Operating Systems ECE344

Lecture 15: Final Review

Ding Yuan

Announcements

- Piazza bonus points
 - Will keep "endorsing" students' answers and questions until April 29th
- Additional office hours
 - Will hold office hours during the normal lecture time on Monday/Thursday
 - You can also send me emails for appointments
- Please keep checking Piazza for important announcements

Course Plugs

- If you like ECE 344 topics and you like programming, you might find some other courses interesting next year
- ECE454: Computer System Programming
- ECE419: Distributed Systems
- ECE552: Computer Architecture

Overview

- Final mechanics
- What we have learnt
 - Scheduling and deadlock
 - Memory management
 - Paging
 - Page replacement
 - Disk I/O
 - File systems
 - Advanced topics (won't appear in the final exam)
- The End

April 22, 2013

ECE344 - Lecture 15 - Ding Yuan

Final Exam

- April 30th, 9:30 AM
 - GB-404: Student A-MAL
 - GB-405: Student MAN-Z
- Closed book
 - Sorry, no past sample exams
 - But questions in the textbook can be good exercise

Final Mechanics

- Bulk of the final covers material after midterm
 - Scheduling, deadlock, memory management (paging and replacement), file systems
- Some material on concurrency, synchronization
 - Synch primitives, synch problems
- Based upon lecture material and project
- Again, please, do not cheat

Scheduling

- When does scheduling happen?
 - Job changes state (e.g., waiting to running)
 - Interrupt, exception
 - Job creation, termination

Scheduling Goals

- Goals
 - Maximize CPU utilization
 - Maximize job throughput
 - Minimize turnaround time
 - Minimize waiting time
 - Minimize response time
- Different systems have different goals
- What is the goal of a batch system?
- What is the goal of an interactive system?

Starvation

- Starvation
 - Indefinite denial of a resource (CPU, lock)
- Causes
 - Side effect of scheduling
 - Side effect of synchronization
- Operating systems try to prevent starvation

Scheduling Algorithms

- What are the properties, advantages and disadvantages of the following scheduling algorithms?
 - First Come First Serve (FCFS)/First In First Out (FIFO)
 - Shortest Job First (SJF)
 - Priority
 - Round Robin
 - Multilevel feedback queues
- What scheduling algorithm does Unix use? Why?

Deadlock

- Deadlock happens when processes are waiting on each other and cannot make progress
- What are the conditions for deadlock?
 - Mutual exclusion
 - Hold and wait
 - No preemption
 - Circular wait
- How to visualize, represent abstractly?
 - Resource allocation graph (RAG)

Deadlock Approaches

- Dealing with deadlock
 - Ignore it (Ostrich algorithm)
 - Prevent it (prevent one of the four conditions)
 - Avoid it (have tight control over resource allocation)
 - Detect and recover from it
- What is the Banker's algorithm?
 - Which of the four approaches above does it implement?

Memory Management

- Why is memory management useful?
 - Why do we have virtual memory if it is so complex?
- What are the mechanisms for implementing MM?
 - Physical and virtual addressing
 - Partitioning, paging, and segmentation
 - Page tables, TLB
- What are the policies related to MM?
 - Page replacement
- What are the overheads related to providing memory management?

Virtualizing Memory

- What is the difference between a physical and virtual address?
- What is the difference between fixed and variable partitioning?
 - How do base and limit registers work?
- What is internal fragmentation?
- What is external fragmentation?
- What is a protection fault?

Paging

- How is paging different from partitioning?
- What are the advantages/disadvantages of paging?
- What are page tables?
- What are page table entries (PTE)?
- Know these terms
 - Virtual page number (VPN), page frame number (PFN), offset
- Know how to break down virtual addresses into page numbers, offset
- How have you implemented paging in OS161?

Page Table Entries

- What is a page table entry?
- What are all of the PTE bits used for?
 - Modify
 - Reference
 - Valid
 - Protection

Segmentation

- What is segmentation?
- How does it compare/contrast with paging?
- What are its advantages/disadvantages with respect to partitioning, paging?
- What is a segment table?
- How can paging and segmentation be combined?

Page Tables

- Page tables introduce overhead
 - Space for storing them
 - Time to use them for translation
- What techniques can be used to reduce their overhead?
- How do two-level (multi-level) page tables work?

TLBs

- What problem does the TLB solve?
- How do TLBs work?
- Why are TLBs effective?
- How are TLBs managed?
 - What happens on a TLB miss fault?
- What is the difference between a hardware and software managed TLB?

Page Faults

- What is a page fault?
- How is it used to implement demand paged virtual memory?

• What is the complete sequence of steps, from a TLB miss to paging in from disk, for translating a virtual address to a physical address?

Advanced Mem Management

- What is shared memory?
- What is copy on write?
- What are memory mapped files?

April 22, 2013

ECE344 - Lecture 15 - Ding Yuan

Page Replacement

- What is the purpose of the page replacement algorithm?
- What application behavior does page replacement try to exploit?
- When is the page replacement algorithm used?
- Understand
 - Belady's (optimal), FIFO, LRU, Approximate LRU, LRU Clock, Working Set
- What is thrashing?

Disk

- Understand the memory hierarchy concept, locality
- Physical disk structure
 - Platters, surfaces, tracks, sectors, cylinders, arms, heads
- Disk interface
 - How does the OS make requests to the disk?
- Disk performance
 - What steps determine disk request performance?
 - What are seek, rotation, transfer?

File Systems

- Topics
 - Files
 - Directories
 - Sharing
 - Protection
 - Layouts
 - Buffer Cache
- What is a file system?
- Why are file systems useful (why do we have them)?

Files and Directories

- What is a file?
 - What operations are supported?
 - What characteristics do they have?
 - What are file access methods?
- What is a directory?
 - What are they used for?
 - How are the implemented?
 - What is a directory entry?
- How are directories used to do path name translation?

File System Layouts

- What are file system layouts used for?
- What are the general strategies?
 - Contiguous, linked, indexed?
- What are the tradeoffs for those strategies?
- How do those strategies reflect file access methods?
- What is an inode?
 - How are inodes different from directories?
 - How are inodes and directories used to do path resolution, find files?

File Buffer Cache

- What is the file buffer cache, and why do operating systems use one?
- What is the difference between caching reads and caching writes?
- What are the tradeoffs of using memory for a file buffer cache vs. VM?

Final words on the lab

- One of the hardest lab you do in your undergraduate years
 - But if you survived it, your programming & hacking capabilities have significant improvements
 - OS: one of the hardest program to write & debug
 - Debug concurrent programs, user- AND kernel space, low-level hardware, interrupts and exceptions, assembly, etc.
 - Hack into a large, unfamiliar code base and implement additional features
 - Work as a team
 - Using version control systems
 - etc.
- I am very very proud of you!

Summary

- Now you understand how a computer works internally
 - More importantly, you had your hands dirty and implemented one
 - If you found such 'hand-dirty' experience interesting:
 - Take my ECE 454 course in Fall
 - Consider doing a Master with me
- Any remaining questions?

The End

- Congratulations on surviving ECE 344!
 - It's a very challenging course, but I hope you found it worthwhile
- Final take-away:
 - Facing a hard problem, analyze it, design and implement the most appropriate solution
- Good luck, and thanks for a great class!
 - It's my first teaching experience and thanks for making it so enjoyable!