
2/4/13

1

Operating Systems
ECE344

Ding Yuan

Jan 31, 2013 Ding Yuan, ECE344 Operating System 2

Synchronization: why?

•  A running computer has multiple processes and each
process may have multiple threads

•  Need proper sequencing

•  Analogy: two people talking at the same time

Threads

Process

User
space

Kernel space

2/4/13

2

A simple game
•  Two volunteers to play two threads
•  Producer: produce 1 cookie bar per iteration
•  Step1: increment the counter on the board

•  Step2: put one cookie on the table
•  Consumer:
•  Step1: read the counter LOUD

•  Step2a: if the counter is zero, go back to step1
•  Step2b: if the counter is nonzero, take a cookie from the table

•  Step 3: decrement counter on the board
•  Rule: only one should “operate” at any time

•  You are the OS
•  You decide who should operate, who should freeze
•  Can you get them into “trouble” before the cookies run out?

Jan 31, 2013 Ding Yuan, ECE344 Operating System 3

A simple game (cont.)

•  Producer: produce 1 cookie per iteration
•  Step1: increment the counter on the board

•  Step2: put one cookie bar on the table

•  Consumer:
•  Step1: read the counter LOUD

•  Step2a: if the counter is zero, go back to step1

•  Step2b: if the counter is nonzero, take a cookie from the table

•  Step 3: decrement counter on the board

Jan 31, 2013 Ding Yuan, ECE344 Operating System 4

Switch to consumer,
what will happen?

Switch to producer,
what will happen?

2/4/13

3

Data races

•  Why are we having this problem?

•  Reason:
•  concurrency

•  data sharing

•  What are shared in this game?
•  Share the counter

•  Share the cookie

Jan 31, 2013 Ding Yuan, ECE344 Operating System 5

Shared Resources

•  The problem is that two concurrent threads (or
processes) accessed a shared resource without any
synchronization
•  Known as a race condition (memorize this buzzword)

•  We need mechanisms to control access to these shared
resources in the face of concurrency
•  So we can reason about how the program will operate

•  Shared data structure
•  Buffers, queues, lists, hash tables, etc.

Jan 31, 2013 Ding Yuan, ECE344 Operating System 6

2/4/13

4

Can you give me some real
world examples

•  What are shared in real world and require some
synchronization?

Jan 31, 2013 Ding Yuan, ECE344 Operating System 7

When are
resources shared?

Jan 31, 2013 Ding Yuan, ECE344 Operating System 8

•  Local variables are not shared (private)
•  Stored on the stack
•  Each thread has its own stack
•  Never pass/share/store a pointer to a local variable on the

stack for thread T1 to another thread T2

•  Global variables and static objects are shared
•  Stored in the static data segment, accessible by any thread

•  Dynamic objects and other heap objects are shared
•  Allocated from heap with malloc/free or new/delete

•  Accesses to shared data need to be synchronized

2/4/13

5

Why synchronize?

•  Interleaving by an access from another thread to the same
shared data between two subsequent accesses can result in
errors

Jan 31, 2013 Ding Yuan, ECE344 Operating System 9

Analogy

•  Synchronization is like traffic signals
•  Each thread is like a car----it can make progress

independently with its own speed

•  Road or intersection is the shared resource

•  http://www.youtube.com/watch?v=nocS1Z4gcDU

Jan 31, 2013 Ding Yuan, ECE344 Operating System 10

2/4/13

6

Jan 31, 2013 Ding Yuan, ECE344 Operating System 11

Classic Example

•  Suppose we have to implement a function to handle
withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

•  Now suppose that you and your significant other share a
bank account with a balance of $1000.

•  Then you each go to separate ATM machines and
simultaneously withdraw $100 from the account.

Jan 31, 2013 Ding Yuan, ECE344 Operating System 12

Example Continued

•  We’ll represent the situation by creating a separate thread for
each person to do the withdrawals

•  These threads run on the same bank machine:

•  What’s the problem with this implementation?
•  Think about potential schedules of these two threads

withdraw (account, amount) {

 balance = get_balance(account);

 balance = balance – amount;
 put_balance(account, balance);

 return balance;

}

withdraw (account, amount) {

 balance = get_balance(account);

 balance = balance – amount;
 put_balance(account, balance);

 return balance;

}

2/4/13

7

Jan 31, 2013 Ding Yuan, ECE344 Operating System 13

Interleaved Schedules
•  The problem is that the execution of the two threads can be

interleaved:

•  What is the balance of the account now?

•  Is the bank happy with our implementation?
•  What if this is not withdraw, but deposit?

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);

put_balance(account, balance);

Execution
sequence

seen by CPU Context switch

Jan 31, 2013 Ding Yuan, ECE344 Operating System 14

How Interleaved Can It Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

How contorted can the interleavings be?

•  We'll assume that the only atomic operations are reads
and writes of words
•  Some architectures don't even give you that!

•  We'll assume that a context
switch can occur at any
time

•  We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

2/4/13

8

Jan 31, 2013 Ding Yuan, ECE344 Operating System 15

Mutual Exclusion

•  We want to use mutual exclusion to synchronize access
to shared resources
•  This allows us to have larger atomic blocks

•  Code that uses mutual exclusion to synchronize its
execution is called a critical region (or critical section)
•  Only one thread at a time can execute in the critical region
•  All other threads are forced to wait on entry
•  When a thread leaves a critical region, another can enter
•  Example: sharing your bathroom with housemates

Critical Region (Critical Section)

Jan 31, 2013 Ding Yuan, ECE344 Operating System 16

•  What requirements would you place on a critical section?

2/4/13

9

Jan 31, 2013 Ding Yuan, ECE344 Operating System 17

Critical Region Requirements
(apply to both thread and process)

1)  Mutual exclusion (mutex)
•  No other thread must execute within the critical region while a thread is

in it

2) Progress
•  A thread in the critical region will eventually leave the critical region

•  If some thread T is not in the critical region, then T cannot prevent some other
thread S from entering the critical region

3) Bounded waiting (no starvation)
•  If some thread T is waiting on the critical region, then T should only have wait

for a bounded number of other threads to enter and leave the critical region

4) No assumption
•  No assumption may be made about the speed or number of CPUs

Critical Region Illustrated

Jan 31, 2013 Ding Yuan, ECE344 Operating System 18

2/4/13

10

Jan 31, 2013 Ding Yuan, ECE344 Operating System 19

Mechanisms For Building
Critical Sections

•  Atomic read/write
•  Can it be done?

•  Locks
•  Primitive, minimal semantics, used to build others

•  Semaphores
•  Basic, easy to get the hang of, but hard to program with

•  Monitors
•  High-level, requires language support, operations implicit

•  Messages
•  Simple model of communication and synchronization based on atomic

transfer of data across a channel
•  Direct application to distributed systems
•  Messages for synchronization are straightforward (once we see how the others

work)

Jan 31, 2013 Ding Yuan, ECE344 Operating System 20

Mutual Exclusion with Atomic
Read/Writes: First Try

while (true) {
 while (turn != 1) ;
 critical region
 turn = 2;
 outside of critical region
}

while (true) {
 while (turn != 2) ;
 critical region
 turn = 1;
 outside of critical region
}

int turn = 1;

This is called alternation
It satisfies mutex:

•  If blue is in the critical region, then turn == 1 and if yellow is in the critical
region then turn == 2 (why?)
•  (turn == 1) ≡ (turn != 2)

It violates progress: the thread could go into an infinite loop outside of the critical
section, which will prevent the yellow one from entering.

Easy to use? (what if more than 2 threads? what if we don’t know how many threads?)

2/4/13

11

Jan 31, 2013 Ding Yuan, ECE344 Operating System 21

Locks
•  A lock is an object in memory providing two operations
•  acquire(): before entering the critical region

•  release(): after leaving a critical region

•  Threads pair calls to acquire() and release()
•  Between acquire()/release(), the thread holds the lock

•  acquire() does not return until any previous holder releases

•  What can happen if the calls are not paired?

•  Locks can spin (a spinlock) or block (a mutex)

Jan 31, 2013 Ding Yuan, ECE344 Operating System 22

Using Locks

•  What happens when blue tries to acquire the lock?
•  Why is the “return” outside the critical region? Is this OK?
•  What happens when a third thread calls acquire?

withdraw (account, amount) {

 acquire(lock);

 balance = get_balance(account);
 balance = balance – amount;

 put_balance(account, balance);

 release(lock);

 return balance;

}

acquire(lock);

balance = get_balance(account);

balance = balance – amount;

balance = get_balance(account);

balance = balance – amount;

put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);

release(lock);

Critical
Region

2/4/13

12

Jan 31, 2013 Ding Yuan, ECE344 Operating System 23

•  How do we implement locks? Here is one attempt:

•  This is called a spinlock because a thread spins waiting for the lock
to be released

•  Does this work?

Implementing Locks (1)

struct lock {

 int held = 0;

}
void acquire (lock) {

 while (lock->held);

 lock->held = 1;

}

void release (lock) {

 lock->held = 0;

}

busy-wait (spin-wait)
for lock to be released

Jan 31, 2013 Ding Yuan, ECE344 Operating System 24

Implementing Locks (2)

•  No. Two independent threads may both notice that
a lock has been released and thereby acquire it.

struct lock {

 int held = 0;

}
void acquire (lock) {

 while (lock->held);

 lock->held = 1;

}

void release (lock) {

 lock->held = 0;

}

A context switch can occur
here, causing a race condition

2/4/13

13

Jan 31, 2013 Ding Yuan, ECE344 Operating System 25

Implementing Locks (3)

•  The problem is that the implementation of locks has critical
sections, too
•  How do we stop the recursion?

•  The implementation of acquire/release must be atomic
•  An atomic operation is one which executes as though it could not

be interrupted
•  Code that executes “all or nothing”

•  How do we make them atomic?

•  Need help from hardware
•  Atomic instructions (e.g., test-and-set)
•  Disable/enable interrupts (prevents context switches)

Jan 31, 2013 Ding Yuan, ECE344 Operating System 26

Atomic Instructions:
Test-And-Set

•  The semantics of test-and-set are:
•  Record the old value
•  Set the value to TRUE
•  Return the old value

•  Hardware executes it atomically!

•  When executing test-and-set on “flag”
•  What is value of flag afterwards if it was initially False? True?
•  What is the return result if flag was initially False? True?

bool test_and_set (bool *flag) {

 bool old = *flag;

 *flag = True;
 return old;

}

2/4/13

14

Jan 31, 2013 Ding Yuan, ECE344 Operating System 27

Using Test-And-Set

•  Here is our lock implementation with test-and-set:

•  When will the while return? What is the value of held?

•  Does it work? What about multiprocessors?

struct lock {

 int held = 0;

}
void acquire (lock) {

 while (test-and-set(&lock->held));

}

void release (lock) {

 lock->held = 0;

}

Jan 31, 2013 Ding Yuan, ECE344 Operating System 28

Problems with Spinlocks

•  The problem with spinlocks is that they are wasteful
•  If a thread is spinning on a lock, then the thread holding the

lock cannot make progress

•  Solution 1:
•  If cannot get the lock, call thread_yield to give up the CPU

•  Solution 2: sleep and wakeup
•  When blocked, go to sleep

•  Wakeup when it is OK to retry entering the critical region

2/4/13

15

Jan 31, 2013 Ding Yuan, ECE344 Operating System 29

Disabling Interrupts
•  Another implementation of acquire/release is to disable

interrupts:

•  Note that there is no state associated with the lock

•  Can two threads disable interrupts simultaneously?

struct lock {

}

void acquire (lock) {
 disable interrupts;
}

void release (lock) {

 enable interrupts;
}

Jan 31, 2013 Ding Yuan, ECE344 Operating System 30

On Disabling Interrupts

•  Disabling interrupts blocks notification of external events
that could trigger a context switch (e.g., timer)
•  This is what OS161 uses as its primitive

•  In a “real” system, this is only available to the kernel
•  Why?

•  Disabling interrupts is insufficient on a multiprocessor
•  Back to atomic instructions

2/4/13

16

Critical regions without
hardware support?

•  So far, we have seen how to implement critical regions
(lock) with hardware support
•  Atomic instruction

•  Disabling interrupt

•  Can we implement lock without HW support?
•  Software only solution?

•  Yes, but…
•  Complicated (easy to make mistake)

•  Poor performance

•  Production OSes use hardware support
Jan 31, 2013 Ding Yuan, ECE344 Operating System 31

Jan 31, 2013 Ding Yuan, ECE344 Operating System 32

Mutex without hardware
support: Peterson's Algorithm

while (true) {
 try1 = true;
 turn = 2;
 while (try2 && turn != 1) ;
 critical section
 try1 = false;
 outside of critical section
}

while (true) {
 try2 = true;
 turn = 1;
 while (try1 && turn != 2) ;
 critical section
 try2 = false;
 outside of critical section
}

int turn = 1;

bool try1 = false, try2 = false;

•  Does it work?
• Yes!

•  Try all possible interleavings

Has thread 2 executed “try2=true?”. If not, I am safe. If yes, let’s see…
Did I execute “turn=2” before thread 2 executed “turn=1”?

2/4/13

17

Jan 31, 2013 Ding Yuan, ECE344 Operating System 33

Summarize Where We Are

•  Goal: Use mutual exclusion to protect critical sections of
code that access shared resources

•  Method: Use locks (spinlocks or disable interrupts)

•  Problem: Critical sections can be long

acquire(lock)

…

Critical section
…

release(lock)

Disabling Interrupts:

  Should not disable interrupts
for long periods of time
  Can miss or delay important
events (e.g., timer, I/O)

Spinlocks:

  Threads waiting to acquire
lock spin in test-and-set loop
  Wastes CPU cycles

  Longer the CS, the longer
the spin

  Greater the chance for lock
holder to be interrupted

If you only remember one
thing from this lecture…

•  When you have concurrency & shared resources,

protect your critical
region with
synchronization
primitives (e.g., locks, semaphore (next
lecture), etc.)
•  You don’t want to go to that crazy intersection in Russia.

Jan 31, 2013 Ding Yuan, ECE344 Operating System 34

