
1/13/13

1

Operating Systems
ECE344

Ding Yuan

Announcements & reminders

•  Lab schedule is out
•  Form your group of 2 by this Friday (18th), 5PM

•  Grading policy:
•  Final exam: 50%

•  Midterm exam: 25%

•  Lab assignment: 25%

•  Piazza Q/A
•  Please prefix your post with: [Lab0],[Lab1],[Lab2],

[Lab3],[Other]

1/14/13 Ding Yuan, ECE344 Operating System 2

1/13/13

2

Announcements & reminders

•  TA information
•  Inaz Alaei-novin (eyenaz.17@gmail.com)
•  Wei Huang (whuang.nju@gmail.com)

•  Akshay Kumar (iit.akshay@gmail.com)
•  Jun Li (junl.li@mail.utoronto.ca)
•  Ali Shariat (shariat@gmail.com)

•  Xin Tong (xtong@eecg.toronto.edu)

•  TAs will be at the lab sessions (3 TAs on Thursday
and 3 TAs on Friday)

1/14/13 Ding Yuan, ECE344 Operating System 3

Content of this lecture

•  Review of introduction

•  Hardware overview

•  A peek at Unix

•  Hardware (architecture) support

•  Summary

1/14/13 4 Ding Yuan, ECE344 Operating System

1/13/13

3

Review

•  What are the two main responsibilities of OS?
•  Manage hardware resources

•  Provide a clean set of interface to programs

•  Managing resources:
•  Allocation

•  Protection

•  Reclamation

•  Virtualization

•  Questions?

1/14/13 Ding Yuan, ECE344 Operating System 5

1/14/13 Ding Yuan, ECE344 Operating System 6

Why Start With Hardware?

•  Operating system functionality fundamentally depends
upon hardware
•  Key goal of an OS is to manage hardware

•  protection and resource sharing

•  If done well, applications can be oblivious to HW details

•  Hardware support can greatly simplify – or complicate –
OS tasks
•  Early PC operating systems (DOS, MacOS) lacked virtual

memory in part because the hardware did not support it

1/13/13

4

So what is inside a computer

•  An abstract overview
•  http://www.youtube.com/watch?v=Q2hmuqS8bwM&feature=related

•  An introduction with a real computer
•  http://www.youtube.com/watch?v=VWzX4MEYOBk

1/14/13 Ding Yuan, ECE344 Operating System 7

A Typical Computer from a
Hardware Point of View

1/14/13 Ding Yuan, ECE344 Operating System 8

1/13/13

5

Memory-storage Hierarchy

1/14/13 Ding Yuan, ECE344 Operating System 9

Typical Capacity

1 – 16 KB

2 – 64 MB

4 – 64 GB

64 – 4 TB

Access Time

0.3 ns

0.5 ns

100 ns

10,000,000 ns

1 nanosecond = 10 second -9

A peek into Unix structure

1/14/13 Ding Yuan, ECE344 Operating System 10

Written by programmer
Compiled by programmer
Uses library calls (e.g., printf)

1/13/13

6

A peek into Unix structure

1/14/13 Ding Yuan, ECE344 Operating System 11

Example: stdio.h
Written by elves
Uses system calls
Defined in headers
Input to linker (compiler)
Invoked like functions
May be “resolved” when
 program is loaded.

A peek into Unix structure

1/14/13 Ding Yuan, ECE344 Operating System 12

System calls (read, open..)
All “high-level” code

1/13/13

7

A peek into Unix structure

1/14/13 Ding Yuan, ECE344 Operating System 13

Bootstrap
System initialization
Interrupt and exception
I/O device driver
Memory management
Kernel/user mode
switching
Processor management

A peek into Unix structure

1/14/13 Ding Yuan, ECE344 Operating System 14

User mode

Kernel mode
•  Some systems do not have
clear user-kernel boundary

•  User/kernel mode is
supported by hardware

Cannot execute
“protected_instruction”, e.g.,
directly access I/O device

1/13/13

8

Why hardware has to support
User/Kernel mode?

1/14/13 Ding Yuan, ECE344 Operating System 15

Imaginary OS code (software-only solution)

if ([PC] != protected_instruction)

 execute(PC);

else

 switch_to_kernel_mode();

Does it
work?

Why hardware has to support
User/Kernel mode?

1/14/13 Ding Yuan, ECE344 Operating System 16

Application’s code:
lw $t0, 4($gp)
mult $t0, $t0, $t0
lw $t1, 4($gp)
ori $t2, $zero, 3
mult $t1, $t1, $t2
add $t2, $t0, $t1
sw $t2, 0($gp)

OS: check if next instruction
is protected instruction.

1/13/13

9

Why hardware has to support
User/Kernel mode?

1/14/13 Ding Yuan, ECE344 Operating System 17

Application’s code:
lw $t0, 4($gp)
mult $t0, $t0, $t0
lw $t1, 4($gp)
ori $t2, $zero, 3
mult $t1, $t1, $t2
add $t2, $t0, $t1
sw $t2, 0($gp)

OS: check if next instruction
is protected instruction.

•  Performance overhead is too big:
OS needs to check every instruction
of the application!

•  Simulators

Why hardware has to support
User/Kernel mode?

1/14/13 Ding Yuan, ECE344 Operating System 18

Application’s code:
lw $t0, 4($gp)
mult $t0, $t0, $t0
lw $t1, 4($gp)
ori $t2, $zero, 3
mult $t1, $t1, $t2
add $t2, $t0, $t1
sw $t2, 0($gp)

•  Instead, what we really want is
to give the CPU entirely to the
application

•  Bare-metal execution

OS: set-up the environment;
 load the application

Return to OS after termination;
OS: schedule next application to
 execute..

•  Any problems?
•  How can OS check if application
 executes protected instruction?

•  How can OS know it will ever run again?

1/13/13

10

Why hardware has to support
User/Kernel mode?

1/14/13 Ding Yuan, ECE344 Operating System 19

•  Give the CPU to the user application
•  Why: Performance and efficiency

•  OS will not be executing

•  Without hardware’s help, OS loses control of the machine!
•  Analogy: give the car key to someone, how do you know if he will

return the car?

•  This is the most fundamental reason why OS will need hardware
support --- not only for user/kernel mode

Questions?

1/14/13 Ding Yuan, ECE344 Operating System 20

Hardware Features for OS

•  Features that directly support the OS include
•  Protection (kernel/user mode)

•  Protected instructions

•  Memory protection

•  System calls

•  Interrupts and exceptions

•  Timer (clock)

•  I/O control and operation

•  Synchronization

1/13/13

11

1/14/13 Ding Yuan, ECE344 Operating System 21

Types of Hardware Support

•  Manipulating privileged machine state
•  Protected instructions

•  Manipulate device registers, TLB entries, etc.

•  Generating and handling “events”
•  Interrupts, exceptions, system calls, etc.

•  Respond to external events

•  CPU requires software intervention to handle fault or trap

•  Mechanisms to handle concurrency
•  Interrupts, atomic instructions

1/14/13 Ding Yuan, ECE344 Operating System 22

Protected Instructions

•  A subset of instructions of every CPU is restricted to use
only by the OS
•  Known as protected (privileged) instructions

•  Only the operating system can
•  Directly access I/O devices (disks, printers, etc.)

•  Security, fairness (why?)

•  Manipulate memory management state
•  Page table pointers, page protection, TLB management, etc.

•  Manipulate protected control registers
•  Kernel mode, interrupt level

•  Halt instruction (why?)

1/13/13

12

1/14/13 Ding Yuan, ECE344 Operating System 23

OS Protection
•  Hardware must support (at least) two modes of operation:

kernel mode and user mode
•  Mode is indicated by a status bit in a protected control register

•  User programs execute in user mode

•  OS executes in kernel mode (OS == “kernel”)

•  Protected instructions only execute in kernel mode
•  CPU checks mode bit when protected instruction executes

•  Setting mode bit must be a protected instruction

•  Attempts to execute in user mode are detected and prevented
•  x86: General Protection Fault

1/14/13 Ding Yuan, ECE344 Operating System 24

Memory Protection

•  OS must be able to protect programs from each other

•  OS must protect itself from user programs

•  We need hardware support
•  Again: once OS gives the CPU to the user programs, OS loses

control

1/13/13

13

1/14/13 Ding Yuan, ECE344 Operating System 25

Memory Protection

•  Memory management hardware provides memory
protection mechanisms
•  Base and limit registers

•  Page table pointers, page protection, TLB

•  Virtual memory

•  Segmentation

•  Manipulating memory management hardware uses
protected (privileged) operations

1/14/13 Ding Yuan, ECE344 Operating System 26

Hardware Features for OS

•  Features that directly support the OS include
•  Protection (kernel/user mode)

•  Protected instructions

•  Memory protection

•  System calls

•  Interrupts and exceptions

•  Timer (clock)

•  I/O control and operation

•  Synchronization

1/13/13

14

OS Control Flow

•  When the processor receives an event of a given type, it
•  transfers control to handler within the OS

•  handler saves program state (PC, registers, etc.)

•  handler functionality is invoked

•  handler restores program state, returns to program

1/14/13 Ding Yuan, ECE344 Operating System 27

1/14/13 Ding Yuan, ECE344 Operating System 28

Events

•  After the OS has booted, all entry to the kernel happens as the result
of an event
•  event immediately stops current execution

•  changes mode to kernel mode, event handler is called

•  An event is an “unnatural” change in control flow
•  Events immediately stop current execution
•  Changes mode, context (machine state), or both

•  The kernel defines a handler for each event type
•  Event handlers always execute in kernel mode
•  The specific types of events are defined by the machine

•  In effect, the operating system is one big event handler

1/13/13

15

1/14/13 Ding Yuan, ECE344 Operating System 29

Categorizing Events
•  Two kinds of events, interrupts and exceptions

•  Exceptions are caused by executing instructions
•  CPU requires software intervention to handle a fault or trap

•  Interrupts are caused by an external event
•  Device finishes I/O, timer expires, etc.

•  Two reasons for events, unexpected and deliberate

•  Unexpected events are, well, unexpected
•  What is an example?

•  Deliberate events are scheduled by OS or application
•  Why would this be useful?

1/14/13 Ding Yuan, ECE344 Operating System 30

Categorizing Events

•  This gives us a convenient table:

•  Terms may be used slightly differently by various OSes, CPU
architectures…
•  No need to “memorize” all the terms

•  Software interrupt – a.k.a. async system trap (AST), async
or deferred procedure call (APC or DPC)

•  Will cover faults, system calls, and interrupts next

Unexpected Deliberate
Exceptions (sync) fault syscall trap

software interrupt Interrupts (async) interrupt

1/13/13

16

Faults

1/14/13 Ding Yuan, ECE344 Operating System 31

1/14/13 Ding Yuan, ECE344 Operating System 32

Faults

•  Hardware detects and reports “exceptional” conditions
•  Page fault, unaligned access, divide by zero

•  Upon exception, hardware “faults” (verb)
•  Must save state (PC, registers, mode, etc.) so that the faulting

process can be restarted

•  Fault exceptions are a performance optimization
•  Could detect faults by inserting extra instructions into code

(at a significant performance penalty)

1/13/13

17

1/14/13 Ding Yuan, ECE344 Operating System 33

Handling Faults

•  Some faults are handled by “fixing” the exceptional condition
and returning to the faulting context
•  Page faults cause the OS to place the missing page into memory

•  Fault handler resets PC of faulting context to re-execute instruction
that caused the page fault

•  Some faults are handled by notifying the process
•  Fault handler changes the saved context to transfer control to a user-

mode handler on return from fault

•  Handler must be registered with OS

•  Unix signals
•  SIGSEGV, SIGALRM, SIGTERM, etc.

1/14/13 Ding Yuan, ECE344 Operating System 34

Handling Faults

•  The kernel may handle unrecoverable faults by killing
the user process
•  Program faults with no registered handler
•  Halt process, write process state to file, destroy process
•  In Unix, the default action for many signals (e.g.,

SIGSEGV)

•  What about faults in the kernel?
•  Dereference NULL, divide by zero, undefined instruction
•  These faults considered fatal, operating system crashes
•  Unix panic, Windows “Blue screen of death”

•  Kernel is halted, state dumped to a core file, machine locked up

1/13/13

18

1/14/13 Ding Yuan, ECE344 Operating System 35

System Calls

•  For a user program to do something “privileged” (e.g., I/
O) it must call an OS procedure
•  Known as crossing the protection boundary, or a protected

procedure call

•  Hardware provides a system call instruction that:
•  Causes an exception, which vectors to a kernel handler
•  Passes a parameter determining the system routine to call
•  Saves caller state (PC, registers, etc.) so it can be restored
•  Returning from system call restores this state

•  Requires hardware support to:
•  Restore saved state, reset mode, resume execution

1/14/13 Ding Yuan, ECE344 Operating System 36

System Call Functions
•  Process control

•  Create process, allocate memory

•  File management
•  Create, read, delete file

•  Device management
•  Open device, read/write device, mount device

•  Information maintenance
•  Get time

•  Programmers generally do not use system calls directly
•  They use runtime libraries (e.g., stdio.h)
•  Why?

1/13/13

19

Function call

1/14/13 Ding Yuan, ECE344 Operating System 37

main () {
 foo (10);
}

main: push $10
 call foo

foo:
 ret

Compile

System call

1/14/13 Ding Yuan, ECE344 Operating System 38

open (path, flags, mode);

open: ;Linux convention:
 ;parameters via registers.
 mov eax, 5 ; syscall number for open
 mov ebx, path ; ebx: first parameter
 mov ecx, flags ; ecx: 2nd parameter
 mov edx, mode ; edx: 3rd parameter
 int 80h

open: ; FreeBSD convention:
 ; parameters via stacks.
 push dword mode
 push dword flags
 push dword path
 mov eax, 5
 push dword eax ; syscall number
 int 80h
 add esp, byte 16

More information:
http://www.int80h.org

1/13/13

20

Directly using system call?

•  Write assembly code
•  Hard

•  Poor portability
•  write different version for different architecture

•  write different version for different OSes

•  Application programmers use library
•  Libraries written by elves

1/14/13 Ding Yuan, ECE344 Operating System 39

1/14/13 Ding Yuan, ECE344 Operating System 40

System Call

Kernel mode

Firefox: open()

User mode

open() kernel routine

Trap to
kernel mode,

save state

Trap handler

open read
handler in

vector table

Restore state,
return to user
level, resume

execution

1/13/13

21

1/14/13 Ding Yuan, ECE344 Operating System 41

Steps in making a syscall

1/14/13 Ding Yuan, ECE344 Operating System 42

System Call Issues

•  What would happen if the kernel did not save state?

•  Why must the kernel verify arguments?

•  Why is a table of system calls in the kernel necessary?

1/13/13

22

1/14/13 Ding Yuan, ECE344 Operating System 43

Interrupts

•  Interrupts signal asynchronous events
•  I/O hardware interrupts
•  Software and hardware timers

•  Two flavors of interrupts
•  Precise: CPU transfers control only on instruction boundaries
•  Imprecise: CPU transfers control in the middle of instruction

execution
•  What the heck does that mean?

•  OS designers like precise interrupts, CPU designers like
imprecise interrupts
•  Why?

Interrupt Illustrated

1/14/13 Ding Yuan, ECE344 Operating System 44

Raise
Interrupt

Suspend user process
Execute OS’s interrupt handler

Clear
interrupt

Return
Mode bit = 1

Kernel Mode
Mode bit = 0

1/13/13

23

How to find interrupt handler?

•  Hardware maps interrupt type to interrupt number

•  OS sets up Interrupt Descriptor Table (IDT) at boot
•  Also called interrupt vector

•  IDT is in memory

•  Each entry is an interrupt handler

•  OS lets hardware know IDT base

•  Hardware finds handler using interrupt number as
index into IDT
•  handler = IDT[intr_number]

1/14/13 Ding Yuan, ECE344 Operating System 45

1/14/13 Ding Yuan, ECE344 Operating System 46

Timer
•  The timer is critical for an operating system

•  It is the fallback mechanism by which the OS reclaims control
over the machine
•  Timer is set to generate an interrupt after a period of time

•  Setting timer is a privileged instruction

•  When timer expires, generates an interrupt
•  Handled by kernel, which controls resumption context

•  Basis for OS scheduler (more later…)

•  Prevents infinite loops
•  OS can always regain control from erroneous or malicious

programs that try to hog CPU

•  Also used for time-based functions (e.g., sleep())

1/13/13

24

1/14/13 Ding Yuan, ECE344 Operating System 47

I/O Control

•  I/O issues
•  Initiating an I/O

•  Completing an I/O

•  Initiating an I/O
•  Special instructions

•  Memory-mapped I/O
•  Device registers mapped into address space

•  Writing to address sends data to I/O device

1/14/13 Ding Yuan, ECE344 Operating System 48

I/O Completion

•  Interrupts are the basis for asynchronous I/O
•  OS initiates I/O

•  Device operates independently of rest of machine

•  Device sends an interrupt signal to CPU when done

•  OS maintains a vector table containing a list of
addresses of kernel routines to handle various events

•  CPU looks up kernel address indexed by interrupt
number, context switches to routine

1/13/13

25

1/14/13 Ding Yuan, ECE344 Operating System 49

I/O Example

1. Ethernet receives packet, writes packet into memory

2. Ethernet signals an interrupt

3. CPU stops current operation, switches to kernel mode, saves
machine state (PC, mode, etc.) on kernel stack

4. CPU reads address from vector table indexed by interrupt
number, branches to address (Ethernet device driver)

5. Ethernet device driver processes packet (reads device registers
to find packet in memory)

6. Upon completion, restores saved state from stack

1/14/13 Ding Yuan, ECE344 Operating System 50

Interrupt Questions

•  Interrupts halt the execution of a process and
transfer control (execution) to the operating system
•  Can the OS be interrupted? (Consider why there might

be different IRQ levels)

•  Interrupts are used by devices to have the OS do
stuff
•  What is an alternative approach to using interrupts?

•  What are the drawbacks of that approach?

1/13/13

26

Alternative approach

•  Polling

•  Problems?

•  Analogy:
•  Polling: keeps checking the email every 30 seconds

•  Interrupt: when email arrives, give me a ring

1/14/13 Ding Yuan, ECE344 Operating System 51

while (Ethernet_card_queue_is_empty)
 ;
// Ethernet card received packets.
handle_packets();

1/14/13 Ding Yuan, ECE344 Operating System 52

Summary

•  Protection
•  User/kernel modes
•  Protected instructions

•  System calls
•  Used by user-level processes to access OS functions
•  Access what is “in” the OS

•  Exceptions
•  Unexpected event during execution (e.g., divide by zero)

•  Interrupts
•  Timer, I/O

1/13/13

27

Summary (2)

•  After the OS has booted, all entry to the kernel
happens as the result of an event
•  event immediately stops current execution
•  changes mode to kernel mode, event handler is called

•  When the processor receives an event of a given
type, it
•  transfers control to handler within the OS
•  handler saves program state (PC, registers, etc.)
•  handler functionality is invoked
•  handler restores program state, returns to program

1/14/13 Ding Yuan, ECE344 Operating System 53

Architecture Trends Impact
OS Design

•  Processor
•  Single core to multi-core

•  OS must better handle concurrency

•  Network
•  Isolation to dial-up to LAN to WAN

•  OS must devote more efforts to communications

•  Disconnected to wired to wireless
•  OS must manage connectivity more

•  Isolated to shared to attacked
•  OS must provide more security/protection

•  Mobile/battery-operated
•  OS must pay attention to energy consumption

1/14/13 Ding Yuan, ECE344 Operating System 54

1/13/13

28

May you live in Interesting
Times

•  Multicores

•  Smart phones

•  Tapesdisksflash memory..

•  3G, 4G..

1/14/13 Ding Yuan, ECE344 Operating System 55

•  Cloud

•  Wearable computers

•  Virtual reality

•  Motion capturing device

•  ..

