
Operating Systems
ECE344

Ding Yuan

Announcement & Reminder

•  Midterm exam
•  Will grade them this Friday

•  Will post the solution online before next lecture

•  Will briefly go over the common mistakes next Monday

3/4/13 ECE344 Operating Systems Ding Yuan 2

3/4/13 ECE344 Operating Systems Ding Yuan 3

Scheduling Overview

•  In discussing process management and synchronization, we
talked about context switching among processes/threads on
the ready queue

•  But we have glossed over the details of exactly which thread
is chosen from the ready queue

•  Making this decision is called scheduling

•  In this lecture, we’ll look at:
•  The goals of scheduling
•  Various well-known scheduling algorithms
•  Standard Unix scheduling algorithm

3/4/13 ECE344 Operating Systems Ding Yuan 4

Multiprogramming

•  In a multiprogramming system, we try to increase CPU
utilization and job throughput by overlapping I/O and CPU
activities
•  Doing this requires a combination of mechanisms and policy

•  We have covered the mechanisms
•  Context switching, how it happens
•  Process queues and process states

•  Now we’ll look at the policies
•  Which process (thread) to run, for how long, etc.

•  We’ll refer to schedulable entities as jobs (standard usage) – could
be processes, threads, people, etc.

Scheduling

•  Deciding which process/thread should occupy the
resource (CPU, disk, etc.)

3/4/13 ECE344 Operating Systems Ding Yuan 5

When to schedule?

•  A new job starts

•  The running job exits

•  The running job is blocked

•  I/O interrupt (some processes will be ready)

•  Timer interrupt
•  Every 10 milliseconds (Linux 2.4)
•  Every 1 millisecond (Linux 2.6)
•  Why is the change?
•  Read this if you are interested (not required for exam):
 http://kerneltrap.org/node/5411

3/4/13 ECE344 Operating Systems Ding Yuan 6

What are the scheduling
objectives?

•  Anyone?

3/4/13 ECE344 Operating Systems Ding Yuan 7

Scheduling Objectives

•  Fair (nobody cries)

•  Priority (lady first)

•  Efficiency (make best use of equipment)

•  Encourage good behavior (good boy/girl)

•  Support heavy load (degrade gracefully)

•  Adapt to different environment (interactive, real-time,
multi-media, etc.)

3/4/13 ECE344 Operating Systems Ding Yuan 8

Performance Criteria

•  Throughput: # of jobs that complete in unit time

•  Turnaround time (also called elapse time)
•  Amount of time to execute a particular process from the

time it entered

•  Waiting time
•  amount of time process has been waiting in ready queue

•  Meeting deadlines: avoid bad consequences

3/4/13 ECE344 Operating Systems Ding Yuan 9

Different Systems, Different Focuses

•  Batch Systems (e.g., billing, accounts receivable,
accounts payable, etc.)
•  Max throughput, max CPU utilization

•  Interactive Systems (e.g., our PC)
•  Min. response time

•  Real-time system (e.g., airplane)
•  Priority, meeting deadlines
•  Example: on airplane, Flight Control has strictly higher

priority than Environmental Control

3/4/13 ECE344 Operating Systems Ding Yuan 10

Program Behaviors
Considered in Scheduling

•  Is it I/O bound? Example?

•  Is it CPU bound? Example?

•  Batch or interactive environment

•  Priority

•  Frequency of page fault

•  Frequency of preemption

3/4/13 ECE344 Operating Systems Ding Yuan 11

Midterm Exam

•  Grades available in Portal

•  Mean: 69

•  Median: 72

•  Regrade: submit your request before Mar/11
•  send me an email

•  If you get < 50, I encourage you to send me an email
to discuss how I can help you to do better

3/4/13 ECE344 Operating Systems Ding Yuan 12

Review of last lecture

•  Scheduling
•  What is scheduling?

•  When to schedule?

•  Objectives?

3/4/13 ECE344 Operating Systems Ding Yuan 13

Preemptive vs. Non-
preemptive

•  Non-preemptive scheduling
•  The running process keeps the CPU until it voluntarily

gives up the CPU
•  Process exits
•  Switch to blocked state
•  1 and 4 only (no 3 unless
 calls yield)

•  Preemptive scheduling
•  The running process can be interrupted and must

release the CPU

3/4/13 ECE344 Operating Systems Ding Yuan 14

Scheduling Algorithms

•  First Come First Serve (FCFS)

•  Short Job First (SJF)

•  Priority Scheduling

•  Round Robin

•  Multi-Queue & Multi-Level Feedback

•  Earliest Deadline First Scheduling

3/4/13 ECE344 Operating Systems Ding Yuan 15

Batch
Systems

Interactive
Systems

Real-time
Systems

3/4/13 ECE344 Operating Systems Ding Yuan 16

First Come First Serve (FCFS)

•  Also called first-in first-out (FIFO)
•  Jobs are scheduled in order of arrival to ready queue

•  “Real-world” scheduling of people in lines (e.g., supermarket)

•  Typically non-preemptive (no context switching at market)

•  Jobs treated equally, no starvation

FCFS Example

3/4/13 ECE344 Operating Systems Ding Yuan 17

Problems with FCFS

•  Average waiting time can be
large if small jobs wait behind
long ones (high turnaround
time)
•  Non-preemptive

•  You have a basket, but you’re stuck
behind someone with a cart

•  Solution?
•  Express lane (12 items or less)

3/4/13 ECE344 Operating Systems Ding Yuan 18

3/4/13 ECE344 Operating Systems Ding Yuan 19

Shortest Job First (SJF)

•  Shortest Job First (SJF)
•  Choose the job with the smallest expected duration first
•  Person with smallest number of items to buy

•  Requirement: the job duration needs to be known in advance

•  Used in Batch Systems

•  Optimal for Average Waiting Time if all jobs are available
simultaneously (provable). Why?

•  Real life analogy?
•  Express lane in supermarket

•  Shortest important task first

 -- The 7 Habits of Highly Effective People

Non-preemptive SJF: Example

3/4/13 ECE344 Operating Systems Ding Yuan 20

0

Comparing to FCFS

3/4/13 ECE344 Operating Systems Ding Yuan 21

0

SJF is not always optimal

•  Is SJF optimal if not all
the jobs are available
simultaneously?

3/4/13 ECE344 Operating Systems Ding Yuan 22

0

Preemptive SJF

•  Also called Shortest Remaining Time First
•  Schedule the job with the shortest remaining time

required to complete

•  Requirement: again, the duration needs to be known
in advance

3/4/13 ECE344 Operating Systems Ding Yuan 23

Preemptive SJF: Same Example

3/4/13 ECE344 Operating Systems Ding Yuan 24

A Problem with SJF

•  Starvation
•  In some condition, a job is waiting forever

•  Example:
•  Process A with duration of 1 hour, arrives at time 0

•  But every 1 minute, a short process with duration of 2 minutes
arrive

•  Result of SJF: A never gets to run

3/4/13 ECE344 Operating Systems Ding Yuan 25

Scheduling Algorithms

•  First Come First Serve (FCFS)

•  Short Job First (SJF)

•  Priority Scheduling

•  Round Robin

•  Multi-Queue & Multi-Level Feedback

•  Earliest Deadline First Scheduling

3/4/13 ECE344 Operating Systems Ding Yuan 26

Batch
Systems

Interactive
Systems

Real-time
Systems

3/4/13 ECE344 Operating Systems Ding Yuan 27

Priority Scheduling
•  Each job is assigned a priority

•  FCFS within each priority level

•  Select highest priority job over lower ones

•  Rationale: higher priority jobs are more mission-critical
•  Example: DVD movie player vs. send email

•  Real life analogy?
•  Boarding at airports

•  Problems:
•  May not give the best AWT
•  indefinite blocking or starving a process

Set Priority

•  Two approaches
•  Static (for systems with well-known and regular

application behaviors)

•  Dynamic (otherwise)

•  Priority may be based on:
•  Importance

•  Percentage of CPU time used in last X hours
•  Should a job have higher priority if it used more CPU in

the past? Why?

3/4/13 ECE344 Operating Systems Ding Yuan 28

Priority Schedulring: Example

3/4/13 ECE344 Operating Systems Ding Yuan 29

0

(worse than SJF)

Priority in Unix

3/4/13 ECE344 Operating Systems Ding Yuan 30

Nobody wants to Be “nice” on Unix

3/4/13 ECE344 Operating Systems Ding Yuan 31

More on Priority Scheduling

•  For real-time (predictable) systems, priority is often
used to isolate a process from those with lower
priority. Priority inversion: high priority task is
indirectly preempted by medium/low priority tasks
•  A solution: priority inheritance

3/4/13 ECE344 Operating Systems Ding Yuan 32

low priority job

high priority job

medium priority job

Round-robin

•  One of the oldest, simplest, most commonly used
scheduling algorithm

•  Select process/thread from ready queue in a round-
robin fashion (take turns)

•  Real life analogy?

3/4/13 ECE344 Operating Systems Ding Yuan 33

Problem:
•  Do not consider priority
•  Context switch overhead

Round-Robin: example

3/4/13 ECE344 Operating Systems Ding Yuan 34

Time Quantum

•  Time slice too large
•  FIFO behavior
•  Poor response time

•  Time slice too small
•  Too many context switches (overheads)
•  Inefficient CPU utilization

•  Heuristics: 70-80% of jobs block within time-slice

•  Typical time-slice: 5 – 100 ms
•  Wait: isn’t timer-interrupt frequency 1ms on Linux 2.6?

3/4/13 ECE344 Operating Systems Ding Yuan 35

Combining Algorithms

•  Scheduling algorithms can be combined
•  Have multiple queues
•  Use a different algorithm for each queue
•  Move processes among queues

•  Example: Multiple-level feedback queues (MLFQ)
•  Multiple queues representing different job types
•  Interactive, CPU-bound, batch, etc.

•  Queues have priorities
•  Jobs can move among queues based upon execution history
•  Feedback: switch from interactive to CPU-bound behavior

3/4/13 ECE344 Operating Systems Ding Yuan 36

Example

3/4/13 ECE344 Operating Systems Ding Yuan 37

3/4/13 ECE344 Operating Systems Ding Yuan 38

Unix Scheduler

•  The Unix scheduler uses a MLFQ
•  ~170 priority levels

•  Priority scheduling across queues, RR within a queue
•  The process with the highest priority always runs
•  Processes with the same priority are scheduled RR

•  Processes dynamically change priority
•  Increases over time if process blocks before end of quantum
•  Decreases over time if process uses entire quantum

3/4/13 ECE344 Operating Systems Ding Yuan 39

Motivation of Unix Scheduler

•  The idea behind the Unix scheduler is to reward interactive
processes over CPU hogs

•  Interactive processes (shell, editor, etc.) typically run using
short CPU bursts
•  They do not finish quantum before waiting for more input

•  Want to minimize response time
•  Time from keystroke (putting process on ready queue) to

executing keystroke handler (process running)
•  Don’t want editor to wait until CPU hog finishes quantum

•  This policy delays execution of CPU-bound jobs
•  But that’s ok

Scheduling Algorithms

•  First Come First Serve (FCFS)

•  Short Job First (SJF)

•  Priority Scheduling

•  Round Robin

•  Multi-Queue & Multi-Level Feedback

•  Earliest Deadline First Scheduling

3/4/13 ECE344 Operating Systems Ding Yuan 40

Batch
Systems

Interactive
Systems

Real-time
Systems

Earlieas Deadline First (EDF)

•  Each job has an arrival time and a deadline to finish
•  Real life analogy?

•  Always pick the job with the earliest deadline to run

•  Optimal algorithm (provable): if the jobs can be scheduled (by
any algorithm) to all meet the deadline, EDF is one of such
schedules

3/4/13 ECE344 Operating Systems Ding Yuan 41

3/4/13 ECE344 Operating Systems Ding Yuan 42

Scheduling Summary

•  Scheduler (dispatcher) is the module that gets invoked when a
context switch needs to happen

•  Scheduling algorithm determines which process runs, where
processes are placed on queues

•  Many potential goals of scheduling algorithms
•  Utilization, throughput, wait time, response time, etc.

•  Various algorithms to meet these goals
•  FCFS/FIFO, SJF, Priority, RR

•  Can combine algorithms
•  Multiple-level feedback queues
•  Unix example

