
Final ECE454 Pg. 1 of 14

ECE 454 – Computer Systems Programming

The Edward S. Rogers Sr. Department of Electrical and Computer Engineering

Final Examination Fall 2012

Name

Student #

UTorID

Answer all questions. Write your answers on the exam paper. Show your work.
Each question has a different assigned value, as indicated.

The exam is open book (only simple calculators allowed, no cell phones or PDAs)

Total time available: 150 minutes

Total marks available: 145 (roughly one mark per minute with 5 extra minutes)

Verify that your exam has all of the pages.

Part Points Mark
1 32
2 10
3 12
4 20
5 10
6 15
7 15
8 16
9 15

Total 145

Final ECE454 Pg. 2 of 14

PART 1) [32] Short Answer

1) If I have a 10-board rack of boards that each have a quad-core processor, each core of which
supports 2-way SMT, has 16KB first-level data caches, and a 2MB second-level unified cache
that is shared by all cores on a chip:

a) how many hardware thread contexts does my machine support?

ANSWER: 10*4*2 = 80 2marks

b) how much first-level data cache is available per hardware thread context (dividing evenly)?

ANSWER: 16KB/2 = 8KB 2marks

c) how much second-level data cache is available per hardware thread context (dividing
evenly)?

ANSWER: 2MB/8 = 256KB 2marks

2) Consider this scenario for a certain program and with two compiler optimizations opt1 and
opt2: opt1 makes 30% of program execution time go 2x faster; opt2 makes 60% of program
execution time go 1.5x faster; however, half of the execution time optimized by opt2 can also
be optimized by opt1, but not by both at the same time.

Assuming that you have a compiler that can best decide which optimization to apply for any
given part of the code, what is the best possible speedup for the program?

ANSWER: 7marks

Speedup opt1: 1/(0.3/2.0+0.7) = 1/0.85 = 1.176471
Speedup opt2: 1/(0.60/1.5+0.40) = 1/0.80 = 1.250000

HENCE opt2 is better, apply that to the overlap portion.
Opt2 applies to 60%, hence 30% is the overlap portion. But opt1 only applies to 30%, so there
is no leftover for opt1 to optimize. Hence Speedup for opt2 result above is final answer: 1.25

Final ECE454 Pg. 3 of 14

3) For a certain program, gprof results are shown below both before and after compiler
optimization. What optimization is there evidence of in the gprof results?

Before:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 86.60 8.21 8.21 1 8210.00 8210.00 bigfunc
 5.80 8.76 0.55 946596 0.00 0.00 calc
 4.75 9.21 0.45 946596 0.00 0.00 lookup
 1.27 9.33 0.12 946596 0.00 0.00 combine

After:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 86.60 8.21 8.21 1 8210.00 8210.00 bigfunc
 10.55 9.21 1.00 946596 0.00 0.00 calc
 1.27 9.33 0.12 946596 0.00 0.00 combine

ANSWER:

Inlining of lookup into calc 3marks

4) Which version of this code (they all produce the same correct results) would a compiler
more likely be able to optimize and why? Assume the '...'s represent other code not shown.

a)

for (i=0;i<n;i++){
 ...
 *result += values[i];
}

b)

for (i=0;i<n;i++){
 ...
 *result += *values;
 values++;
}

c)

for (i=0;i<n;i++){
 ...

Final ECE454 Pg. 4 of 14

 tmp += values[i];
}
*result = tmp;

d)

for (i=0;i<n;i++){
 ...
 tmp += *values;
 values++;
}
*result = tmp;

ANSWER: (c), array accesses are better understood and scheduled than pointer accesses,
possibly parallelized (reduction), and the result can be accumulated in a register and copied to
memory only after the loop. 5marks

5) How many bytes will this data structure require for best alignment:

struct mystruct {
 char *y;
 char k;
} A[100];

a) on a 32-bit machine:

ANSWER: 800B = (4B + 1B + 3Bpad) * 100 elements 3marks

b) on a 64-bit machine (in 64-bit-mode):

ANSWER: 1600B = (8B + 1B + 7Bpad) * 100 elements 3marks

6) Assuming sequential consistency, what are the possible outcomes for x after the execution
of both threads, assuming that x is in shared memory and is initially zero, and that each line is
an (atomic) instruction.

Thread1:
 lock;
 int tmp = x;
 x = tmp + 1;
 unlock;

 Thread2:
 int tmp = x;
 x = tmp + 10;

ANSWER: 1, 10, 11 (every possible interleaving, the lock/unlock has no effect) 5marks

Final ECE454 Pg. 5 of 14

PART 2) [10] Dependences: (straight-line code)

a) Name the dependences in the following code (true, anti, output). For each write the name

and the line numbers involved to the right of the last line involved. The first one is given
for you. Note that a given line may be involved in multiple dependences; list them all.

1: a = b + c;
2: d = a + c; true 1->2
3: d = d + c; true 2->3; anti 2->3, output 2->3
4: c = 4 + a; true 1->4; anti 3->4
5: e = 5 + c; true 4->5
6: c = 3 + e; true 5->6; output 4->6; anti 5->6; true 5->6
7: e = d + c; true 3->7; output 5->7; anti 6->7; true 6->7 5.5marks (0.5 each)

(note: only most recent dependence for a variable is required)

b) Rewrite the code above to remove as many dependences as possible by using new variables

where appropriate. Do not perform any other optimization nor code elimination. List the
dependences that remain the same way as above.

1: a = b + c;
2: d = a + c; true 1->2
3: d1 = d + c; true 2->3 1mark
4: c1 = 4 + a; true 1->4 1mark
5: e = 5 + c1; true 4->5
6: c2 = 3 + e; true 5->6 1mark
7: e1 = d1 + c2; true 6->7;

c) Assuming that each operation takes a single cycle to execute, and a wide-issue superscalar

processor, how many cycles will the code from (b) take to execute?

5 cycles 1.5marks

Final ECE454 Pg. 6 of 14

PART 3) [12] Cache Accesss

For each of the following codes, assuming that A[] is of type int (4B elements), a 16KB data
cache that is very associative (ie., don't consider conflict misses), with 64B cache blocks, what
is the maximum value for N that does not suffer capacity misses? (ie., don't consider cold
misses either)

a)

for (i=0;i<N;i++){
 ... = A[i];
}
ANSWER:
N could be any size, since there is no hope of re-use, hence no capacity misses 3marks

b)

for (k=0;k<100;k++){
 for (i=0;i<N;i++){
 ... = A[i];
 }
}
ANSWER:
N = 16KB/4B = 4K 3marks

c)

for (k=0;k<100;k++){
 for (i=0;i<N;i++){
 for (j=0;j<N;j++){
 ... = A[i][j];
 }
 }
}
ANSWER: 16KB = 4B*N^2
 N = sqrt(16K/4) = sqrt(4K) = 64 3marks

d)

for (k=0;k<100;k++){
 for (i=0;i<N;i++){
 for (j=0;j<N;j++){
 ... = A[i][j] + B[i][j] + C[i][j] + D[i][j];
 }
 }
}

Final ECE454 Pg. 7 of 14

ANSWER: 16KB = 4B*4*N^2
 N = sqrt(16K/16) = sqrt(1K) = 32 3marks
PART 4) [20] Dynamic Memory Allocation

Consider an allocator with the following specification:

• Uses an implicit free list.

• All memory blocks have a size that is a multiple of 8 bytes and is at least 8 bytes.

• All headers, footers, and pointers are 4 bytes in size

• Allocated blocks consist of a header and a payload (no footer)

• Free blocks consist of a header and a footer at the end of the block.

• All freed blocks are immediately coalesced if possible

• Splitting is performed when appropriate

• All searches for free blocks start at the head of the list and walk through the list in

order (i.e., first-fit).

Headers and footers are encoded as follows:

• bit0 indicates the use of the current block: 1 for allocated, 0 for free.

• bit 1 indicates the use of the previous adjacent block: 1 for allocated, 0 for free.

• bit 2 is unused and is always set to 0.

• bits 31-3 encode the block size, as if bit 2, bit 1, and bit 0 were all zeros. Eg., for an

8byte block bit 3 is a 1 and bits 31-4 are zeros; for a 16byte block bit 4 is a one and

bit 3 and bits 31-5 are zeros.

a) What is the internal fragmentation for this scheme for the following requests:

malloc(1) 3 bytes

malloc(4) 0 bytes

malloc(5) 7 bytes

malloc(13) 7 bytes

1 mark each

Final ECE454 Pg. 8 of 14

Using the scheme on the previous page, for the following tables, list only the heap entries that
change based on the user operation given. Note that the initial state for (c) should be your
answer from (b). Note also that the heap starts at the bottom (address 0x0400b000) and
grows upwards.

b) User calls free(0x0400b024): 8 marks

Address Contents (before) Changed contents
0x0400b03c 0x0000001b
0x0400b038 0x0000000b
0x0400b034 0x0000000b
0x0400b030 0x0000000b 0x00000009
0x0400b02c 0x0400b028 0x00000012
0x0400b028 0x00000011
0x0400b024 0x0f032014
0x0400b020 0x00000013 0x00000012
0x0400b01c 0x0000000b
0x0400b018 0x0000000b
0x0400b014 0x00000012
0x0400b010 0x00000013
0x0400b00c 0x0000001f
0x0400b008 0x0000000b
0x0400b004 0x0400b008
0x0400b000 0x00000011

c) User then calls malloc(1)---assuming starting with answer from (b)

 8 marks

Address Contents (before) Changed contents
0x0400b03c
0x0400b038
0x0400b034
0x0400b030 0x00000009
0x0400b02c 0x00000012 0x0000000a
0x0400b028 0x0000000a
0x0400b024
0x0400b020 0x00000012 0x0000000b
0x0400b01c
0x0400b018
0x0400b014
0x0400b010
0x0400b00c
0x0400b008

Final ECE454 Pg. 9 of 14

0x0400b004
0x0400b000

PART 5) [10] Cache Coherence

List the coherence actions that happen for each load/store; assume that each load/store (row of
the table) is completely performed in the entire system before moving on to the next load/store
(the next row of the table). You may list multiple actions if multiple occur. Multiples of an
action may occur in one row: eg., if invalidationg messages are sent to two CPUs in one row,
write 2I. Note that a message (msg) does not contain a copy of a cache block, only a request.

R: Read // msg from a CPU to the memory
RX: Read-Ex // msg from a CPU to the memory
NM: Notify-Modified // msg from a CPU to the memory
U: Update // copy from a CPU to the memory
NS: Notify-Shared // msg from the memory to a CPU
I: Invalidation // msg from the memory to a CPU
F: Fill // copy from the memory to a CPU

Action(s)?	
 CPU	
 0	
 CPU	
 1	
 CPU	
 2	
 CPU	
 3	

R,F	
 Load	
 X	
 	
 	
 	

NM	
 Store	
 X	
 	
 	
 	

R,U,F	
 	
 Load	
 X	
 	
 	

NM,I	
 	
 Store	
 X	
 	
 	

R,U,F	
 	
 	
 Load	
 X	
 	

R,F	
 	
 	
 	
 Load	
 X	

R,F	
 Load	
 X	
 	
 	
 	

	
 	
 Load	
 X	
 	
 	

NM,3I	
 	
 	
 Store	
 X	
 	

	
 	
 	
 Store	
 X	
 	

RX,I,	
 	
 	
 	
 Store	
 X	

	
 	
 	
 	
 Load	
 X	

	
 	
 	
 	
 Store	
 X	

0.5 for each individual msg/copy, 1.0 for the 3I, minus 1.0 for extra msg/copy
Maybe allow RX instead of NM

Final ECE454 Pg. 10 of 14

PART 6) [15] Locking

Make this code safe for parallel execution by inserting calls to lock X and unlock X wherever
necessary. Note that for this question lock/unlock implement named locks (i.e., fine-grained
locks), where X can be any name you want. Make the resulting critical sections between
lock/unlock as small as possible. You are not allowed to re-order the statements within the
threads. You can assume that these are the only two parallel threads, and that update() does not
read or write memory other than (maybe) its parameter.

// shared memory
int v;
int w;
int x;
int y;
int z;

Thread1:
 while(1){

 lock V;
 v = update(v);
 unlock V;
 lock W;
 int a = w;

 a *= 100;

 x = a;

 if (a < 1000)
 {

 w = a;

 }
 unlock W;

 work();

 lock V;
 int b = update(v);

 lock Z;
 z = z + b + x;
 unlock Z;

 v = b / 2;

 Thread2:
 while(1){

 lock V; lock Z;
 int b = update(z);

 v = v + b;
 unlock V

 z = b / 2;
 unlock Z

 int a = y;

 work();

 y = update(a);

 lock W;
 w = update(w);
 unlock W;

 }

Final ECE454 Pg. 11 of 14

 unlock V;

 }

PART 7) [15] Dependence Analysis

For each loop in the following code, state whether or not it is parallel, and if not describe the
dependence(s) that prevent it from being parallel (give the type of dependence and which terms
c1,c2,c3,c4 are involved).

for (i=2;i<N-1;i++){ // loop1
 for (j=3;j<N;j++){ // loop2
 for (k=4;k<N-3;k++){ // loop3
 A[i][j][k] = // c1
 A[i][j-1][k+1] + // c2
 A[i-1][j+2][k] + // c3
 A[i+3][j][k]; // c4
 }
 }
}

loop1: not parallel, 2marks
 true/flow dep C1->C3, 3marks
 anti dep C1->C4 3marks

loop2: not parallel 2marks
 true/flow dep C1->C2 3marks

loop3: parallel 2marks

Final ECE454 Pg. 12 of 14

PART 8) [16] Data Distributions

For each code listing below, list the array elements that would be written by each thread before
either the first instance of a barrier or the end of the execution is reached. Name the elements
using the naming/numbering scheme given in the table, assuming row-major ordering (i refers
to row and j to column). Eg., for a single threaded execution (with no barrier) for any of the
codes the answer would be: T0: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

A[i][j]
 0 1 2 3
0 1 2 3 4
1 5 6 7 8
2 9 10 11 12
3 13 14 15 16

a) Assume two threads, T0 and T1

#pragma omp parallel for private(i,j)
for (int i=0;i<N;i++)
 for (int j=0;j<N;j++)
 A[i][j] = …

T0: 1,2,3,4,5,6,7,8
T1: 9,10,11,12,13,14,15,16
barrier

b) Assume four threads, T0,T1,T2, and T3

for (int i=0;i<N;i++)
#pragma omp parallel for private(j)
 for (int j=0;j<N;j++)
 A[i][j] = …

T0: 1
T1: 2
T2: 3
T3: 4
barrier

Final ECE454 Pg. 13 of 14

c) Assume two threads, T0, and T1

#pragma omp parallel for schedule(static,1) private(i,j)
for (int i=0;i<N;i++)
 for (int j=0;j<N;j++)
 A[i][j] = …

T0: 1,2,3,4,9,10,11,12
T1: 5,6,7,8,13,14,15,16
barrier

d) Assume two threads, T0, and T1 (this one has multiple correct answers, show one of them)

for (int i=0;i<N;i++)
#pragma omp parallel for schedule(dynamic,2) private(j) nowait
 for (int j=0;j<N;j++)
 A[i][j] = …

T0: 1,2,7,8,11,12,13,14
T1: 3,4,5,6,9,10,15,16

Final ECE454 Pg. 14 of 14

PART 9) [15] Parallelization

Parallelize this code using OpenMP but without using the reduction option/primitive. Don’t
worry about optimizing cache/memory locality.

Minimum = GREAT_BIG_VALUE;
for (i=0;i<N;i++){
 for (j=0;j<N;j++){
 A[i][j] = B[i][j] + C[i][j];
 Minimum = min(Minimum,A[i][j]);
 }
}

Minimum = GREAT_BIG_VALUE;
#pragma omp parallel threadprivate(mymin)
{
 mymin = GREAT_BIG_VALUE;
 #pragma omp for private(i,j) nowait
 for (i=0;i<N;i++){
 for (j=0;j<N;j++){
 A[i][j] = B[i][j] + C[i][j];
 mymin = min(mymin,A[i][j]);
 }
 }
 #pragma omp critical
 Minimum = min(Minimum,mymin);
 #pragma omp barrier
}

