Operating Systems
ECE344

Lecture 13: Solid-State Drive

Ding Yuan

L

Rotational
delay

Platters

Access data sequentially:

only suffer one seek and
rotational delay

~

v

.

~N

Random disk access: suffers

one seek and rotational

delay every time!

/

Apil 7, 2013

ECES#4 - Lectune 13 -

SsD

Fundamental Limitation with
HD

e Mechanical

 Cannot be made too fast
» Latency in milliseconds

Al 7, 2015

3 ECES44 - Lectwne I3 - SSD

Solid-State Drive (SSD)

* Nonvolatile memory (Floating-gate transistors)

» This gives the device the “solid-state” name
* Most common media: NAND Flash memory

L,"’ ain zul: o2t 12

ntel* S0 520 Series 24068

' -:w

A 7, 2013

4 ECE344 - Lectune 13 - SSD

SSD: 2013

* Intel 520 Cherryville (laptop)
» Capacity: 240 GB
* Compare to HD: TB
* Sequential R/W: 550/520 MB/s
* Compare to HD: 122 MB/s
* Latency
* Read: 0.04 ms
* Write: 0.2 ms
* Compare to HD: tens of ms
« $1/GB
* Compare to HD: 0.06/GB

Al 7, 2003 5

ECESH4 - Lectune I3 - SSD

Price declining

$500

$400

$300

§200

$100

SSD prices
—_— P - n "“ n Py -
W UV —— g ——y | (SR
Intel 510 Series 120GB
Intel 510 Series 250GB
R N P R S S S N
S T R G N R

Al 7, 2015

ECESH4 - Lectune I3 - SSD

Limitations

 Random write performance

» For write, need to first erase a large of pages (32-64
pages), and reprogram

e Burnout

» Each cell has limited erase/program cycles
* Range from 1,000 — 100,000 writes

Al 7, 2013 7 EPE344 - Lectune 13 - SSD

How do SSD’s characteristics
impact FS design?

e Characteristics of SSD

* No mechanical components --- data location won'’t
make difference

* Optimizations on data location are no longer useful
* Random write performance 1s BAD

* Avoid random writes!

* Limited “write” cycles for each cell
 Spread the writes across the entire SSD

Al 7, 2013 8 EPE344 - Lectune 13 - SSD

Log-structured File System

Many popular Flash File Systems are log-structured
File System

* Linux JFFS/JFFS2/YAFFS/LogFsS...

The “output” (interface) of LFS 1s the same
 File, directories

« Same logical storage

Data layout 1s very different

Al 7, 2015

9 ECES44 - Lectwne I3 - SSD

LES Approach

Treat the drive as a single log for appending

» Collect writes in disk cache, write out entire collection
in one large I/0 request

 All info written to drive 1s appended to log

» Data blocks, attributes, inodes, directories, etc.

Simple, eh?
 Alas, only in abstract

Al 7, 2015

10 ECES44 - Lectwne I3 - SSD

LES Challenges

* LFS has two challenges 1t must address for it to be
practical
1. Locating data written to the log

* FFS places files in a location, LFS writes data “at the end”

2. Managing free space on the disk
» Disk is finite, so log is finite, cannot always append

* Need to recover deleted blocks in old parts of log

Al 7, 2015 11 ECES44 - Lectune 15 - SSD

LFS: Locating Data

FFS uses inodes to locate data blocks
* Directories contain locations of 1nodes

LFS appends inodes to end of the log just like data
* Makes them hard to find

Approach

» Use another level of indirection: Inode maps

* Inode maps map inode #s to inode location

Location of inode map blocks kept in checkpoint region
Checkpoint region has a fixed location

Cache 1node maps in memory for performance

Al 7, 2015

12 ECE344 - Lectune 13 - SSD

LES Layout

filel

file2

Disk

Sprite LFS)

Block key: ilnodc.chmty Dbm.lnodemlp

dir2

Disk
Unix FFS

Fig. 1. A comparison between Sprite LFS and Unix FFS. This example shows the modified disk
blocks written by Sprite LFS and Unix FFS when creating two single-block files named dir1 /file1
and dr2/file2. Each system must write new data blocks and inodes for file1 and file2, plus new
data blocks and inodes for the containing directories. Unix FFS requires ten nonsequential
writes for the new information (the inodes for the new files are each written twice to case
recovery from crashes), while Sprite LFS performs the operations in a single large write. The
same number of disk accesses will be required to read the files in the two systems. Sprite LFS

also writes out new inode map blocks to record the new inode locations

A 7, 2013 13

ECES44 - Lectune I3 - SSD

LES: Free Space Management

* LFS append-only quickly runs out of disk space
* Need to recover deleted blocks

* Approach:

* Fragment log into segments

* Reclaim space by cleaning segments
* Read segment
» Copy live data to end of log

« Now have free segment you can reuse

* (leaning 1s a big problem
* Costly overhead

Al 7, 2015 14 ECES44 - Lectune 15 - SSD

Why LES 1s a better fit for
SSD?

e Characteristics of SSD

* No mechanical components --- data location won'’t
make difference

* LFS does not try to group data of the same file together
* Random write performance 1s BAD
* No random write, only large write (to the end of log)

* Limited “write” cycles for each cell

» Always write to a different location (end of log)
* No in-place write

Apd 7, 2013 15 ECE344 - Lectune I3 - SSD

LFS 1s not new

Invented long before the advent of SSD
e Published in SOSP’91

Hard Disk can also benefit
« Why?

Al 7, 2015

16

ECESH4 - Lectune I3 - SSD

Further reading

* Anatomy of a Solid-State Drive

 http://queue.acm.org/detail.cfm?1d=2385276

* JFFS: The Journalling Flash File System

* http://sourceware.org/jfts2 /jffs2-html/

* The Design and Implementation of a Log-

Structured File System

* http://www.stanford.edu/~ouster/cgi-bin/papers/

Ifs.pdf

Al 7, 2015

17 ECESH4 - Lecture 15 - SSD

