
Operating Systems
ECE344

Ding Yuan

3/7/13 ECE344 – Deadlock 2

Deadlock
•  Synchronization is a live gun – we can easily shoot ourselves in the foot

•  Incorrect use of synchronization can block all processes

•  We have talked about this problem already

•  More generally, processes that allocate multiple resources generate
dependencies on those resources
•  Locks, semaphores, monitors, etc., just represent the resources that they

protect

•  If one process tries to request for a resource that a second process holds,
and vice-versa, they can never make progress

•  We call this situation deadlock, and we’ll look at:
•  Representation of deadlock conditions

•  Approaches to dealing with deadlock

Traffic Deadlock

3/7/13 ECE344 – Deadlock 3

3/7/13 ECE344 – Deadlock 4

Deadlock
•  Deadlock is a problem that can arise:
•  When processes compete for access to limited resources
•  When processes are incorrectly synchronized

•  Definition:
•  Deadlock exists among a set of processes if every process is

waiting for the others to finish, and thus no one ever does
(deadly embrace).

lockA->Acquire();

…

lockB->Acquire();

lockB->Acquire();

…

lockA->Acquire();

Process 1 Process 2

3/7/13 ECE344 – Deadlock 5

Conditions for Deadlock

•  Deadlock can exist if and only if the following four
conditions hold simultaneously:
1. Mutual exclusion – Processes claim exclusive control of

the resources they acquire

2. Hold and wait – There must be one process holding one
resource and waiting for another resource

3. No preemption – Resources cannot be preempted (critical
sections cannot be aborted externally)

4. Circular wait – A circular chain of processes exists in
which each process holds one or more resources that are
requested by the next process in the chain

3/7/13 ECE344 – Deadlock 6

Resource Allocation Graph

•  Deadlock can be described using a resource allocation graph
(RAG)

•  The RAG consists of a set of vertices P={P1, P2, …, Pn} of
processes and R={R1, R2, …, Rm} of resources
•  A directed edge from a process to a resource, PiRi, means that

Pi has requested Rj

•  A directed edge from a resource to a process, RiPi, means that
Rj has been allocated by Pi

•  If the graph has no cycles, deadlock cannot exist

•  If the graph has a cycle, deadlock may exist

Deadlock Model

3/7/13 ECE344 – Deadlock 7

Dealing With Deadlock

•  Prevention
•  make it impossible for deadlock to happen

•  Avoidance
•  impose less stringent conditions than for prevention,

allowing the possibility of deadlock, but sidestepping it
as it approaches

•  Detection and Recovery
•  in a system that allows the possibility of deadlock, detect

the occurrence and recover

3/7/13 ECE344 – Deadlock 8

The Ostrich Algorithm

•  Don’t do anything, simply restart the system (stick your
head into the sand, pretend there is no problem at all)

•  Rationale: make the common path fast
•  Deadlock prevention,

 avoidance or detection/

recovery algorithms are

expensive

•  If deadlock occurs only

rarely, it is not worth the

overhead

3/7/13 ECE344 – Deadlock 9

Then why do we still learn
about deadlocks?

•  How about aircraft control systems?

•  How about the software running in your car?

3/7/13 ECE344 – Deadlock 10

How do we prevent deadlocks?

•  Anyone?
•  You can use real-life analogies (hint: consider road

intersection)

3/7/13 ECE344 – Deadlock 11

3/7/13 ECE344 – Deadlock 12

Deadlock Prevention

•  Break one of the deadlock conditions
•  Mutual exclusion
•  Make resources sharable (printer spool)

•  Hold and wait condition
•  Force each process to request all required resources at once. It cannot

proceed until all resources have been acquired (intersection with stop
signs)

•  No Preemption condition
•  If a process holding some resources and is further waiting for

additional resources, it must release the resources it is currently holding
and request them again later

•  Remember “wait()” in monitor?
•  Circular wait condition
•  Impose an ordering (numbering) on the resources and request them in

order (popular implementation technique)

Deadlock Avoidance

•  The system needs to know the resource requirement
ahead of time

•  Banker’s Algorithm (Dijkstra, 1965)

3/7/13 ECE344 – Deadlock 13

3/7/13 ECE344 – Deadlock 14

•  The Banker’s Algorithm is the classic approach to
deadlock avoidance for resources with multiple units

1. Assign a credit limit to each customer (process)
•  Maximum resources each process needs
•  Max resource requests must be known in advance

2. Reject any request that leads to a dangerous state
•  A dangerous state is one where a sudden request by any

customer for the full credit limit could lead to deadlock
•  A recursive reduction procedure recognizes dangerous

states

Safe State and Unsafe State

•  Safe State
•  there is some scheduling order in which every process

can run to completion even if all of them suddenly
request their maximum number of resources immediately

•  From safe state, the system can guarantee that all
processes will finish

•  Unsafe state: no such guarantee
•  Not a deadlock state (may lead to deadlock)

•  Some processes may be able to complete

3/7/13 ECE344 – Deadlock 15

Example: single resource

3/7/13 ECE344 – Deadlock 16

A 0 6

B 0 5

C 0 4

D 0 7

Process Has Max

•  One resource with 10 units (total asset in the bank)

Free: 10

Safe

If all processes request MAX resources,
here is a Safe schedule:
1.  give A 6 units, A completes
2.  give B 5 units, B completes
3.  give C 4 units, C completes
4.  give D 7 units, D completes

Note: it is safe as long as there exists a
safe schedule (OS is the banker, controls
the scheduler)

Example: single resource

3/7/13 ECE344 – Deadlock 17

A 0 6

B 0 5

C 0 4

D 0 7

Process Has Max

•  One resource with 10 units (total asset in the bank)

Free: 10

A 1 6

B 1 5

C 2 4

D 4 7

Process Has Max

Free: 2

Safe Safe

Is it a safe state?

Here is a Safe schedule:
1 give C 2 units, C
completes (4 available)
2 give B 4 units, B
completes (5 available)
3 give A 5 units, A
completes (6 available)
4 give D 7 units,
D completes

Example: single resource

3/7/13 ECE344 – Deadlock 18

A 0 6

B 0 5

C 0 4

D 0 7

Process Has Max

•  One resource with 10 units (total asset in the bank)

Free: 10

A 1 6

B 1 5

C 2 4

D 4 7

Process Has Max

Free: 2

A 1 6

B 2 5

C 2 4

D 4 7

Process Has Max

Free: 1

Safe Safe Unsafe

Banker’s algorithm
Implementation

•  Whenever the OS receives a resource request, assume it is
granted, and do the following:
1. Look for a process (row) whose unmet resource needs are all

smaller than or equal to Free resources. If no such row exists,
unsafe. OS does not grant the request (put the requesting process
to sleep and let others to run).

2. Assume this process requests all the resources it needs and
finishes. Mark that process as terminated and add all its
resources to Free resources.

3. Repeat steps 1 and 2 until either all processes are marked
terminated (in which case the request will lead to a safe state and
OS grant the request), or none of the remaining processes’
resource needs can be met (unsafe state, do not grant the request)

3/7/13 ECE344 – Deadlock 19

3/7/13 ECE344 – Deadlock 20

Detection and Recovery

•  Detection and recovery
•  If we don’t have deadlock prevention or avoidance, then

deadlock may occur
•  In this case, we need to detect deadlock and recover from it

•  To do this, we need two algorithms
•  One to determine whether a deadlock has occurred
•  Another to recover from the deadlock

•  Possible, but expensive (time consuming)
•  Implemented in VMS
•  Run detection algorithm when resource request times out

3/7/13 ECE344 – Deadlock 21

Deadlock Detection

•  Detection
•  Traverse the Resource Allocation Graph looking for cycles

•  If a cycle is found, deadlock!

•  Expensive
•  Many processes and resources to traverse

•  Only invoke detection algorithm depending on
•  How often or likely deadlock is

•  How many processes are likely to be affected when it occurs

3/7/13 ECE344 – Deadlock 22

Deadlock Recovery

Once a deadlock is detected, we have two options…

1. Abort processes
•  Abort all deadlocked processes
•  Processes need start over again

•  Abort one process at a time until cycle is eliminated
•  System needs to rerun detection after each abort

2. Preempt resources (force their release)
•  Need to select process and resource to preempt
•  Need to rollback process to previous state
•  Need to prevent starvation

3/7/13 ECE344 – Deadlock 23

Deadlock Summary

•  Deadlock occurs when processes are waiting on each other
and cannot make progress
•  Cycles in Resource Allocation Graph (RAG)

•  Deadlock requires four conditions
•  Mutual exclusion, hold and wait, no resource preemption,

circular wait

•  Four approaches to dealing with deadlock:
•  Ignore it – Living life on the edge
•  Prevention – Make one of the four conditions impossible
•  Avoidance – Banker’s Algorithm (control allocation)
•  Detection and Recovery – Look for a cycle, preempt or abort

