
Operating Systems
ECE344

Ding Yuan

Happy April Fools’

April 7, 2013 ECE344 - Lecture 12 - File System 2

Review

•  What is a replacement algorithm?
•  What problem does it solve?

•  Name a few replacement algorithm

•  Optimal algorithm
•  What is it?

•  What is Belady’s anomaly?

April 7, 2013 ECE344 - Lecture 12 - File System 3

Review (LRU)

•  What is it?

•  Why does it work?

•  Can you implement it?
•  Compare to Belady’s algorithm

•  Does VM systems use it in practice? Why?

•  What is NRU?

•  What is CLOCK?

April 7, 2013 ECE344 - Lecture 12 - File System 4

Review (working set)

•  What is the “working set” of a process?

•  For multiple processes
•  Local vs. global replacement

•  Working set algorithm

April 7, 2013 ECE344 - Lecture 12 - File System 5

What problem are we solving?

•  Data storage & access
•  Super important

•  One of the fastest growing
industry
•  Why?

•  Driven by technology

April 7, 2013 ECE344 - Lecture 12 - File System 6

1953, IBM, 24 inches, 3.75MB,
1KB/sec, > $150,000

2013, Seagate, 3.5 inches, 4TB,
600MB/sec, < $200

What problem are we solving?

•  One of the fastest growing industry
•  Why?

•  Driven by technology

•  Driven by demand
•  Mainframe storage: IBM, Memorex

•  PC storage: Seagate, DEC, Quantum, etc.

•  Enterprise Storage: EMC, NetApp, etc.

•  Cloud Storage: Dropbox, Google Drive, etc.

April 7, 2013 ECE344 - Lecture 12 - File System 7

April 7, 2013 ECE344 - Lecture 12 - File System 8

File Systems

•  First we’ll discuss properties of physical disks
•  Structure
•  Performance
•  Scheduling

•  Then we’ll discuss how we build file systems on them
•  Files
•  Directories
•  Sharing
•  Protection
•  File System Layouts
•  File Buffer Cache
•  Read Ahead

April 7, 2013 ECE344 - Lecture 12 - File System 9

Disks and the OS

•  Disks are messy physical devices
•  Errors, bad blocks, missed seeks, etc.

•  The job of the OS is to hide this mess from higher
level software
•  Low-level device control (initiate a disk read, etc.)

•  Higher-level abstractions (files, databases, etc.)

How hard disk work?

•  http://www.youtube.com/watch?v=kdmLvl1n82U

•  Disk components
•  Platters
•  Surfaces
•  Tracks
•  Cylinders
•  Sectors
•  Arm
•  Heads

April 7, 2013 ECE344 - Lecture 12 - File System 10

Another View of Disk

April 7, 2013 ECE344 - Lecture 12 - File System 11

April 7, 2013 ECE344 - Lecture 12 - File System 12

Disk Interaction

•  Specifying disk requests requires a lot of info:
•  Cylinder #, surface #, sector #, transfer size…

•  Older disks required the OS to specify all of this
•  The OS needed to know all disk parameters

•  Modern disks are more complicated
•  Not all sectors are the same size, sectors are remapped, etc.

•  Current disks provide a higher-level interface (SCSI)
•  The disk exports its data as a logical array of blocks [0…N]
•  Disk maps logical blocks to cylinder/surface/track/sector

•  Only need to specify the logical block # to read/write
•  But now the disk parameters are hidden from the OS

Disk Performance

•  Random disk access is SLOW!

April 7, 2013 13 ECE344 - Lecture 12 - File System

April 7, 2013 ECE344 - Lecture 12 - File System 14

Disk Performance

•  Disk request performance depends upon three steps
•  Seek – moving the disk arm to the correct cylinder
•  Depends on how fast disk arm can move (increasing very slowly)

•  Rotation – waiting for the sector to rotate under the head
•  Depends on rotation rate of disk (increasing, but slowly)

•  Transfer – transferring data from surface into disk controller
electronics, sending it back to the host
•  Depends on density (increasing quickly)

•  When the OS uses the disk, it tries to minimize the cost of
all of these steps
•  Particularly seeks and rotation

Disks: 2013
•  Seagate Cheetah 3.5" (server)

•  capacity: 300 - 600 GB

•  rotational speed: 15,000 RPM
•  sequential read performance: 122 MB/s - 204 MB/s

•  seek time (average): 3.4 ms

•  Seagate Barracuda 3.5" (desktop)

•  capacity: 250 GB – 4TB

•  rotational speed: 7,200 RPM
•  sequential read performance: 125 MB/s - 146 MB/s

•  seek time (average): 8.5 ms
April 7, 2013 ECE344 - Lecture 12 - File System 15

April 7, 2013 ECE344 - Lecture 12 - File System 16

Disk Scheduling

•  Because seeks are so expensive (milliseconds!), the OS
tries to schedule disk requests that are queued waiting for
the disk
•  FCFS (do nothing)
•  Reasonable when load is low
•  Long waiting times for long request queues

•  SSTF (shortest seek time first)
•  Minimize arm movement (seek time), maximize request rate
•  Favors middle blocks

•  SCAN (elevator)
•  Service requests in one direction until done, then reverse

•  C-SCAN
•  Like SCAN, but only go in one direction (typewriter)

April 7, 2013 ECE344 - Lecture 12 - File System 17

April 7, 2013 ECE344 - Lecture 12 - File System 18

Disk Scheduling (2)

•  In general, unless there are request queues, disk
scheduling does not have much impact
•  Important for servers, less so for PCs

•  Modern disks often do the disk scheduling
themselves
•  Disks know their layout better than OS, can optimize

better

•  Ignores, undoes any scheduling done by OS

Stages of I/O Request

April 7, 2013 ECE344 - Lecture 12 - File System 19

But do you directly program
on “disk”?

Life with an OS

file = open (“test.txt”,
O_WRONLY);

write (file, “test”, 4);

close (file);

Life without an OS

•  Where is this file on disk? Which
platter, track, and sectors?

•  Code needs to change on a
different system

April 7, 2013 20 ECE344 - Lecture 12 - File System

April 7, 2013 ECE344 - Lecture 12 - File System 21

File Systems

•  File systems
•  Implement an abstraction (files) for secondary storage

•  Organize files logically (directories)

•  Permit sharing of data between processes, people, and
machines

•  Protect data from unwanted access (security)

April 7, 2013 ECE344 - Lecture 12 - File System 22

Files
•  A file is data with some properties
•  Contents, size, owner, last read/write time, protection, etc.

•  A file can also have a type
•  Understood by other parts of the OS or runtime libraries
•  Executable, dll, souce, object, text, etc.

•  Understood by the file system
•  Block/character device, directory, link, etc.

•  A file’s type can be encoded in its name or contents
•  Windows encodes type in name
•  .com, .exe, .bat, .dll, .jpg, etc.

•  Unix encodes type in contents
•  Magic numbers, initial characters (e.g., #! for shell scripts)

April 7, 2013 ECE344 - Lecture 12 - File System 23

Basic File Operations
Unix

•  creat(name)

•  open(name, how)

•  read(fd, buf, len)

•  write(fd, buf, len)

•  sync(fd)

•  seek(fd, pos)

•  close(fd)

•  unlink(name)

Windows

•  CreateFile(name, CREATE)

•  CreateFile(name, OPEN)

•  ReadFile(handle, …)

•  WriteFile(handle, …)

•  FlushFileBuffers(handle, …)

•  SetFilePointer(handle, …)

•  CloseHandle(handle, …)

•  DeleteFile(name)

•  CopyFile(name)

•  MoveFile(name)

April 7, 2013 ECE344 - Lecture 12 - File System 24

Directories

•  Directories serve two purposes
•  For users, they provide a structured way to organize files

•  For the file system, they provide a convenient naming interface
that allows the implementation to separate logical file
organization from physical file placement on the disk

•  Most file systems support multi-level directories
•  Naming hierarchies (/, /usr, /usr/local/, …)

•  Most file systems support the notion of a current directory
•  Relative names specified with respect to current directory

•  Absolute names start from the root of directory tree

April 7, 2013 ECE344 - Lecture 12 - File System 25

Directory Internals

•  A directory is a list of entries
•  <name, location>

•  Name is just the name of the file or directory

•  Location depends upon how file is represented on disk

•  List is usually unordered (effectively random)
•  Entries usually sorted by program that reads directory

•  Directories typically stored in files

April 7, 2013 ECE344 - Lecture 12 - File System 26

Basic Directory Operations

Unix

•  Directories implemented in files
•  Use file ops to create dirs

•  C runtime library provides a
higher-level abstraction for
reading directories
•  opendir(name)

•  readdir(DIR)

•  seekdir(DIR)

•  closedir(DIR)

NT

•  Explicit dir operations
•  CreateDirectory(name)

•  RemoveDirectory(name)

•  Very different method for
reading directory entries
•  FindFirstFile(pattern)

•  FindNextFile()

Review

•  Disk

April 7, 2013 27 ECE344 - Lecture 12 - File System

Review: FS

•  What is FS
•  Input to FS?

•  “Output” of FS?

•  File

•  Directory

April 7, 2013 ECE344 - Lecture 12 - File System 28

April 7, 2013 ECE344 - Lecture 12 - File System 29

Path Name Translation

•  Let’s say you want to open “/one/two/three”

•  What does the file system do?
•  Open directory “/” (well known, can always find)
•  Search for the entry “one”, get location of “one” (in dir entry)
•  Open directory “one”, search for “two”, get location of “two”
•  Open directory “two”, search for “three”, get location of “three”
•  Open file “three”

•  Systems spend a lot of time walking directory paths
•  This is why open is separate from read/write
•  OS will cache prefix lookups for performance
•  /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

April 7, 2013 ECE344 - Lecture 12 - File System 30

File System Layout

How do file systems use the disk to store files?

•  File systems define a block size (e.g., 4KB)
•  Disk space is allocated in granularity of blocks

•  A “Master Block” determines location of root directory
•  Always at a well-known disk location
•  Often replicated across disk for reliability

•  A free map determines which blocks are free, allocated
•  Usually a bitmap, one bit per block on the disk
•  Also stored on disk, cached in memory for performance

•  Remaining disk blocks used to store files (and dirs)
•  There are many ways to do this

April 7, 2013 ECE344 - Lecture 12 - File System 31

Disk Layout Strategies
•  Files span multiple disk blocks

•  How do you find all of the blocks for a file?
1. Contiguous allocation
•  Fast, simplifies directory access
•  Inflexible, causes fragmentation, needs compaction

2. Linked structure
•  Each block points to the next, directory points to the first
•  Good for sequential access, bad for all others

3. Indexed structure (indirection, hierarchy)
•  An “index block” contains pointers to many other blocks
•  Handles random better, still good for sequential
•  May need multiple index blocks (linked together)

April 7, 2013 ECE344 - Lecture 12 - File System 32

Unix Inodes
•  Unix inodes implement an indexed structure for files

•  Also store metadata info (protection, timestamps, length, ref count…)

•  Each inode contains 15 block pointers
•  First 12 are direct blocks (e.g., 4 KB blocks)
•  Then single, double, and triple indirect

…

0

12
13
14

1
…

… …

 (Metadata)

 (1)

 (2)

 (3)

April 7, 2013 ECE344 - Lecture 12 - File System 33

Unix Inodes and Path Search

•  Unix Inodes are not directories

•  Inodes describe where on the disk the blocks for a file are placed
•  Directories are files, so inodes also describe where the blocks for

directories are placed on the disk

•  Directory entries map file names to inodes
•  To open “/one”, use Master Block to find inode for “/” on disk

•  Open “/”, look for entry for “one”

•  This entry gives the disk block number for the inode for “one”

•  Read the inode for “one” into memory

•  The inode says where first data block is on disk

•  Read that block into memory to access the data in the file

Sharing Files btw. Directories

•  Links (or hard links)
•  ln source_file target_dir
•  Simply create another link from target_dir to the inode of

source_file (the inode is not duplicated)

•  Now two directories have links to source_file

•  What if we remove one?

•  Now you understand why the system call to remove a file is
named “unlink”?

•  What if we duplicate the inode
•  Symbolic link

April 7, 2013 ECE344 - Lecture 12 - File System 34

April 7, 2013 ECE344 - Lecture 12 - File System 35

File Buffer Cache

•  Applications exhibit significant locality for reading and
writing files

•  Idea: Cache file blocks in memory to capture locality
•  This is called the file buffer cache
•  Cache is system wide, used and shared by all processes
•  Reading from the cache makes a disk perform like memory
•  Even a 4 MB cache can be very effective

•  Issues
•  The file buffer cache competes with VM (tradeoff here)
•  Like VM, it has limited size
•  Need replacement algorithms again (LRU usually used)

April 7, 2013 ECE344 - Lecture 12 - File System 36

Caching Writes
•  On a write, some applications assume that data makes it

through the buffer cache and onto the disk
•  As a result, writes are often slow even with caching

•  Several ways to compensate for this
•  “write-behind”
•  Maintain a queue of uncommitted blocks
•  Periodically flush the queue to disk
•  Unreliable

•  Battery backed-up RAM (NVRAM)
•  As with write-behind, but maintain queue in NVRAM
•  Expensive

April 7, 2013 ECE344 - Lecture 12 - File System 37

Read Ahead (prefetch)

•  Many file systems implement “read ahead”
•  FS predicts that the process will request next block
•  FS goes ahead and requests it from the disk
•  This can happen while the process is computing on previous

block
•  Overlap I/O with execution

•  When the process requests block, it will be in cache
•  Compliments the disk cache, which also is doing read ahead

•  For sequentially accessed files can be a big win
•  Unless blocks for the file are scattered across the disk
•  File systems try to prevent that, though (during allocation)

Performance Issues

April 7, 2013 ECE344 - Lecture 12 - File System 38

Original Unix FS had two placement problems:
1. Data blocks allocated randomly in aging file systems

◆  Blocks for the same file allocated sequentially when FS is new
◆  As FS “ages” and fills, need to allocate into blocks freed up when

other files are deleted
◆  Problem: Deleted files essentially randomly placed
◆  So, blocks for new files become scattered across the disk

2. Inodes allocated far from blocks
◆  All inodes at beginning of disk, far from data
◆  Traversing file name paths, manipulating files, directories

requires going back and forth from inodes to data blocks

Both of these problems generate many long seeks

April 7, 2013 ECE344 - Lecture 12 - File System 39

Fast File System

•  BSD FFS addressed these problems using the notion of a
cylinder group
•  Disk partitioned into groups of cylinders
•  Data blocks in same file allocated in same cylinder
•  Files in same directory allocated in same cylinder
•  Inodes for files allocated in same cylinder as file data blocks

•  Free space requirement
•  To be able to allocate according to cylinder groups, the disk

must have free space scattered across cylinders
•  10% of the disk is reserved just for this purpose

April 7, 2013 ECE344 - Lecture 12 - File System 40

Summary
•  Files
•  Operations, access methods

•  Directories
•  Operations, using directories to do path searches

•  Sharing
•  Link

•  File System Layouts
•  Unix inodes

•  File Buffer Cache
•  Strategies for handling writes

•  Read Ahead

