
1/31/13

1

Operating Systems
ECE344

Ding Yuan

January 28, 2013 Ding Yuan, ECE344 Operating System 2

Announcements and
reminders

•  Lab 0 due this Friday 5PM
•  Submission procedural simplified:
•  Only tag the repository as “asst0-end”

•  No need to use “submitece344s”

•  Make sure you try the “os161-tester –m”

•  No lecture on February 14th, instructor attending a
conference
•  Work on your project

1/31/13

2

January 28, 2013 Ding Yuan, ECE344 Operating System 3

Processes

•  Recall that a process includes many things
•  An address space (defining all the code and data pages)
•  OS resources (e.g., open files) and accounting information
•  Execution state (PC, SP, regs, etc.)

•  Creating a new process is costly because of all of the data
structures that must be allocated and initialized
•  Recall struct proc in Solaris
•  …which does not even include page tables, perhaps TLB

flushing, etc.

•  Communicating between processes is costly because most
communication goes through the OS
•  Overhead of system calls and copying data

January 28, 2013 Ding Yuan, ECE344 Operating System 4

Parallel Programs

•  To execute these programs we need to
•  Create several processes that execute in parallel

•  Cause each to map to the same address space to share data
•  They are all part of the same computation

•  Have the OS schedule these processes in parallel

•  This situation is very inefficient
•  Space: PCB, page tables, etc.

•  Time: create data structures, fork and copy addr space, etc.

•  Solutions: possible to have more efficient, yet cooperative
“processes”?

1/31/13

3

January 28, 2013 Ding Yuan, ECE344 Operating System 5

Rethinking Processes

•  What is similar in these cooperating processes?
•  They all share the same code and data (address space)
•  They all share the same privileges
•  They all share the same resources (files, sockets, etc.)

•  What don’t they share?
•  Each has its own execution state: PC, SP, and registers

•  Key idea: Why don’t we separate the concept of a process from
its execution state?
•  Process: address space, privileges, resources, etc.
•  Execution state: PC, SP, registers

•  Exec state also called thread of control, or thread

January 28, 2013 Ding Yuan, ECE344 Operating System 6

Threads

•  Modern OSes (Mac, Windows, modern Unix) separate the
concepts of processes and threads
•  The thread defines a sequential execution stream within a

process (PC, SP, registers)

•  The process defines the address space and general process
attributes (everything but threads of execution)

•  A thread is bound to a single process
•  Processes, however, can have multiple threads

•  Threads become the unit of scheduling
•  Processes are now the containers in which threads execute

1/31/13

4

Threads: lightweight processes

January 28, 2013 Ding Yuan, ECE344 Operating System 7

execution
environment (resource)

(a) Three processes each with one thread
(b) One process with three threads

Analogy:

•  Process:
•  Hire 4 software engineers to work on 4 projects

•  Thread:
•  Have one engineer to work on 4 projects

January 28, 2013 Ding Yuan, ECE344 Operating System 8

1/31/13

5

The thread model
•  Shared information
•  Processor info: parent process, time, etc

•  Memory: segments, page table, and stats, etc

•  I/O and file: communication ports, directories and file descriptors, etc

•  Private state
•  State (ready, running and blocked)

•  Registers

•  Program counter

•  Execution stack

•  Why?

•  Each thread execute separately
January 28, 2013 Ding Yuan, ECE344 Operating System 9

January 28, 2013 Ding Yuan, ECE344 Operating System 10

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC
(T1)

PC
(T3) PC

(T2)

1/31/13

6

January 28, 2013 Ding Yuan, ECE344 Operating System 11

Threads: Concurrent Servers

•  Using fork() to create new processes to handle requests in
parallel is overkill for such a simple task

•  Recall our forking Web server:

while (1) {
 int sock = accept();
 if ((child_pid = fork()) == 0) {
 Handle client request
 Close socket and exit
 } else {
 Close socket
 }
}

January 28, 2013 Ding Yuan, ECE344 Operating System 12

Threads: Concurrent Servers
•  Instead, we can create a new thread for each request

 web_server() {
 while (1) {
 int sock = accept();
 thread_create(handle_request, sock);
 }

 }

 handle_request(int sock) {

 Process request

 close(sock);

 }

1/31/13

7

Thread usage: web server

January 28, 2013 Ding Yuan, ECE344 Operating System 13

Thread usage: word processor

January 28, 2013 Ding Yuan, ECE344 Operating System 14

•  A thread can wait for I/O, while the other threads can still running.
•  What if it is single-threaded?

1/31/13

8

January 28, 2013 Ding Yuan, ECE344 Operating System 15

Kernel-Level Threads

•  We have taken the execution aspect of a process and
separated it out into threads
•  To make concurrency cheaper

•  As such, the OS now manages threads and processes
•  All thread operations are implemented in the kernel
•  The OS schedules all of the threads in the system

•  OS-managed threads are called kernel-level threads or
lightweight processes
•  Windows: threads
•  Solaris: lightweight processes (LWP)
•  POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

January 28, 2013 Ding Yuan, ECE344 Operating System 16

Kernel-level Thread
Limitations

•  Kernel-level threads make concurrency much cheaper than
processes
•  Much less state to allocate and initialize

•  However, for fine-grained concurrency, kernel-level threads
still suffer from too much overhead
•  Thread operations still require system calls
•  Ideally, want thread operations to be as fast as a procedure call

•  For such fine-grained concurrency, need even “cheaper”
threads

1/31/13

9

January 28, 2013 Ding Yuan, ECE344 Operating System 17

User-Level Threads
•  To make threads cheap and fast, they need to be

implemented at user level
•  Kernel-level threads are managed by the OS
•  User-level threads are managed entirely by the run-time system

(user-level library)

•  User-level threads are small and fast
•  A thread is simply represented by a PC, registers, stack, and

small thread control block (TCB)
•  Creating a new thread, switching between threads, and

synchronizing threads are done via procedure call
•  No kernel involvement

•  User-level thread operations 100x faster than kernel threads
•  pthreads: PTHREAD_SCOPE_PROCESS

January 28, 2013 Ding Yuan, ECE344 Operating System 18

User-level Thread Limitations

•  But, user-level threads are not a perfect solution
•  As with everything else, they are a tradeoff

•  User-level threads are invisible to the OS
•  They are not well integrated with the OS

•  As a result, the OS can make poor decisions
•  Scheduling a process with idle threads
•  Blocking a process whose thread initiated an I/O, even though the

process has other threads that can execute

•  Solving this requires communication between the kernel and
the user-level thread manager

1/31/13

10

January 28, 2013 Ding Yuan, ECE344 Operating System 19

Kernel- vs. User-level Threads

•  Kernel-level threads
•  Integrated with OS (informed scheduling)
•  Slow to create, manipulate, synchronize

•  User-level threads
•  Fast to create, manipulate, synchronize
•  Not integrated with OS (uninformed scheduling)

•  Understanding the differences between kernel- and
user-level threads is important
•  For programming (correctness, performance)
•  For test-taking

January 28, 2013 Ding Yuan, ECE344 Operating System 20

Kernel- and User-level
Threads

•  Or use both kernel- and user-level threads
•  Can associate a user-level thread with a kernel-level thread
•  Or, multiplex user-level threads on top of kernel-level

threads

•  Java Virtual Machine (JVM) (also pthreads)
•  Java threads are user-level threads
•  On older Unix, only one “kernel thread” per process
•  Multiplex all Java threads on this one kernel thread

•  On Windows NT, modern Unix
•  Can multiplex Java threads on multiple kernel threads
•  Can have more Java threads than kernel threads

1/31/13

11

January 28, 2013 Ding Yuan, ECE344 Operating System 21

Implementing Threads

•  Implementing threads has a number of issues
•  Interface

•  Context switch

•  Preemptive vs. Non-preemptive
•  What do they mean?

•  Scheduling

•  Synchronization (next lecture)

•  Focus on user-level threads
•  Kernel-level threads are similar to original process

management and implementation in the OS

January 28, 2013 Ding Yuan, ECE344 Operating System 22

Sample Thread Interface

•  thread_create(procedure_t, arg)
•  Create a new thread of control
•  Start executing procedure_t

•  thread_yield()
•  Voluntarily give up the processor

•  thread_exit()
•  Terminate the calling thread; also thread_destroy

•  thread_join(target_thread)
•  Suspend the execution of calling thread until target_thread

terminates

1/31/13

12

January 28, 2013 Ding Yuan, ECE344 Operating System 23

Thread Scheduling

•  For user-level thread: scheduling occurs entirely in user-space

•  The thread scheduler determines when a thread runs

•  It uses queues to keep track of what threads are doing
•  Just like the OS and processes

•  But it is implemented at user-level in a library

•  Run queue: Threads currently running (usually one)

•  Ready queue: Threads ready to run

•  Are there wait queues?

Review of threads

•  What are shared among threads of the same process? What
are not?
•  Why cannot they share the same stack?
•  How threads of the same process communicate with each

other?

•  Trade-off between kernel level threads and user level
threads?

•  Blocking system call
•  Blocking system call: an I/O system call that will wait for the

I/O to complete before returning

•  How do we implement user-level threads

January 28, 2013 Ding Yuan, ECE344 Operating System 24

1/31/13

13

January 28, 2013 Ding Yuan, ECE344 Operating System 25

Non-Preemptive Scheduling

•  Threads voluntarily give up the CPU with thread_yield

•  What is the output of running these two threads?

while (1) {

 printf(“ping\n”);

 thread_yield();

}

while (1) {

 printf(“pong\n”);

 thread_yield();

}

Ping Thread Pong Thread

January 28, 2013 Ding Yuan, ECE344 Operating System 26

thread_yield()
•  Wait a second. How does thread_yield() work?

•  The semantics of thread_yield are that it gives up the CPU to
another thread
•  In other words, it context switches to another thread

•  So what does it mean for thread_yield to return?
•  It means that another thread called thread_yield!

•  Execution trace of ping/pong
•  printf(“ping\n”);
•  thread_yield();

•  printf(“pong\n”);
•  thread_yield();
•  …

1/31/13

14

January 28, 2013 Ding Yuan, ECE344 Operating System 27

Implementing thread_yield()

•  The magic step is invoking context_switch()

•  Why do we need to call append_to_queue()?

As old thread

As new thread

thread_yield() {
 thread_t old_thread = current_thread;
 current_thread = get_next_thread();
 append_to_queue(ready_queue, old_thread);
 context_switch(old_thread, current_thread);
 return;

}

January 28, 2013 Ding Yuan, ECE344 Operating System 28

Thread Context Switch

•  The context switch routine does all of the magic
•  Saves context of the currently running thread (old_thread)
•  Push all machine state onto its stack (except stack pointer)

•  Restores context of the next thread
•  Pop all machine state from the next thread’s stack

•  The next thread becomes the current thread

•  Return to caller as new thread

•  This is all done in assembly language
•  See arch/mips/mips/switch.S in OS161 (kernel thread

implementation)

1/31/13

15

Wait a minute

•  Non-preemptive threads have to voluntarily give up
CPU
•  Only voluntary calls to thread_yield(), or thread_exit()

causes a context switch

•  What if one thread never release the CPU (never calls
thread_yield())?

•  We need preemptive user-level thread scheduling

January 28, 2013 Ding Yuan, ECE344 Operating System 29

January 28, 2013 Ding Yuan, ECE344 Operating System 30

Preemptive Scheduling

•  Preemptive scheduling causes an involuntary context switch
•  Need to regain control of processor asynchronously

•  How?
•  Use timer interrupt
•  Timer interrupt handler forces current thread to “call”

thread_yield
•  How?

1/31/13

16

Process vs. threads

•  Multithreading is only an option for “cooperative tasks”
•  Trust and sharing

•  Process
•  Strong isolation but poor performance

•  Thread
•  Good performance but share too much

•  Example: web browsers
•  Safari: multithreading
•  one webpage can crash entire Safari

•  Google Chrome: each tab has its own process

January 28, 2013 Ding Yuan, ECE344 Operating System 31

January 28, 2013 Ding Yuan, ECE344 Operating System 32

Threads Summary

•  The operating system as a large multithreaded program
•  Each process executes as a thread within the OS

•  Multithreading is also very useful for applications
•  Efficient multithreading requires fast primitives
•  Processes are too heavyweight

•  Solution is to separate threads from processes
•  Kernel-level threads much better, but still significant overhead
•  User-level threads even better, but not well integrated with OS

•  Now, how do we get our threads to correctly cooperate with
each other?
•  Synchronization…

