

Linus Torvalds To Join Microsoft To Head Diagona Single S	Har	py April F	ools'
Let the Windows 8 Upgrade Assistant Help you Compare and Choose. Microsoft.com/Windows8 AdChoices ▷ Q +1 < 1.2k	Windows 9 P	roject	ft To Head
		ws 8 Upgrade Assistant Help you Compare	
champion of free and open source software has finally call it a day and has agreed to join Microsoft as the project head of the upcoming Windows 9 project. According to Bloomberg, Linus will be working on a new Kernel design for Microsoft that will make, usually vulnerable, Windows OS virtually impossible to be infected by viruses and malware.	This is breaking bad. The champion of free and oper to join Microsoft as the According to Bloomber for Microsoft that will	n source software has finally call i project head of the upcoming g, Linus will be working on a make, usually vulnerable, W	it a day and has agreed g Windows 9 project. a new Kernel design

Hpril 1, 2013

Review

- What is a replacement algorithm?
 - What problem does it solve?
- Name a few replacement algorithm
- Optimal algorithm
 - What is it?
- What is Belady's anomaly?

Review (LRU)


- What is it?
- Why does it work?
- Can you implement it?
 - Compare to Belady's algorithm
- Does VM systems use it in practice? Why?
- What is NRU?
- What is CLOCK?

- What is the "working set" of a process?
- For multiple processes
 - Local vs. global replacement
 - Working set algorithm

What problem are we solving?

- Data storage & access
 - Super important
- One of the fastest growing industry
 - Why?
 - Driven by technology

1953, IBM, 24 inches, 3.75MB, 1KB/sec, > \$150,000

6

2013, Seagate, 3.5 inches, 4TB, 600MB/sec, < \$200

What problem are we solving?

- One of the fastest growing industry
 - Why?
 - Driven by technology
 - Driven by demand
 - Mainframe storage: IBM, Memorex
 - PC storage: Seagate, DEC, Quantum, etc.
 - Enterprise Storage: EMC, NetApp, etc.
 - Cloud Storage: Dropbox, Google Drive, etc.

File Systems

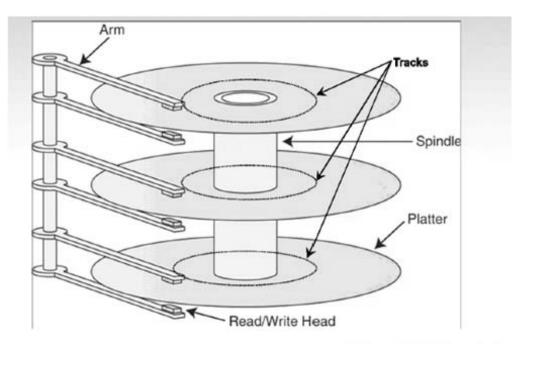
- First we'll discuss properties of physical disks
 - Structure
 - Performance
 - Scheduling
- Then we'll discuss how we build file systems on them
 - Files
 - Directories
 - Sharing
 - Protection
 - File System Layouts
 - File Buffer Cache
 - Read Ahead

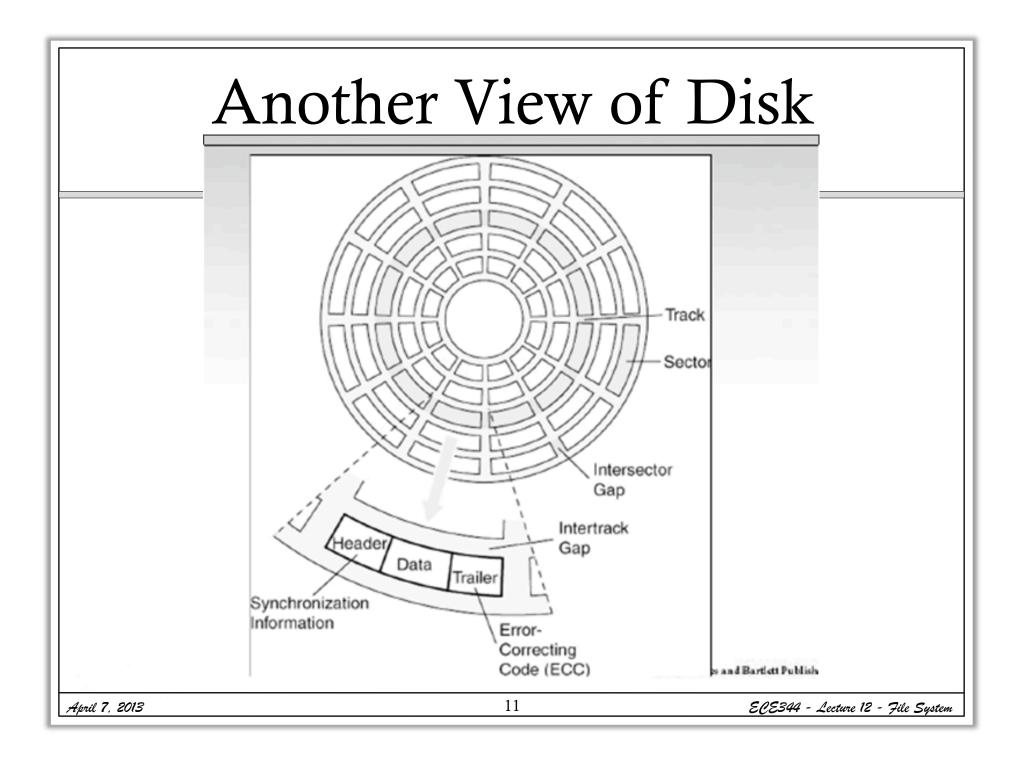
April 7, 2013

8

ECE344 - Lecture 12 - File System

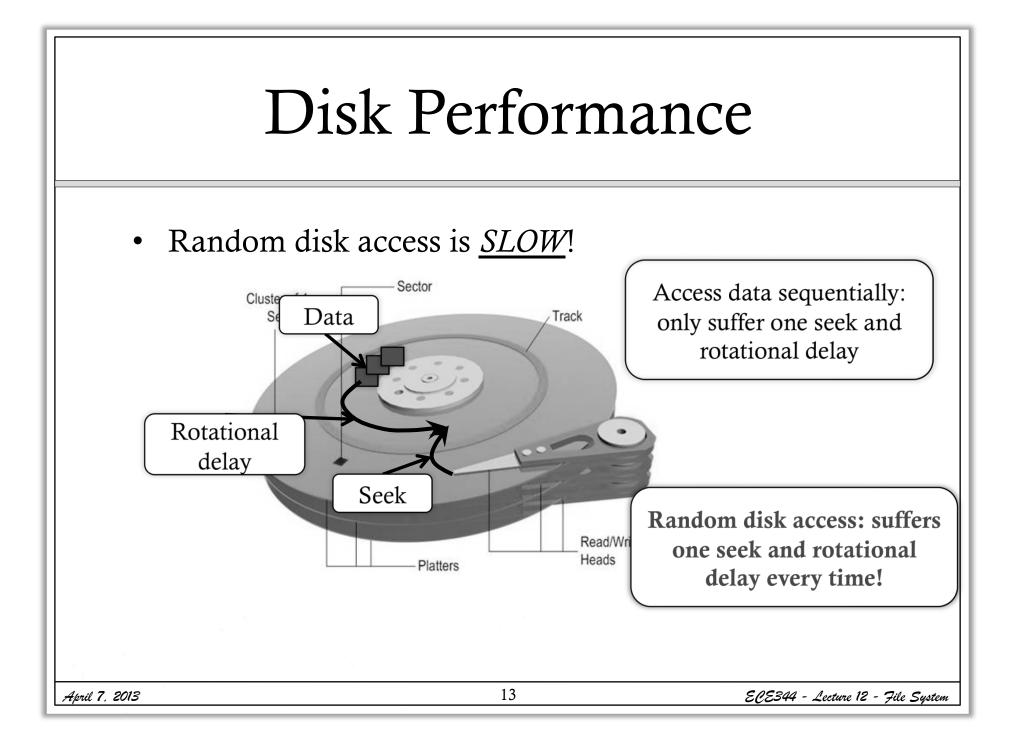
Disks and the OS


- Disks are messy physical devices
 - Errors, bad blocks, missed seeks, etc.
- The job of the OS is to hide this mess from higher level software
 - Low-level device control (initiate a disk read, etc.)
 - Higher-level abstractions (files, databases, etc.)


How hard disk work?

<u>http://www.youtube.com/watch?v=kdmLvl1n82U</u>

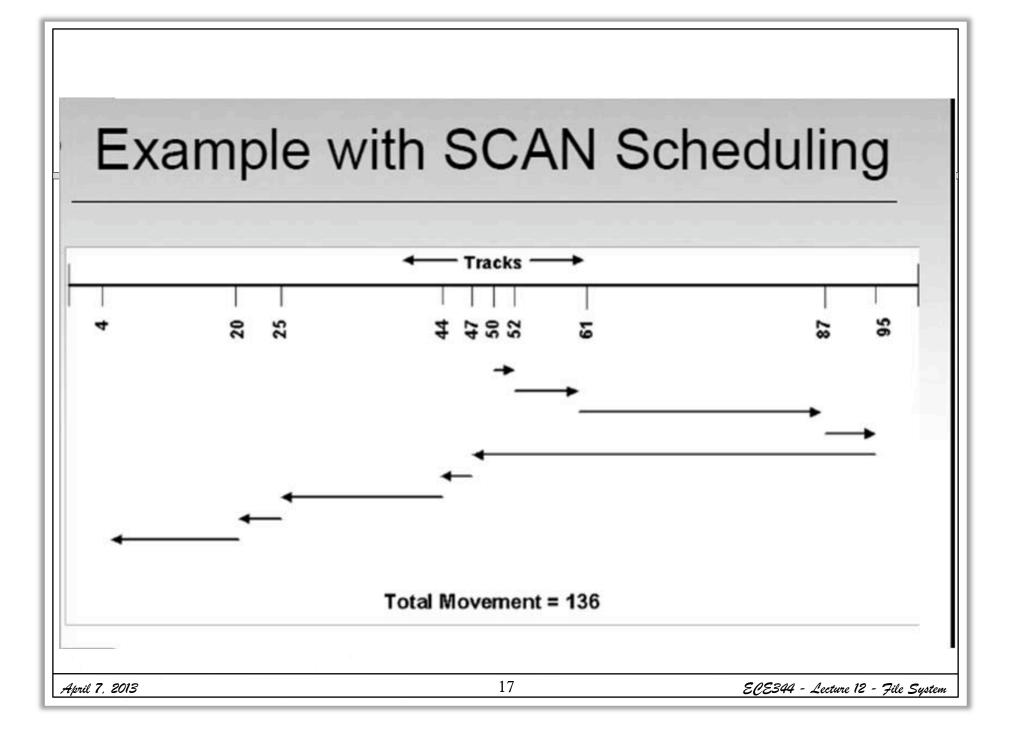
10


- Disk components
 - Platters
 - Surfaces
 - Tracks
 - Cylinders
 - Sectors
 - Arm
 - Heads

Disk Interaction

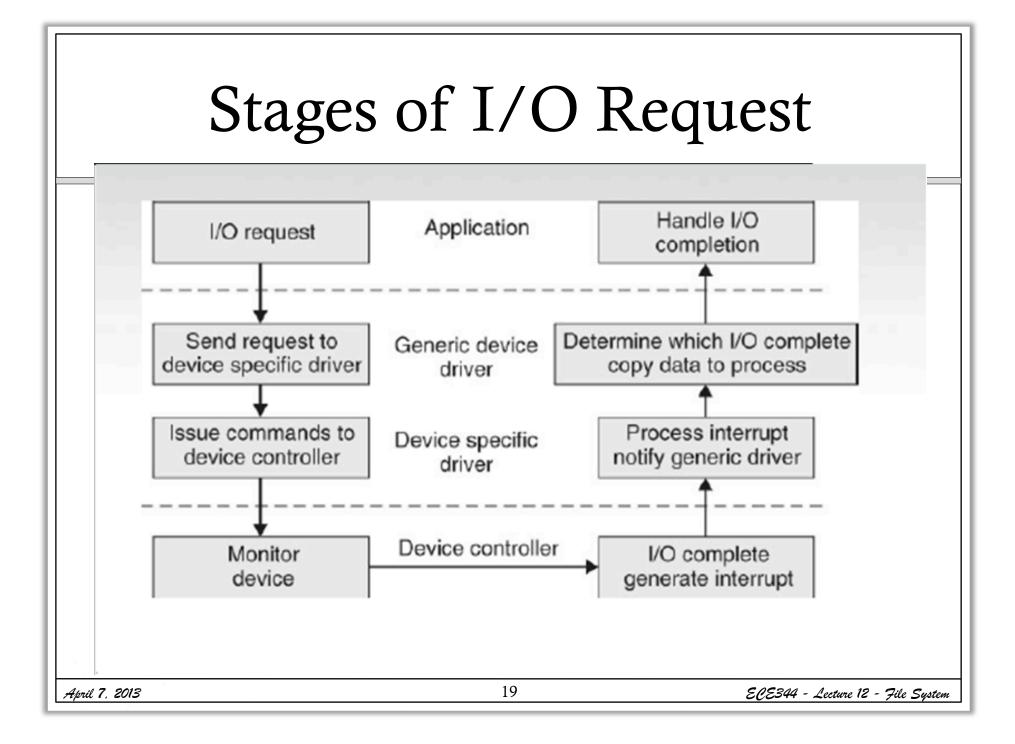
- Specifying disk requests requires a lot of info:
 - Cylinder #, surface #, sector #, transfer size...
- Older disks required the OS to specify all of this
 - The OS needed to know all disk parameters
- Modern disks are more complicated
 - Not all sectors are the same size, sectors are remapped, etc.
- Current disks provide a higher-level interface (SCSI)
 - The disk exports its data as a logical array of blocks [0...N]
 - Disk maps logical blocks to cylinder/surface/track/sector
 - Only need to specify the logical block # to read/write
 - But now the disk parameters are hidden from the OS

Disk Performance


- Disk request performance depends upon three steps
 - Seek moving the disk arm to the correct cylinder
 - Depends on how fast disk arm can move (increasing very slowly)
 - Rotation waiting for the sector to rotate under the head
 - Depends on rotation rate of disk (increasing, but slowly)
 - Transfer transferring data from surface into disk controller electronics, sending it back to the host
 - Depends on density (increasing quickly)
- When the OS uses the disk, it tries to minimize the cost of all of these steps
 - Particularly seeks and rotation

Disks: 2013

- Seagate Cheetah 3.5" (server)
 - capacity: 300 600 GB
 - rotational speed: 15,000 RPM
 - sequential read performance: 122 MB/s 204 MB/s
 - seek time (average): 3.4 ms
- Seagate Barracuda 3.5" (desktop)
 - capacity: 250 GB 4TB
 - rotational speed: 7,200 RPM
 - sequential read performance: 125 MB/s 146 MB/s
 - seek time (average): 8.5 ms

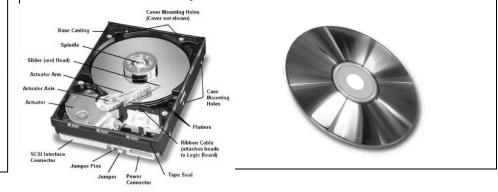

Disk Scheduling

- Because seeks are so expensive (milliseconds!), the OS tries to schedule disk requests that are queued waiting for the disk
 - FCFS (do nothing)
 - Reasonable when load is low
 - Long waiting times for long request queues
 - SSTF (shortest seek time first)
 - Minimize arm movement (seek time), maximize request rate
 - Favors middle blocks
 - SCAN (elevator)
 - Service requests in one direction until done, then reverse
 - C-SCAN
 - Like SCAN, but only go in one direction (typewriter)

Disk Scheduling (2)

- In general, unless there are request queues, disk scheduling does not have much impact
 - Important for servers, less so for PCs
- Modern disks often do the disk scheduling themselves
 - Disks know their layout better than OS, can optimize better
 - Ignores, undoes any scheduling done by OS

But do you directly program on "disk"?


Life with an OS

```
write (file, "test", 4);
```

close (file);

Life without an OS

- Where is this file on disk? Which platter, track, and sectors?
- Code needs to change on a different system

File Systems

- File systems
 - Implement an abstraction (files) for secondary storage
 - Organize files logically (directories)
 - Permit sharing of data between processes, people, and machines
 - Protect data from unwanted access (security)

Files

- A file is data with some properties
 - Contents, size, owner, last read/write time, protection, etc.
- A file can also have a type
 - Understood by other parts of the OS or runtime libraries
 - Executable, dll, souce, object, text, etc.
 - Understood by the file system
 - Block/character device, directory, link, etc.
- A file's type can be encoded in its name or contents
 - Windows encodes type in name
 - .com, .exe, .bat, .dll, .jpg, etc.
 - Unix encodes type in contents
 - Magic numbers, initial characters (e.g., #! for shell scripts)

Basic File Operations

Unix

- creat(name)
- open(name, how)
- read(fd, buf, len)
- write(fd, buf, len)
- sync(fd)
- seek(fd, pos)
- close(fd)

April 7, 2013

• unlink(name)

Windows

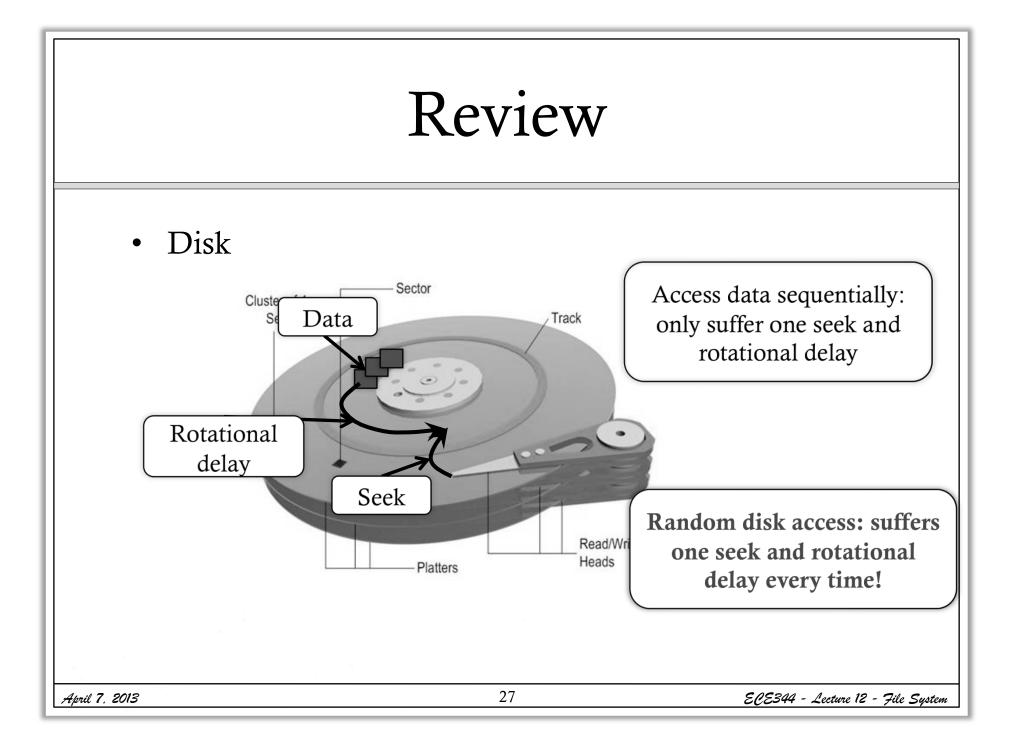
- CreateFile(name, CREATE)
- CreateFile(name, OPEN)
- ReadFile(handle, ...)
- WriteFile(handle, ...)
- FlushFileBuffers(handle, ...)
- SetFilePointer(handle, ...)
- CloseHandle(handle, ...)
- DeleteFile(name)
- CopyFile(name)
- MoveFile(name)

Directories

- Directories serve two purposes
 - For users, they provide a structured way to organize files
 - For the file system, they provide a convenient naming interface that allows the implementation to separate logical file organization from physical file placement on the disk
- Most file systems support multi-level directories
 - Naming hierarchies (/, /usr, /usr/local/, ...)
- Most file systems support the notion of a current directory
 - Relative names specified with respect to current directory
 - Absolute names start from the root of directory tree

Directory Internals

- A directory is a list of entries
 - <name, location>
 - Name is just the name of the file or directory
 - Location depends upon how file is represented on disk
- List is usually unordered (effectively random)
 - Entries usually sorted by program that reads directory
- Directories typically stored in files


Basic Directory Operations

Unix

NT

- Directories implemented in files
 - Use file ops to create dirs
- C runtime library provides a higher-level abstraction for reading directories
 - opendir(name)
 - readdir(DIR)
 - seekdir(DIR)
 - closedir(DIR)

- Explicit dir operations
 - CreateDirectory(name)
 - RemoveDirectory(name)
- Very different method for reading directory entries
 - FindFirstFile(pattern)
 - FindNextFile()

Review: FS

- What is FS
 - Input to FS?
 - "Output" of FS?
- File
- Directory

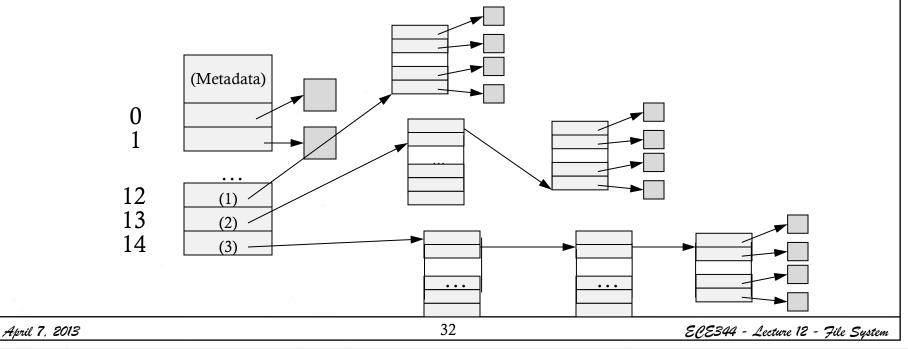
28

Path Name Translation

- Let's say you want to open "/one/two/three"
- What does the file system do?
 - Open directory "/" (well known, can always find)
 - Search for the entry "one", get location of "one" (in dir entry)
 - Open directory "one", search for "two", get location of "two"
 - Open directory "two", search for "three", get location of "three"
 - Open file "three"
- Systems spend a lot of time walking directory paths
 - This is why open is separate from read/write
 - OS will cache prefix lookups for performance
 - /a/b, /a/bb, /a/bbb, etc., all share "/a" prefix

File System Layout

How do file systems use the disk to store files?


- File systems define a block size (e.g., 4KB)
 - Disk space is allocated in granularity of blocks
- A "Master Block" determines location of root directory
 - Always at a well-known disk location
 - Often replicated across disk for reliability
- A free map determines which blocks are free, allocated
 - Usually a bitmap, one bit per block on the disk
 - Also stored on disk, cached in memory for performance
- Remaining disk blocks used to store files (and dirs)
 - There are many ways to do this

Disk Layout Strategies

- Files span multiple disk blocks
- How do you find all of the blocks for a file?
 - 1. Contiguous allocation
 - Fast, simplifies directory access
 - Inflexible, causes fragmentation, needs compaction
 - 2. Linked structure
 - Each block points to the next, directory points to the first
 - Good for sequential access, bad for all others
 - 3. Indexed structure (indirection, hierarchy)
 - An "index block" contains pointers to many other blocks
 - Handles random better, still good for sequential
 - May need multiple index blocks (linked together)

Unix Inodes

- Unix inodes implement an indexed structure for files
 - Also store metadata info (protection, timestamps, length, ref count...)
- Each inode contains 15 block pointers
 - First 12 are direct blocks (e.g., 4 KB blocks)
 - Then single, double, and triple indirect

Unix Inodes and Path Search

- Unix Inodes are not directories
- Inodes describe where on the disk the blocks for a file are placed
 - Directories are files, so inodes also describe where the blocks for directories are placed on the disk
- Directory entries map file names to inodes
 - To open "/one", use Master Block to find inode for "/" on disk
 - Open "/", look for entry for "one"
 - This entry gives the disk block number for the inode for "one"
 - Read the inode for "one" into memory
 - The inode says where first data block is on disk
 - Read that block into memory to access the data in the file

Sharing Files btw. Directories

- Links (or hard links)
 - ln source_file target_dir
 - Simply create another link from target_dir to the **inode** of source_file (the inode is not duplicated)
 - Now two directories have links to source_file
 - What if we remove one?
 - Now you understand why the system call to remove a file is named "unlink"?
 - What if we duplicate the inode
 - Symbolic link

File Buffer Cache

- Applications exhibit significant locality for reading and writing files
- Idea: Cache file blocks in memory to capture locality
 - This is called the file buffer cache
 - Cache is system wide, used and shared by all processes
 - Reading from the cache makes a disk perform like memory
 - Even a 4 MB cache can be very effective
- Issues
 - The file buffer cache competes with VM (tradeoff here)
 - Like VM, it has limited size
 - Need replacement algorithms again (LRU usually used)

Caching Writes

- On a write, some applications assume that data makes it through the buffer cache and onto the disk
 - As a result, writes are often slow even with caching
- Several ways to compensate for this
 - "write-behind"
 - Maintain a queue of uncommitted blocks
 - Periodically flush the queue to disk
 - Unreliable
 - Battery backed-up RAM (NVRAM)
 - As with write-behind, but maintain queue in NVRAM
 - Expensive

Read Ahead (prefetch)

- Many file systems implement "read ahead"
 - FS predicts that the process will request next block
 - FS goes ahead and requests it from the disk
 - This can happen while the process is computing on previous block
 - Overlap I/O with execution
 - When the process requests block, it will be in cache
 - Compliments the disk cache, which also is doing read ahead
- For sequentially accessed files can be a big win
 - Unless blocks for the file are scattered across the disk
 - File systems try to prevent that, though (during allocation)

Performance Issues

Original Unix FS had two placement problems:

- 1. Data blocks allocated randomly in aging file systems
 - Blocks for the same file allocated sequentially when FS is new
 - As FS "ages" and fills, need to allocate into blocks freed up when other files are deleted
 - Problem: Deleted files essentially randomly placed
 - So, blocks for new files become scattered across the disk
- 2. Inodes allocated far from blocks
 - All inodes at beginning of disk, far from data
 - Traversing file name paths, manipulating files, directories requires going back and forth from inodes to data blocks

Both of these problems generate many long seeks

Fast File System

- BSD FFS addressed these problems using the notion of a cylinder group
 - Disk partitioned into groups of cylinders
 - Data blocks in same file allocated in same cylinder
 - Files in same directory allocated in same cylinder
 - Inodes for files allocated in same cylinder as file data blocks
- Free space requirement
 - To be able to allocate according to cylinder groups, the disk must have free space scattered across cylinders
 - 10% of the disk is reserved just for this purpose

Summary

- Files
 - Operations, access methods
- Directories
 - Operations, using directories to do path searches
- Sharing
 - Link
- File System Layouts
 - Unix inodes
- File Buffer Cache
 - Strategies for handling writes
- Read Ahead