Operating Systems
ECE344

Lecture 12: File System

Ding Yuan

Happy April Fools’

Linus Torvalds To Join Microsoft To Head
Windows 9 Project

APRIL 1,2013

Upgrade to Windows 8®
Let the Windows 8 Upgrade Assistant Help you Compare and Choose.

Microsoft.com/Windows&

AdChoices [>

Q +1 1.2k 3 Tweet - 143

This is breaking bad. This is big. Linus Torvalds, the creator of Linux, and a
champion of free and open source software has finally call it a day and has agreed
to join Microsoft as the project head of the upcoming Windows 9 project.
According to , Linus will be working on a new Kernel design
for Microsoft that will make, usually vulnerable, Windows OS virtually
impossible to be infected by viruses and malware.

A 7, 2015 2 ECESH4 - Lectune 12 - File Syotem

Review

What 1s a replacement algorithm?
 What problem does it solve?

Name a few replacement algorithm

Optimal algorithm
* What 1s it?

What 1s Belady’s anomaly?

Al 7, 2015

ECE344 - Lectune 12 - File Syotem

Review (LRU)

What is it?
Why does it work?

Can you implement 1t?
* Compare to Belady’s algorithm

Does VM systems use 1t 1in practice? Why?
What is NRU?
What 1s CLOCK?

Al 7, 2015

ECE344 - Lectune 12 - File System

Review (working set)

What 1s the “working set” of a process?

For multiple processes

* Local vs. global replacement
* Working set algorithm

Al 7, 2015

5 ECESH4 - Lectune 12 - File System

What problem are we solving?

* Data storage & access

e Super important

* One of the fastest growing
industry

« Why?
* Driven by technology

-

1953, IBM, 24 inches, 3.75MB,
1KB/sec, > $150,000

2013, Seagate, 3.5 inches, 4TB,
600MB/sec, < $200

Al 7, 2015

ECE344 - Lectune 12 - File Syotem

What problem are we solving?

* One of the fastest growing industry
 Why?
e Driven by technology
* Driven by demand
* Mainframe storage: IBM, Memorex

* PC storage: Seagate, DEC, Quantum, etc.
* Enterprise Storage: EMC, NetApp, etc.

* Cloud Storage: Dropbox, Google Drive, etc.

Al 7, 2003 7

ECE344 - Lectune 12 - File Syotem

File Systems

First we’ll discuss properties of physical disks
 Structure

* Performance

* Scheduling

Then we’ll discuss how we build file systems on them

» Files

« Directories
» Sharing

* Protection

 File System Layouts
* File Buffer Cache
* Read Ahead

Al 7, 2015

ECE344 - Lectune 12 - File Syotem

Disks and the OS

* Disks are messy physical devices

» Errors, bad blocks, missed seeks, etc.

* The job of the OS i1s to hide this mess from higher

level software

* Low-level device control (initiate a disk read, etc.)
» Higher-level abstractions (files, databases, etc.)

Al 7, 2015

9 ECESH4 - Lectune 12 - File System

How hard disk work?

o http://www.youtube.com/watch?v=kdmLv]l1n82U

* Disk components A
* Platters ' e s

Surfaces
Tracks
Cylinders
Sectors

e Arm
Heads

Spindle

Platter

— Read/Write Head

Al 7, 2015 10 ECESH4 - Lectune 12 - File System

Another View of Disk

6::1[

7250
ST
-
Q@ OO Sectot
NE=

Correcting
Code (ECC) pv and Bartictt Publich

ECE344 - Lectune 12 - File System

Disk Interaction

* Specifying disk requests requires a lot of info:
« Cylinder #, surface #, sector #, transfer size...

* Older disks required the OS to specify all of this
* The OS needed to know all disk parameters

* Modern disks are more complicated
* Not all sectors are the same size, sectors are remapped, etc.

* Current disks provide a higher-level interface (SCSI)

» The disk exports its data as a logical array of blocks [0...N]
* Disk maps logical blocks to cylinder/surface/track/sector

* Only need to specify the logical block # to read/write
* But now the disk parameters are hidden from the OS

Al 7, 2015 12 ECESH4 - Lectune 12 - File System

Disk Performance

» Random disk access 1s SLOW!

Sector

Access data sequentially:
only suffer one seek and
rotational delay

[Rotational
delay

N
Random disk access: suffers

one seek and rotational

delay every time!
N Y Y Y

Platters

Apd 7, 2013 13 ECE344 - Lectune 12 - File System

Disk Performance

Disk request performance depends upon three steps
» Seek — moving the disk arm to the correct cylinder

* Depends on how fast disk arm can move (increasing very slowly)
* Rotation — waiting for the sector to rotate under the head

* Depends on rotation rate of disk (increasing, but slowly)

» Transfer — transferring data from surface into disk controller
electronics, sending it back to the host

* Depends on density (increasing quickly)

When the OS uses the disk, it tries to minimize the cost of
all of these steps

 Particularly seeks and rotation

Al 7, 2015 14 ECESH4 - Lectune 12 - File System

Disks: 2013

* Seagate Cheetah 3.5" (server)
* capacity: 300 - 600 GB
* rotational speed: 15,000 RPM
 sequential read performance: 122 MB/s - 204 MB/s
* seek time (average): 3.4 ms

* Seagate Barracuda 3.5" (desktop)
* capacity: 250 GB —4TB
* rotational speed: 7,200 RPM
 sequential read performance: 125 MB/s - 146 MB/s
 seek time (average): 8.5 ms

Al 7, 2015 15 ECESH4 - Lectune 12 - File System

Disk Scheduling

* Because seeks are so expensive (milliseconds!), the OS

tries to schedule disk requests that are queued waiting for
the disk

* FCFS (do nothing)
* Reasonable when load is low
« Long waiting times for long request queues
* SSTF (shortest seek time first)
* Minimize arm movement (seek time), maximize request rate
» Favors middle blocks
 SCAN (elevator)
 Service requests in one direction until done, then reverse
« C-SCAN
* Like SCAN, but only go in one direction (typewriter)

Al 7, 2015 16 ECESH4 - Lectune 12 - File System

- Example with SCAN Scheduling

+— Tracks —>

87 —
95

o b N O N
-
—_—
-
4
<
-
-

Total Movement = 136

Al 7, 2013 17

ECE344 - Lectune 12 - File Syotem

Disk Scheduling (2)

* In general, unless there are request queues, disk

scheduling does not have much impact
» Important for servers, less so for PCs

Modern disks often do the disk scheduling
themselves

* Disks know their layout better than OS, can optimize
better

 Ignores, undoes any scheduling done by OS

Al 7, 2015

18 ECESH4 - Lectune 12 - File System

Stages of 1/0 Request

Application Handle /O
/O request P completion
Send request to Generic device | Determine which /O complete
device specific driver driver copy dala to process
Issue commands 10 | peyice specific Process interrupt
device controller driver notify generic driver
i A
Monitor Device controller VO complete
device " generate interrupt

A 7, 2015 19 ECESH4 - Lectune 12 - File Syotem

But do you directly program
on “disk”?

Life with an OS Life without an OS
file = open (“test.txt”, Where is this file on disk? Which
O_WRONLY) ; platter, track, and sectors?

write (file, “test”, 4);

 Code needs to change on a

close (file);

Al 7, 2015 20 ECESH4 - Lectune 12 - File System

File Systems

* File systems

* Implement an abstraction (files) for secondary storage
* Organize files logically (directories)

* Permit sharing of data between processes, people, and
machines

* Protect data from unwanted access (security)

Al 7, 2015

21 ECESH4 - Lectune 12 - File System

Files

« A file is data with some properties
« Contents, size, owner, last read/write time, protection, etc.

« A file can also have a type
» Understood by other parts of the OS or runtime libraries
« Executable, dll, souce, object, text, etc.
* Understood by the file system
» Block/character device, directory, link, etc.

» A file’s type can be encoded 1n its name or contents
* Windows encodes type in name
e .com, .exe, .bat, .dll, .jpg, etc.
« Unix encodes type in contents
* Magic numbers, initial characters (e.g., #! for shell scripts)

Al 7, 2015 22 ECESH4 - Lectune 12 - File System

Basic File Operations

Unix

* creat(name)

* open(name, how)
* read(fd, buf, len)

« write(fd, buf, len)
* sync(fd)

* seek(fd, pos)

* close(fd)

* unlink(name)

Windows

* CreateFile(name, CREATE)

CreateFile(name, OPEN)

* ReadFile(handle, ...)

* WriteFile(handle, ...)

* FlushFileBuffers(handle, ...)
* SetFilePointer(handle, ...)

* C(CloseHandle(handle, ...)

* DeleteFile(name)

* CopyFile(name)

* MoveFile(name)

Al 7, 2015

23 ECESH4 - Lectune 12 - File System

Directories

* Directories serve two purposes

» For users, they provide a structured way to organize files

 For the file system, they provide a convenient naming interface
that allows the implementation to separate logical file
organization from physical file placement on the disk

* Most file systems support multi-level directories
* Naming hierarchies (/, /usr, /usr/local/, ...)

* Most file systems support the notion of a current directory
» Relative names specified with respect to current directory

» Absolute names start from the root of directory tree

Al 7, 2015 24 ECESH4 - Lectune 12 - File System

Directory Internals

A directory 1s a list of entries
e <name, location>
* Name is just the name of the file or directory

* Location depends upon how file is represented on disk

 List 1s usually unordered (effectively random)

* Entries usually sorted by program that reads directory

* Directories typically stored in files

Al 7, 2015

25 ECESH4 - Lectune 12 - File System

Basic Directory Operations

Unix NT

 Directories implemented in files * Explicit dir operations
» Use file ops to create dirs * CreateDirectory(name)

, , . * RemoveDirectory(name)
* C runtime library provides a

higher-level abstraction for * Very different method for
reading directories reading directory entries
* opendir(name) * FindFirstFile(pattern)

» readdir(DIR) * FindNextFile()

» seekdir(DIR)
 closedir(DIR)

Al 7, 2015 26 ECESH4 - Lectune 12 - File System

L

Rotational
delay

Platters

Access data sequentially:

only suffer one seek and
rotational delay

~

v

.

~N

Random disk access: suffers

one seek and rotational

delay every time!

/

Apil 7, 2013

27

ECE344 - Lectune 12 - File System

Review: FS

What 1s FS
* Input to FS?
* “Output” of FS?

File

Directory

Al 7, 2015

28

ECE344 - Lectune 12 - File Syotem

Path Name Translation

* Let’s say you want to open “/one/two/three”

 What does the file system do?

* Open directory “/” (well known, can always find)
Search for the entry “one”, get location of “one” (in dir entry)
Open directory “one”, search for “two”, get location of “two”
Open directory “two”, search for “three”, get location of “three”
Open file “three”

* Systems spend a lot of time walking directory paths
* This is why open is separate from read/write

* OS will cache prefix lookups for performance
« /a/b, /a/bb, /a/bbb, etc., all share “/a” prefix

Al 7, 2015 29 ECESH4 - Lectune 12 - File System

File System Layout

How do file systems use the disk to store files?

File systems define a block size (e.g., 4KB)
* Disk space 1s allocated in granularity of blocks

A “Master Block” determines location of root directory
» Always at a well-known disk location
* Often replicated across disk for reliability

A free map determines which blocks are free, allocated
» Usually a bitmap, one bit per block on the disk
 Also stored on disk, cached in memory for performance

Remaining disk blocks used to store files (and dirs)
* There are many ways to do this

Al 7, 2015

30 ECESH4 - Lectune 12 - File System

Disk Layout Strategies

* Files span multiple disk blocks

 How do you find all of the blocks for a file?

1. Contiguous allocation
« Fast, simplifies directory access
 Inflexible, causes fragmentation, needs compaction
2. Linked structure
* Each block points to the next, directory points to the first
* Good for sequential access, bad for all others
3. Indexed structure (indirection, hierarchy)

* An “index block” contains pointers to many other blocks
« Handles random better, still good for sequential

* May need multiple index blocks (linked together)

Awpd 7, 2013 31 ECE344 - Lectune 12 - File Syotem

Unix Inodes

Unix inodes implement an indexed structure for files
» Also store metadata info (protection, timestamps, length, ref count...)

Each inode contains 15 block pointers

» First 12 are direct blocks (e.g., 4 KB blocks)

* Then single, double, and triple indirect

12
13
14

P

(Metadata)

—

b

/V

—»
= /

\

\

bt

A

Al 7, 2015

3

\S)

ECE344 - Lectune 12 - File Syotem

Unix Inodes and Path Search

e Unix Inodes are not directories

* Inodes describe where on the disk the blocks for a file are placed

» Directories are files, so inodes also describe where the blocks for
directories are placed on the disk

* Directory entries map file names to inodes
» To open “/one”, use Master Block to find inode for “/” on disk

Open “/”, look for entry for “one”

This entry gives the disk block number for the inode for “one”

Read the inode for “one” into memory

The 1node says where first data block is on disk
* Read that block into memory to access the data in the file

Al 7, 2015 33 ECESH4 - Lectune 12 - File System

Sharing Files btw. Directories

* Links (or hard links)
* In source_file target_dir

« Simply create another link from target_dir to the inode of
source_file (the inode is not duplicated)

 Now two directories have links to source_file
« What if we remove one?

* Now you understand why the system call to remove a file 1s
named “unlink”?

 What if we duplicate the inode

« Symbolic link

Al 7, 2015

34 ECESH4 - Lectune 12 - File System

File Bufter Cache

* Applications exhibit significant locality for reading and
writing files

e Idea: Cache file blocks in memory to capture locality
 This is called the file buffer cache
* Cache 1s system wide, used and shared by all processes
* Reading from the cache makes a disk perform like memory
* Even a 4 MB cache can be very effective

e JIssues

 The file buffer cache competes with VM (tradeoff here)
* Like VM, i1t has limited size

* Need replacement algorithms again (LRU usually used)

Al 7, 2015 35 ECESH4 - Lectune 12 - File System

Caching Writes

* On a write, some applications assume that data makes it
through the buffer cache and onto the disk

* As a result, writes are often slow even with caching

* Several ways to compensate for this
* “write-behind”
* Maintain a queue of uncommitted blocks

 Periodically flush the queue to disk
* Unreliable

» Battery backed-up RAM (NVRAM)

* As with write-behind, but maintain queue in NVRAM
* Expensive

Al 7, 2015 36 ECESH4 - Lectune 12 - File System

Read Ahead (prefetch)

* Many file systems implement “read ahead”
» FS predicts that the process will request next block
* FS goes ahead and requests it from the disk

* This can happen while the process is computing on previous
block

* Qverlap I/0 with execution
 When the process requests block, it will be 1n cache
* Compliments the disk cache, which also 1s doing read ahead

» For sequentially accessed files can be a big win
» Unless blocks for the file are scattered across the disk
 File systems try to prevent that, though (during allocation)

Al 7, 2015 37 ECESH4 - Lectune 12 - File System

Performance Issues

Original Unix FS had two placement problems:
1. Data blocks allocated randomly 1n aging file systems

+ Blocks for the same file allocated sequentially when FS is new

+ As FS “ages” and fills, need to allocate into blocks freed up when
other files are deleted

+ Problem: Deleted files essentially randomly placed
+ So, blocks for new files become scattered across the disk

2. Inodes allocated far from blocks

+ All inodes at beginning of disk, far from data

+ Traversing file name paths, manipulating files, directories
requires going back and forth from inodes to data blocks

Both of these problems generate many long seeks

Al 7, 2015

38 ECESH4 - Lectune 12 - File System

Fast File System

BSD FFS addressed these problems using the notion of a
cylinder group

* Disk partitioned into groups of cylinders

« Data blocks in same file allocated in same cylinder

* Files in same directory allocated in same cylinder

 Inodes for files allocated in same cylinder as file data blocks

Free space requirement

* To be able to allocate according to cylinder groups, the disk
must have free space scattered across cylinders

* 10% of the disk 1s reserved just for this purpose

Al 7, 2015

39 ECESH4 - Lectune 12 - File System

Summary

* Files
* Operations, access methods

* Directories
* Operations, using directories to do path searches

* Sharing
* Link

* File System Layouts
* Unix inodes

» File Buffer Cache
 Strategies for handling writes

« Read Ahead

Apid 7, 2013 40

ECE344 - Lectune 12 - File Syotem

