreduce performance in heteroge-

neous environments. In Proceedings of the 8th USENIX

Conference on Operating Systems Design and Implemen-

tation, OSDI ’08, 2008.

[85] B. Zorn. The measured cost of conservative garbage col-

lection. Software – Practice & Experience, 23(7).

http://blog.cloudera.com/blog/2012/09/what-do-real-life-hadoop-workloads-look-like/
http://blog.cloudera.com/blog/2012/09/what-do-real-life-hadoop-workloads-look-like/
http://blog.cloudera.com/blog/2012/09/what-do-real-life-hadoop-workloads-look-like/
http://www.jelovic.com/articles/why_java_is_slow.htm
http://www.jelovic.com/articles/why_java_is_slow.htm
http://www.jelovic.com/articles/why_java_is_slow.htm

	Introduction
	Measure Warm-up Overhead
	Analysis of Warm-up Overhead
	Methodology
	HDFS
	Spark versus Hive
	Summary of Findings
	Industry Practices

	Design of HotTub
	Maintain Consistency
	Limitations

	Implementation of HotTub
	Performance of HotTub
	Speed-up
	Sensitivity to Difference in Workload
	Management Overhead

	Related Work
	Concluding Remarks

