
Operating Systems 
ECE344 

Ding Yuan 



Review 

•  For a memory access instruction 
•  Does it use a virtual address or physical address? 
•  What can happen? 
•  Best case 
•  What if  you are unlucky? 

•  Demand paging 
•  What is it? 

•  Page fault 
•  What is it? 
•  Why does it happen? 
•  Who handles it? 
•  How costly is it? 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 2 



Demand Paging Algorithm 

•  Algorithm NEVER brings a page into main memory until it is 
needed 
1.  Page fault 
2.  Check if  a valid virtual memory addr. Kill proc. if  not. 
3.  If  valid address, check if  it’s cached in memory already (perhaps 

by other processes). If  so, skip to 7. 
•  How can this be possible? 

4.  Find a free page frame. If  no free page available, choose one to 
evict (which one? focus of  this lecture) 

•  If  the victim page is dirty, write it out to disk first 
5.  Suspend user process, map address into disk block and fetch disk 

block into page frame 
6.  When disk read finished, add vm mapping for page frame 
7.  If  necessary, restart process. 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 3 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 4 

Demand Paging (detail) 

•  Some 
•  Pages are evicted to disk when memory is full 
•  Pages loaded from disk when referenced again 
•  References to evicted pages cause a TLB miss 
•  PTE was invalid, causes fault 

•  OS allocates a page frame, reads page from disk 
•  When I/O completes, the OS fills in PTE, marks it valid, and restarts 

faulting process 

•  Dirty vs. clean pages 
•  Actually, only dirty pages (modified) need to be written to disk 
•  Clean pages do not – but you need to know where on disk to read 

them from again 



Issue: Eviction 

•  Hopefully, kick out a less-useful page 

•  Goal: kick out the page that’s least useful 

•  Problem: how do you determine utility? 
•  Kick out pages that aren’t likely to be used again 

•  Heuristic: temporal locality exists 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 5 



Page Replacement Strategies 

•  The Principle of  Optimality 
•  Replace the page that will not be used again the farthest time in the 

future 

•  Random replacement 
•  Choose a page randomly 

•  FIFO – First In First Out 
•  Replace the page that has been in memory the longest 

•  LRU – Least Recently Used 
•  Replace the page that has not been used for the longest time 

•  NRU – Not Recently Used 
•  An approximation to LRU 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 6 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 7 

•  Known as the optimal page replacement algorithm because it 
has the lowest fault rate for any page reference sequence 
•  Idea: Replace the page that will not be used for the longest time in 

the future 

•  Problem: Have to predict the future!  

•  Why is Belady’s useful then?  Use it as a yardstick 
•  Compare implementations of  page replacement algorithms with the 

optimal to gauge room for improvement 

•  If  optimal is not much better, then algorithm is pretty good 

•  If  optimal is much better, then algorithm could use some work 
•  Random replacement is often the lower bound 



Optimal Example 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 8 

12 references, 7 faults 

Miss rate: 7/12 
Hit rate: 5/12 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 9 

First-In First-Out (FIFO) 

•  FIFO is an obvious algorithm and simple to implement 
•  Maintain a list of  pages in order in which they were paged in 
•  On replacement, evict the one brought in longest time ago 

•  Why might this be good? 
•  Maybe the one brought in the longest ago is not being used 

•  Why might this be bad? 
•  Then again, maybe it’s not 
•  We don’t have any info to say one way or the other 

•  FIFO suffers from “Belady’s Anomaly” 
•  The fault rate might actually increase when the algorithm is given 

more memory (very bad) 



FIFO 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 10 

12 references, 9 faults 

Miss rate: 9/12 
Hit rate: 3/12 



Intuitive Paging Behavior with 
Increasing Number of  Page Frames 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 11 



Belady’s Anomaly (for FIFO) 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 12 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

12 references, 10 faults 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 13 

Least Recently Used (LRU) 

•  LRU uses reference information to make a more informed 
replacement decision 
•  Idea: We can’t predict the future, but we can make a guess 

based upon past experience 
•  On replacement, evict the page that has not been used for the 

longest time in the past (Belady’s: future) 
•  When does LRU do well?  When does LRU do poorly? 

•  Implementation 
•  To be perfect, need to time stamp every reference (or maintain 

a stack) – much too costly 
•  So we need to approximate it 



LRU 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 14 

Evict A (Least Recent) 

Evict B (Least Recent) 

12 references, 
10 faults 

No Belady’s anomaly 
•  why? 



Approximating LRU: NRU 

•  NRU: Evict a page that is NOT recently used; 

•  LRU: evict a page that is LEAST recently used 

•  NRU Implementation: simpler than LRU 
•  uses reference bit 
•  a counter is kept per bit 
•  At regular intervals, for every page do: 
•  if  ref  bit = 0, increment counter 
•  if  ref  bit = 1, zero the counter 
•  zero the reference bit 

•  The counter will contain the number of  intervals since the last 
reference to the page 

•  The page with the largest counter is the least recently used 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 15 



Review of  last lecture 

•  Page replacement policy 
•  What is the problem it tries to solve? 
•  Similar problem in cache replacement policy you learnt 

before 

•  Belady’s algorithm 

•  FIFO 
•  doesn’t make much sense 

•  LRU 
•  Approximation: NRU 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 16 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 17 

LRU Clock  
(Not Recently Used) 

•  Not Recently Used (NRU) – Used by Unix 
•  Replace page that is “old enough” 
•  Arrange all of  physical page frames in a big circle (clock) 
•  A clock hand is used to select a good LRU candidate 
•  Sweep through the pages in circular order like a clock 
•  If  the ref  bit is off, it hasn’t been used recently 
•  What is the minimum “age” if  ref  bit is off ? 

•  If  the ref  bit is on, turn it off  and go to next page 

•  Arm moves quickly when pages are needed 
•  Low overhead when plenty of  memory 
•  If  memory is large, “accuracy” of  information degrades 
•  What does it degrade to? 



Switching Gear 

•  So far, all we have talked about is memory 
management for a single process 

•  What about multiple processes? 
•  If  we just use “demand paging” for each process, why 

do we care? 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 18 



Thrashing and CPU 
utilization 

•  As the page fault rate goes up, processes get suspended on page queues for 
the disk 

•  The system may try to optimize performance by starting new jobs 
•  But is it always good? 

•  Starting new jobs will reduce the number of  page frames available to each 
process, increasing the page fault requests 

•  System throughput plunges 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 19 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 20 

Fixed vs. Variable Space 

•  In a multiprogramming system, we need a way to allocate 
memory to competing processes 

•  Problem: How to determine how much memory to give to 
each process? 
•  Fixed space algorithms 
•  Each process is given a limit of  pages it can use 
•  When it reaches the limit, it replaces from its own pages 
•  Local replacement 
•  Some processes may do well while others suffer 

•  Variable space algorithms 
•  Process’ set of  pages grows and shrinks dynamically 
•  Global replacement 
•  One process can ruin it for the rest 



Working Set 

•  The working set model 
assumes locality 

•  The principle of  
locality states that a 
program clusters its 
access to data and text 
temporarily 

•  As the number of  page 
frames increases above 
some threshold, the 
page fault rate will 
drop dramatically 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 21 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 22 

Working Set Model 

•  A working set of  a process is used to model the 
dynamic locality of  its memory usage 
•  Defined by Peter Denning in 60s 

•  Definition 
•  WS(t,w) = {pages P such that P was referenced in the 

time interval (t, t-w)} 
•  t – time, w – working set window (measured in page 

refs) 

•  A page is in the working set (WS) only if  it was 
referenced in the last w references 



Working Set Size vs. Page 
Faults 

3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 23 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 24 

Working Set Size 

•  The working set size is the number of  pages in the 
working set 
•  The number of  pages referenced in the interval (t, t-w) 

•  The working set size changes with program locality 
•  During periods of  poor locality, you reference more pages 
•  Within that period of  time, the working set size is larger 

•  Intuitively, want the working set to be the set of  pages a 
process needs in memory to prevent heavy faulting 
•  Each process has a parameter w that determines a working 

set with few faults 
•  Denning: Don’t run a process unless working set is in 

memory 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 25 

Working Set Problems 

•  Problems 
•  How do we determine w? 

•  How do we know when the working set changes? 

•  Too hard to answer 
•  So, working set is not used in practice as a page replacement 

algorithm 

•  However, it is still used as an abstraction 
•  The intuition is still valid 

•  When people ask, “How much memory does Firefox need?”, 
they are in effect asking for the size of  Firefox’s working set 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 26 

Page Fault Frequency (PFF) 

•  Page Fault Frequency (PFF) is a variable space algorithm 
that uses a more ad-hoc approach 
•  Monitor the fault rate for each process 

•  If  the fault rate is above a high threshold, give it more memory 
•  So that it faults less 

•  But not always (FIFO, Belady’s Anomaly) 

•  If  the fault rate is below a low threshold, take away memory 
•  Should fault more 

•  But not always 

•  Hard to use PFF to distinguish between changes in locality 
and changes in size of  working set 



3/28/13 ECE344 Lecture 11: Page Replacement Ding Yuan 27 

Summary 

•  Page replacement algorithms 
•  Belady’s – optimal replacement (minimum # of  faults) 
•  FIFO – replace page loaded furthest in past 
•  LRU – replace page referenced furthest in past 
•  Approximate using PTE reference bit 

•  LRU Clock – replace page that is “old enough” 
•  Working Set – keep the set of  pages in memory that has 

minimal fault rate (the “working set”) 
•  Page Fault Frequency – grow/shrink page set as a function of  

fault rate 

•  Multiprogramming 
•  Should a process replace its own page, or that of  another? 


