
2/11/13

1

Operating Systems
ECE344

Ding Yuan

Announcement & Reminder

•  Lab 0 mark posted on Piazza
•  Great job!

•  One problem: compilation error
•  I fixed some for you this time, but won’t do it next time

•  Make sure you run “os161-tester –m”: what you get will be your
final mark!

•  Will do a brief midterm review in next Monday’s
lecture

2/10/13 Ding Yuan, ECE344 Operating System 2

2/11/13

2

2/10/13 Ding Yuan, ECE344 Operating System 3

Higher-Level Synchronization

•  We looked at using locks to provide mutual exclusion

•  Locks work, but they have some drawbacks when critical
regions are long
•  Spinlocks – inefficient
•  Disabling interrupts – can miss or delay important events

•  Instead, we want synchronization mechanisms that
•  Block waiters
•  Leave interrupts enabled inside the critical section

•  Look at two common high-level mechanisms
•  Semaphores: binary (mutex) and counting
•  Monitors: mutexes and condition variables

•  Use them to solve common synchronization problems

2/10/13 Ding Yuan, ECE344 Operating System 4

Semaphores
•  Semaphores are an abstract data type that provide mutual exclusion to

critical region

•  Semaphores can also be used as atomic counters
•  More later

•  Semaphores are integers that support two operations:
•  wait(semaphore): decrement, block until semaphore is open

•  Also P(), after the Dutch word for test, or down()
•  signal(semaphore): increment, allow another thread to enter

•  Also V() after the Dutch word for increment, or up()
•  That's it! No other operations – not even just reading its value – exist

•  P and V are probably the most unintuitive names you encounter in this
course
•  and you have Edsger W. Dijkstra to thank to

•  Semaphore safety property: the semaphore value is always greater than or
equal to 0

2/11/13

3

2/10/13 Ding Yuan, ECE344 Operating System 5

Blocking in Semaphores

•  Associated with each semaphore is a queue of waiting
processes/threads

•  When P() is called by a thread:
•  If semaphore is open (> 0), thread continues
•  If semaphore is closed, thread blocks on queue

•  Then V() opens the semaphore:
•  If a thread is waiting on the queue, the thread is unblocked

•  What if multiple threads are waiting on the queue?
•  If no threads are waiting on the queue, the signal is

remembered for the next thread
•  In other words, V() has “history” (c.f., condition vars later)
•  This “history” is a counter

2/10/13 Ding Yuan, ECE344 Operating System 6

Semaphore Types

•  Semaphores come in two types

•  Mutex semaphore (or binary semaphore)
•  Represents single access to a resource
•  Guarantees mutual exclusion to a critical section

•  Counting semaphore (or general semaphore)
•  Represents a resource with many units available, or a resource

that allows certain kinds of unsynchronized concurrent access
(e.g., reading)

•  Multiple threads can pass the semaphore (P)
•  Number of threads determined by the semaphore “count”

•  mutex has count = 1, counting has count = N

2/11/13

4

2/10/13 Ding Yuan, ECE344 Operating System 7

Using Semaphores
•  Use is similar to our locks, but semantics are different

struct Semaphore {
 int value;
 Queue q;
} S;
withdraw (account, amount) {
 P(S);
 balance = get_balance(account);
 balance = balance – amount;
 put_balance(account, balance);
 V(S);
 return balance;
}

P(S);
balance = get_balance(account);
balance = balance – amount;

P(S);

put_balance(account, balance);
V(S);

P(S);

…
V(S);

…
V(S);

Threads
block

It is undefined which thread
runs after a signal

critical
section

•  thread_sleep() assumes interrupts are disabled
•  Note that interrupts are disabled only to enter/leave critical section
•  How can it sleep with interrupts disabled?

•  What happens if “while (sem->count ==0)” is an “if (sem-
>count != 0)”?

2/10/13 Ding Yuan, ECE344 Operating System 8

Semaphores in OS161
P(sem) {
 Disable interrupts;
 while (sem->count == 0) {
 thread_sleep(sem); /* current thread
 will sleep on this sem */
 }
 sem->count--;
 Enable interrupts;
}

V(sem) {
 Disable interrupts;
 sem->count++;
 thread_wakeup (sem); /* this will wake
 up all the threads waiting on this
 sem. Why wake up all threads? */
 Enable interrupts;
}

2/11/13

5

2/10/13 Ding Yuan, ECE344 Operating System 9

Using Semaphores

•  We’ve looked at a simple example for using
synchronization
•  Mutual exclusion while accessing a bank account

•  Now we’re going to use semaphores to look at more
interesting examples
•  Readers/Writers
•  Bounded Buffers

2/10/13 Ding Yuan, ECE344 Operating System 10

Readers/Writers Problem

•  Readers/Writers Problem:
•  An object is shared among several threads
•  Some threads only read the object, others only write it
•  We can allow multiple readers but only one writer

•  Let #r be the number of readers, #w be the number of writers
•  Safety: (#r ≥ 0) ∧ (0 ≤ #w ≤ 1) ∧ ((#r > 0) ⇒ (#w = 0))

•  How can we use semaphores to control access to the
object to implement this protocol?

2/11/13

6

First attempt: one mutex
semaphore

2/10/13 Ding Yuan, ECE344 Operating System 11

// exclusive writer or reader
Semaphore w_or_r = 1;

reader {
 P(w_or_r); // lock out writers
 read;
 V(w_or_r); // up for grabs
}

writer {
 P(w_or_r); // lock out readers
 Write;
 V(w_or_r); // up for grabs
}

• Does it work?
• Why?
• Which condition is satisfied and
which is not?
(#r ≥ 0)
(0 ≤ #w ≤ 1)
((#r > 0) ⇒ (#w = 0))

Second attempt: add a counter

2/10/13 Ding Yuan, ECE344 Operating System 12

int readcount = 0; // record #readers
Semaphore w_or_r = 1; // mutex semaphore

reader {
 readcount++;
 if (readcount == 1){
 P(w_or_r); // lock out writers
 }
 read;
 readcount--;
 if (readcount == 0){
 V(w_or_r); // up for grabs
 }
}

writer {
 P(w_or_r); // lock out readers
 Write;
 V(w_or_r); // up for grabs
}

•  Does it work?
•  readcount is a shared variable,
 who protects it?

Thread 1: Thread 2:
reader {
 readcount++;
 reader {
 readcount++;
 if (readcount == 1){
 P(w_or_r);
 }
 if (readcount == 1){
 P(w_or_r);
 }

context switch

A context switch can happen, a writer can come
in since no reader locked the semaphore!

2/11/13

7

Readers/Writers Real Solution

•  Use three variables
•  int readcount – number of threads reading object
•  Semaphore mutex – control access to readcount
•  Semaphore w_or_r – exclusive writing or reading

2/10/13 Ding Yuan, ECE344 Operating System 13

2/10/13 Ding Yuan, ECE344 Operating System 14

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
 P(w_or_r); // lock out readers
 Write;
 V(w_or_r); // up for grabs
}

Readers/Writers

reader {
 P(mutex); // lock readcount
 readcount += 1; // one more reader
 if (readcount == 1)
 P(w_or_r); // synch w/ writers
 V(mutex); // unlock readcount
 Read;
 P(mutex); // lock readcount
 readcount -= 1; // one less reader
 if (readcount == 0)
 V(w_or_r); // up for grabs
 V(mutex); // unlock readcount}
}

2/11/13

8

•  w_or_r provides mutex between readers and writers,
and also multiple writers

•  Why do readers use mutex?

•  What if the V(mutex) is above “if (readcount ==
1)”?

•  Why do we need “if (readcount == 1)”?

•  Why do we need “if (readcount == 0)”?

2/10/13 Ding Yuan, ECE344 Operating System 15

Readers/Writers Notes

2/10/13 Ding Yuan, ECE344 Operating System 16

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;

writer {
 P(w_or_r); // lock out readers
 Write;
 V(w_or_r); // up for grabs
}

But it still has a problem…

reader {
 P(mutex); // lock readcount
 readcount += 1; // one more reader
 if (readcount == 1)
 P(w_or_r); // synch w/ writers
 V(mutex); // unlock readcount
 Read;
 P(mutex); // lock readcount
 readcount -= 1; // one less reader
 if (readcount == 0)
 V(w_or_r); // up for grabs
 V(mutex); // unlock readcount}
}

2/11/13

9

Problem: Starvation

•  What if a writer is waiting, but readers keep coming,
the writer is starved
•  If you are interested,

 think how to solve this

 problem

2/10/13 Ding Yuan, ECE344 Operating System 17

Review of last lecture

•  Semaphore

•  P(semaphore):
•  while (semaphore == 0) sleep(semaphore);
•  semaphore--;

•  V(semaphore):
•  semaphore++;
•  wakeup (semaphore);

•  Binary semaphore (mutex) and counting semaphore

•  Using mutex to solve reader/writer problem

2/10/13 Ding Yuan, ECE344 Operating System 18

2/11/13

10

2/10/13 Ding Yuan, ECE344 Operating System 19

Bounded Buffer

•  Problem: There is a set of resource buffers shared by producer
and consumer threads
•  Producer inserts resources into the buffer set

•  Output, disk blocks, memory pages, processes, etc.
•  Consumer removes resources from the buffer set

•  Whatever is generated by the producer

•  Producer and consumer execute at different rates
•  No serialization of one behind the other
•  Tasks are independent (easier to think about)
•  The buffer set allows each to run without explicit handoff

•  Safety:
•  Sequence of consumed values is prefix of sequence of produced

values
•  If nc is number consumed, np number produced, and N the size of the

buffer, then 0 ≤ np - nc ≤ N

2/10/13 Ding Yuan, ECE344 Operating System 20

Bounded Buffer (2)

•  Use three semaphores:
•  empty – count of empty buffers

•  Counting semaphore
•  empty = N – (np – nc)

•  full – count of full buffers
•  Counting semaphore
•  np - nc = full

•  mutex – mutual exclusion to shared set of buffers
•  Binary semaphore

2/11/13

11

2/10/13 Ding Yuan, ECE344 Operating System 21

producer {
 while (1) {
 Produce new resource;
 P(empty); // wait for empty buffer
 P(mutex); // lock buffer list
 Add resource to an empty buffer;
 V(mutex); // unlock buffer list
 V(full); // note a full buffer
 }
}

Bounded Buffer (3)

consumer {
 while (1) {
 P(full); // wait for a full buffer
 P(mutex); // lock buffer list
 Remove resource from a full buffer;
 V(mutex); // unlock buffer list
 V(empty); // note an empty buffer
 Consume resource;
 }
}

Semaphore mutex = 1; // mutual exclusion to shared set of buffers
Semaphore empty = N; // count of empty buffers (all empty to start)
Semaphore full = 0; // count of full buffers (none full to start)

Bounded Buffer (4)

2/10/13 Ding Yuan, ECE344 Operating System 22

Consumer decrements FULL and
blocks when buffer has no item since
the semaphore FULL is at 0

2/11/13

12

2/10/13 Ding Yuan, ECE344 Operating System 23

producer {
 while (1) {
 Produce new resource;
 P(empty); // wait for empty buffer
 P(mutex); // lock buffer list
 Add resource to an empty buffer;
 V(mutex); // unlock buffer list
 V(full); // note a full buffer
 }
}

Bounded Buffer (5)

consumer {
 while (1) {
 P(full); // wait for a full buffer
 P(mutex); // lock buffer list
 Remove resource from a full buffer;
 V(mutex); // unlock buffer list
 V(empty); // note an empty buffer
 Consume resource;
 }
}

Semaphore mutex = 1; // mutual exclusion to shared set of buffers
Semaphore empty = N; // count of empty buffers (all empty to start)
Semaphore full = 0; // count of full buffers (none full to start)

Why we need both “empty” and “full” semaphores?

More consumers “remove resource” than actually produced!

2/10/13 Ding Yuan, ECE344 Operating System 24

Bounded Buffer (6)
•  Why need the mutex at all?

•  Reader-Writer and Bounded Buffer are classic examples of
synchronization problems

2/11/13

13

2/10/13 Ding Yuan, ECE344 Operating System 25

Semaphore Questions

•  Are there any problems that can be solved with
counting semaphores that cannot be solved with
mutex semaphores?

•  If a system provides only mutex semaphores, can
you use it to implement a counting semaphores?

•  When to use counting semaphore?
•  Problem needs a counter
•  The maximum value is known (bouned)

Possible Deadlocks with Semaphores

2/10/13 Ding Yuan, ECE344 Operating System 26

Example:

Thread 1:

P(S);
P(Q);
.. ..
V(Q);
V(S);

Thread 2:

P(Q);
P(S);
.. ..
V(S);
V(Q);

share two mutex semaphores S and Q
S:= 1; Q:=1;

2/11/13

14

2/10/13 Ding Yuan, ECE344 Operating System 27

Semaphore Summary

•  Semaphores can be used to solve any of the
traditional synchronization problems

•  However, they have some drawbacks
•  They are essentially shared global variables

•  Can potentially be accessed anywhere in program
•  No connection between the semaphore and the data

being controlled by the semaphore
•  No control or guarantee of proper usage

•  Sometimes hard to use and prone to bugs
•  Another approach: Use programming language support

2/10/13 Ding Yuan, ECE344 Operating System 28

Monitors
•  A monitor is a programming language construct that

controls access to shared data
•  Synchronization code added by compiler, enforced at runtime
•  Why is this an advantage?

•  A monitor is a module that encapsulates
•  Shared data structures
•  Procedures that operate on the shared data structures
•  Synchronization between concurrent threads that invoke the

procedures

•  A monitor protects its data from unstructured access

•  It guarantees that threads accessing its data through its
procedures interact only in legitimate ways

2/11/13

15

2/10/13 Ding Yuan, ECE344 Operating System 29

Monitor Semantics

•  A monitor guarantees mutual exclusion
•  Only one thread can execute any monitor procedure

at any time (the thread is “in the monitor”)
•  If a second thread invokes a monitor procedure when

a first thread is already executing one, it blocks
•  So the monitor has to have a wait queue…

•  If a thread within a monitor blocks, another one can
enter
•  Condition Variable

•  What are the implications in terms of parallelism in
monitor?

2/10/13 Ding Yuan, ECE344 Operating System 30

Account Example

•  Hey, that was easy
•  But what if a thread wants to wait inside the monitor?

Monitor account {
 double balance;

 double withdraw(amount) {
 balance = balance – amount;
 return balance;
 }
}

withdraw(amount)
 balance = balance – amount;

withdraw(amount)

 return balance (and exit)

withdraw(amount)

 balance = balance – amount
 return balance;

 balance = balance – amount;
 return balance;

Threads
block

waiting
to get
into

monitor

When first thread exits, another can
enter. Which one is undefined.

2/11/13

16

2/10/13 Ding Yuan, ECE344 Operating System 31

Condition Variables

•  A condition variable is associated with a condition needed
for a thread to make progress once it is in the monitor.

Monitor M {
 ... monitored variables
 Condition c;

 void enter_mon (...) {
 if (extra property not true) wait(c); waits outside of the monitor's mutex
 do what you have to do
 if (extra property true) signal(c); brings in one thread waiting on condition
 }

2/10/13 Ding Yuan, ECE344 Operating System 32

Condition Variables
•  Condition variables support three operations:

•  Wait – release monitor lock, wait for C/V to be signaled
•  So condition variables have wait queues, too

•  Signal – wakeup one waiting thread
•  Broadcast – wakeup all waiting threads

•  Condition variables are not boolean objects
•  “if (condition_variable) then” … does not make sense
•  “if (num_resources == 0) then wait(resources_available)”

does
•  An example will make this more clear

2/11/13

17

2/10/13 Ding Yuan, ECE344 Operating System 33

Monitor Bounded Buffer
Monitor bounded_buffer {
 Resource buffer[N];
 // Variables for indexing buffer
 // monitor invariant involves these vars
 Condition not_full; // space in buffer
 Condition not_empty; // value in buffer

 void put_resource (Resource R) {
 if (buffer array is full)
 wait(not_full);
 Add R to buffer array;
 signal(not_empty);
 }

 Resource get_resource() {
 if (buffer array is empty)
 wait(not_empty);
 Get resource R from buffer array;
 signal(not_full);
 return R;
 }
} // end monitor

•  What happens if no threads are waiting when signal is called?
•  Signal is lost

2/10/13 Ding Yuan, ECE344 Operating System 34

Monitor Queues
Monitor bounded_buffer {

 Condition not_full;
 …other variables…
 Condition not_empty;

 void put_resource () {
 …wait(not_full)…
 …signal(not_empty)…
 }
 Resource get_resource () {
 …
 }
}

Waiting to enter

Waiting on
condition variables

Executing inside the
monitor

2/11/13

18

2/10/13 Ding Yuan, ECE344 Operating System 35

Condition Vars != Semaphores

•  Condition variables != semaphores
•  However, they each can be used to implement the other

•  Access to the monitor is controlled by a lock
•  wait() blocks the calling thread, and gives up the lock

•  To call wait, the thread has to be in the monitor (hence has
lock)

•  Semaphore::P just blocks the thread on the queue
•  signal() causes a waiting thread to wake up

•  If there is no waiting thread, the signal is lost
•  Semaphore::V increases the semaphore count, allowing

future entry even if no thread is waiting
•  Condition variables have no history

2/10/13 Ding Yuan, ECE344 Operating System 36

Locks and Condition Vars

•  In OS161, we don’t have monitors

•  But we want to be able to use condition variables

•  So we isolate condition variables and make them
independent (not associated with a monitor)

•  Instead, we have to associate them with a lock (mutex)

•  Now, to use a condition variable…
•  Threads must first acquire the lock (mutex)
•  CV::Wait releases the lock before blocking, acquires it after

waking up

2/11/13

19

2/10/13 Ding Yuan, ECE344 Operating System 37

Signal Semantics

•  There are two flavors of monitors that differ in the
scheduling semantics of signal()
•  Hoare monitors (original)

•  signal() immediately switches from the caller to a waiting
thread

•  The condition that the waiter was anticipating is guaranteed
to hold when waiter executes

•  Mesa monitors (Mesa, Java)
•  signal() places a waiter on the ready queue, but signaler

continues inside monitor
•  Condition is not necessarily true when waiter runs again

•  Returning from wait() is only a hint that something changed
•  Must recheck conditional case

2/10/13 Ding Yuan, ECE344 Operating System 38

Hoare vs. Mesa Monitors

•  Hoare
if (empty)

wait(condition);

•  Mesa
while (empty)

wait(condition);

•  Tradeoffs
•  Mesa monitors easier to use, more efficient

•  Fewer context switches, easy to support broadcast
•  Hoare monitors leave less to chance

•  Easier to reason about the program

2/11/13

20

2/10/13 Ding Yuan, ECE344 Operating System 39

Monitor Readers and Writers

Using Mesa monitor semantics.

•  Will have four methods: StartRead, StartWrite, EndRead
and EndWrite

•  Monitored data: nr (number of readers) and nw (number
of writers) with the monitor invariant

(nr ≥ 0) ∧ (0 ≤ nw ≤ 1) ∧ ((nr > 0) ⇒ (nw = 0))

•  Two conditions:
•  canRead: nw = 0
•  canWrite: (nr = 0) ∧ (nw = 0)

2/10/13 Ding Yuan, ECE344 Operating System 40

Monitor Readers and Writers

Monitor RW {
 int nr = 0, nw = 0;
 Condition canRead, canWrite;

 void StartRead () {
 while (nw != 0) do wait(canRead);
 nr++;
 }

 void EndRead () {
 nr--;

}

 void StartWrite {
 while (nr != 0 || nw != 0) do wait(canWrite);
 nw++;
 }

 void EndWrite () {
 nw--;

 }
} // end monitor

•  Write with just wait() (will be safe, maybe not “live” - why?)
•  Starvation

 if (nr == 0) signal(canWrite);

 broadcast(canRead);
 signal(canWrite);

2/11/13

21

2/10/13 Ding Yuan, ECE344 Operating System 41

Monitor Readers and Writers

•  Is there any priority between readers and writers?

•  What if you wanted to ensure that a waiting writer
would have priority over new readers?

2/10/13 Ding Yuan, ECE344 Operating System 42

Summary

•  Semaphores
•  P()/V() implement blocking mutual exclusion
•  Also used as atomic counters (counting semaphores)
•  Can be inconvenient to use

•  Monitors
•  Synchronizes execution within procedures that manipulate

encapsulated data shared among procedures
•  Only one thread can execute within a monitor at a time

•  Relies upon high-level language support

•  Condition variables
•  Used by threads as a synchronization point to wait for events
•  Inside monitors

2/11/13

22

2/10/13 Ding Yuan, ECE344 Operating System 43

Happy Lunar New Year!

