
Operating Systems
ECE344

Ding Yuan

4/14/13 ECE344 Lec 9 Ding Yuan 2

Memory Management
Next few lectures are going to cover memory management

•  Goals of memory management
•  To provide a convenient abstraction for programming
•  To allocate scarce memory resources among competing processes to

maximize performance with minimal overhead

•  Mechanisms
•  Physical and virtual addressing (1)
•  Techniques: partitioning, paging, segmentation (1)
•  Page table management, TLBs, VM tricks (2)

•  Policies
•  Page replacement algorithms (3)

4/14/13 ECE344 Lec 9 Ding Yuan 3

Lecture Overview

•  Virtual memory

•  Survey techniques for implementing virtual memory
•  Fixed and variable partitioning

•  Paging

•  Segmentation

•  Focus on hardware support and lookup procedure
•  Next lecture we’ll go into sharing, protection, efficient

implementations, and other VM tricks and features

4/14/13 ECE344 Lec 9 Ding Yuan 4

Virtual Memory
•  The abstraction that the OS will provide for managing

memory is virtual memory (VM)
•  Virtual memory enables a program to execute with less than

its complete data in physical memory
•  A program can run on a machine with less memory than it “needs”

•  Many programs do not need all of their code and data at once (or
ever) – no need to allocate memory for it

•  Processes cannot see the memory of others’
•  OS will adjust amount of memory allocated to a process

based upon its behavior
•  VM requires hardware support and OS management algorithms

to pull it off

•  Let’s go back to the beginning…

4/14/13 ECE344 Lec 9 Ding Yuan 5

•  Rewind to the old days (generally before 1970s)
•  Programs use physical addresses directly
•  OS loads job, runs it, unloads it

•  Multiprogramming changes all of this
•  Want multiple processes in memory at once

•  Overlap I/O and CPU of multiple jobs

•  Can do it a number of ways
•  Fixed and variable partitioning, paging, segmentation

•  Requirements
•  Need protection – restrict which addresses jobs can use
•  Fast translation – lookups need to be fast
•  Fast change – updating memory hardware on context switch

4/14/13 ECE344 Lec 9 Ding Yuan 6

Virtual Addresses

•  To make it easier to manage the memory of processes
running in the system, we’re going to make them use
virtual addresses (logical addresses)
•  Virtual addresses are independent of the actual physical

location of the data referenced

•  OS determines location of data in physical memory

•  Instructions executed by the CPU issue virtual addresses

•  Virtual addresses are translated by hardware into physical
addresses (with help from OS)

•  The set of virtual addresses that can be used by a process
comprises its virtual address space

Remember this example?

•  Now simultaneously start two instances of this program
•  Myval 5

•  Myval 6

•  What will the outputs be?

4/14/13 ECE344 Lec 9 Ding Yuan 7

int myval;
int main(int argc, char *argv[])
{
 myval = atoi(argv[1]);
 while (1)
 printf(“myval is %d, loc 0x%lx\n”, myval, (long) &myval);
}

4/14/13 ECE344 Lec 9 Ding Yuan 8

4/14/13 ECE344 Lec 9 Ding Yuan 9

Virtual Addresses

•  Many ways to do this translation…
•  Start with old, simple ways, progress to current techniques

vmap processor physical
memory

virtual
addresses

physical
addresses

4/14/13 ECE344 Lec 9 Ding Yuan 10

Fixed Partitions

•  Physical memory is broken up into fixed partitions
•  Hardware requirements: base register
•  Physical address = virtual address + base register
•  Base register loaded by OS when it switches to a process
•  Size of each partition is the same and fixed
•  How do we provide protection?

•  Advantages
•  Easy to implement, fast context switch

•  Problems
•  Internal fragmentation: memory in a partition not used by a

process is not available to other processes
•  Partition size: one size does not fit all (very large processes?)

4/14/13 ECE344 Lec 9 Ding Yuan 11

Fixed Partitions

P4’s Base

+ Offset

Virtual Address

Physical Memory

Base Register P1

P2

P3

P5

P4

Internal
fragmentation

4/14/13 ECE344 Lec 9 Ding Yuan 12

Variable Partitions

•  Natural extension – physical memory is broken up into
variable sized partitions
•  Hardware requirements: base register and limit register
•  Physical address = virtual address + base register
•  Why do we need the limit register? Protection

•  If (physical address > base + limit) then exception fault

•  Advantages
•  No internal fragmentation: allocate just enough for process

•  Problems
•  External fragmentation: job loading and unloading produces

empty holes scattered throughout memory

4/14/13 ECE344 Lec 9 Ding Yuan 13

Variable Partitions

P3’s Base

+ Offset

Virtual Address

Base Register

P2

P3 <

Protection
Fault

Yes?

No?

P3’s Limit

Limit Register

P1
External
fragmentation

Variable Partitions and
Fragmentation

4/14/13 ECE344 Lec 9 Ding Yuan 14

1

2

3

4

5

Memory wasted by External Fragmentation

Do you know about disk de-fragmentation?
 It can improve your system performance!

Compaction

•  Processes must be suspended during compaction

•  Need be done only when fragmentation gets very bad

4/14/13 ECE344 Lec 9 Ding Yuan 15

5

6

7

8

9

4/14/13 ECE344 Lec 9 Ding Yuan 16

Paging

•  Paging solves the external fragmentation problem by using
fixed sized units in both physical and virtual memory

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Internal vs. External
fragmentation

•  How paging can solve fragmentation problems?
•  External fragmentation: can be solved by re-mapping

between VA and PA

•  Internal fragmentation: can be solved if the page size is
relatively small

4/14/13 ECE344 Lec 9 Ding Yuan 17

4/14/13 ECE344 Lec 9 Ding Yuan 18

User/Process Perspective

•  Users (and processes) view memory as one contiguous address
space from 0 through N
•  Virtual address space (VAS)

•  In reality, pages are scattered throughout physical storage
•  Different from variable partition, where the physical memory for

each process is contiguously allocated

•  The mapping is invisible to the program

•  Protection is provided because a program cannot reference
memory outside of its VAS
•  The address “0x1000” maps to different physical addresses in

different processes

Question

•  Page size is always a power of 2
•  Examples: 4096 bytes = 4KB, 8192 bytes = 8KB

•  Why?

•  Why not 1000 or 2000?

4/14/13 ECE344 Lec 9 Ding Yuan 19

4/14/13 ECE344 Lec 9 Ding Yuan 20

Paging

•  Translating addresses
•  Virtual address has two parts: virtual page number and offset

•  Virtual page number (VPN) is an index into a page table

•  Page table determines page frame number (PFN)

•  Physical address is PFN::offset

•  Page tables
•  Map virtual page number (VPN) to page frame number (PFN)

•  VPN is the index into the table that determines PFN

•  One page table entry (PTE) per page in virtual address space
•  Or, one PTE per VPN

4/14/13 ECE344 Lec 9 Ding Yuan 21

Page Lookups

Page frame

Page number Offset

Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

4/14/13 ECE344 Lec 9 Ding Yuan 22

Paging Example

•  Pages are 4K (Linux default)
•  VPN is 20 bits (220 VPNs), offset is 12 bits

•  Virtual address is 0x7468 (hexadecimal)
•  Virtual page is 0x7, offset is 0x468

•  Page table entry 0x7 contains 0x2000
•  Page frame number is 0x2000

•  Seventh virtual page is at address 0x2000 (2nd physical page)

•  Physical address = 0x2000 + 0x468 = 0x2468

4/14/13 ECE344 Lec 9 Ding Yuan 23

Page Lookups

0x0002

0

Virtual Address

Page Table

0x0002 468

Physical Address

Physical Memory

0 0 0 7 4 6 8

Virtual page
number

Offset

0x00007

0x00006

index page frame

0x0002467
0x0002468
..

‘A’

Example: how do we ‘load 0x00007468’?

Questions:
1.  How large is the RAM?
2.  How big is the page table?
3.  Besides page frame, what else
 we need to store in the page table?

4/14/13 ECE344 Lec 9 Ding Yuan 24

Page Table Entries (PTEs)

•  Page table entries control mapping
•  The Modify bit says whether or not the page has been written

•  It is set when a write to the page occurs

•  The Reference bit says whether the page has been accessed
•  It is set when a read or write to the page occurs

•  The Valid bit says whether or not the PTE can be used
•  It is checked each time the virtual address is used

•  The Protection bits say what operations are allowed on page
•  Read, write, execute

•  The page frame number (PFN) determines physical page
•  If you’re interested: watch the OS lecture scene from “The Social

Network” again, see if now you can understand
 http://www.youtube.com/watch?v=-3Rt2_9d7Jg

R VM Prot Page Frame Number
1 1 1 2 20 (determined by the size of physical memory)

2-level page table

•  Single level page table size is too large
•  4KB page, 32 bit virtual address, 1M entries per page

table!

4/14/13 ECE344 Lec 9 Ding Yuan 25

4/14/13 ECE344 Lec 9 Ding Yuan 26

4/14/13 ECE344 Lec 9 Ding Yuan 27

Two-Level Page Tables

•  Two-level page tables
•  Virtual addresses (VAs) have three parts:

•  Master page number, secondary page number, and offset

•  Master page table maps VAs to secondary page table
•  Secondary page table maps page number to physical page
•  Offset indicates where in physical page address is located

•  Example
•  4K pages, 4 bytes/PTE
•  How many bits in offset? 4K = 12 bits
•  Want master page table in one page: 4K/4 bytes = 1K entries
•  Hence, 1K secondary page tables. How many bits?
•  Master (1K) = 10, offset = 12, inner = 32 – 10 – 12 = 10 bits

4/14/13 ECE344 Lec 9 Ding Yuan 28

Two-Level Page Tables

Page table

Master page number Secondary

Virtual Address

Master Page Table

Page frame Offset

Physical Address

Physical Memory

Offset

Page frame

Secondary Page Table

What is the problem with 2-
level page table?

•  Hints:
•  Programs only know virtual addresses

•  Each virtual address must be translated
•  Each program memory access requires several actual

memory accesses

•  Will discuss solution in the next lecture

4/14/13 ECE344 Lec 9 Ding Yuan 29

4/14/13 ECE344 Lec 9 Ding Yuan 30

Paging Advantages

•  Easy to allocate memory
•  Memory comes from a free list of fixed size chunks

•  Allocating a page is just removing it from the list

•  External fragmentation not a problem

•  Easy to swap out chunks of a program
•  All chunks are the same size

•  Use valid bit to detect references to swapped pages

•  Pages are a convenient multiple of the disk block size

4/14/13 ECE344 Lec 9 Ding Yuan 31

Paging Limitations

•  Can still have internal fragmentation
•  Process may not use memory in multiples of a page

•  Memory reference overhead
•  2 references per address lookup (page table, then memory)

•  Even more for two-level page tables!
•  Solution – use a hardware cache of lookups (more later)

•  Memory required to hold page table can be significant
•  Need one PTE per page
•  32 bit address space w/ 4KB pages = 220 PTEs
•  4 bytes/PTE = 4MB/page table
•  25 processes = 100MB just for page tables!

•  Remember: each process has its own page table!
•  Solution – 2-level page tables

What if a process requires more memory
than physical memory?

•  Swapping
•  Move one/several/all pages of a process to disk

•  Free up physical memory

•  “Page” is the unit of swapping

•  The freed physical memory can be mapped to other pages

•  Processes that use large memory can be swapped out (and
later back in)

•  Real life analogy?
•  Putting things from your shelf to your parents’ house

4/14/13 ECE344 Lec 9 Ding Yuan 32

Swapping

4/14/13 ECE344 Lec 9 Ding Yuan 33

Swapping process 1’s data into
memory

4/14/13 ECE344 Lec 9 Ding Yuan 34

Swapping

4/14/13 ECE344 Lec 9 Ding Yuan 35

Swapping

4/14/13 ECE344 Lec 9 Ding Yuan 36

4/14/13 ECE344 Lec 9 Ding Yuan 37

A variation of paging:
Segmentation

•  Segmentation is a technique that partitions memory into
logically related data units
•  Module, procedure, stack, data, file, etc.
•  Virtual addresses become <segment #, offset>
•  Units of memory from user’s perspective

•  Natural extension of variable-sized partitions
•  Variable-sized partitions = 1 segment/process
•  Segmentation = many segments/process

•  Hardware support
•  Multiple base/limit pairs, one per segment (segment table)
•  Segments named by #, used to index into table

4/14/13 ECE344 Lec 9 Ding Yuan 38

Segment Lookups

limit base

+ <

Protection Fault

Segment # Offset

Virtual Address

Segment Table

Yes?

No?

Physical Memory

4/14/13 ECE344 Lec 9 Ding Yuan 39

Segment Table
•  Extensions

•  Can have one segment table per process
•  Segment #s are then process-relative

•  Can easily share memory
•  Put same translation into base/limit pair
•  Can share with different protections (same base/limit, diff prot)

•  Problems
•  Large segment tables

•  Keep in main memory, use hardware cache for speed

•  Large segments
•  Internal fragmentation, paging to/from disk is expensive

4/14/13 ECE344 Lec 9 Ding Yuan 40

Segmentation and Paging

•  Can combine segmentation and paging
•  The x86 supports segments and paging

•  Use segments to manage logically related units
•  Module, procedure, stack, file, data, etc.
•  Segments vary in size, but usually large (multiple pages)

•  Use pages to partition segments into fixed size chunks
•  Makes segments easier to manage within physical memory

•  Segments become “pageable” – rather than moving segments into and out
of memory, just move page portions of segment

•  Need to allocate page table entries only for those pieces of the
segments that have themselves been allocated

•  Tends to be complex…

4/14/13 ECE344 Lec 9 Ding Yuan 41

Summary

•  Virtual memory
•  Processes use virtual addresses

•  OS + hardware translates virtual address into physical addresses

•  Various techniques
•  Fixed partitions – easy to use, but internal fragmentation

•  Variable partitions – more efficient, but external fragmentation

•  Paging – use small, fixed size chunks, efficient for OS

•  Segmentation – manage in chunks from user’s perspective

•  Combine paging and segmentation to get benefits of both

