
ECE454, Fall 2013

Homework4: Pthreads and Synchronization

Assigned: Nov 7th, Due: Nov 22th, 11:59PM

Yongle Zhang(zhan1173@eecg.toronto.edu) is the TA for this assignment.

1 Introduction

OptsRus has been contracted to parallelize a customer’s utility function that they use to characterize the
quality of random numbers generated by the C library rand r() function. In particular, you will parallelize
it using pthreads. The code makes use of a hash table, which can be non-trivial to parallelize. Besides
conventional locking, you will take this opportunity to try the software transactional-memory library.

Be sure to answer all of the numbered questions that are embedded throughout this lab handout in
your “report.txt” file.

2 Setup

Start by copying the hw4.tar file from UG shared directory
/cad2/ece454f/hw4/hw4.tar

into a protected directory within your UG home directory.

Then run the command:
tar xvf hw4.tar

This will cause a number of files to be unpacked into the directory.

Looking at the file randtrack.cc, you’ll notice a C structure team into which you should insert the
requested identifying information about the one or two individuals comprising your programming team.
Do this right away so you don’t forget.

team_t team = {
"group1", /* Team name */
"AAA BBB", /* First member full name */
"99999999", /* First member student number */
"", /* Second member full name (leave blank if none) */
"" /* Second member student number (leave blank if none) */

};

2.1 Understanding randtrack.cc

The randtrack program is reasonably straightforward. After instantiating the hash table, it processes several seed
streams (streams of random numbers initiated by a certain seed value), in this case four seed streams. It then goes
about collecting a large number of samples (in this case 10,000,000 samples), but skips samples to skip samples, so
it actually only counts one sample out of every samples to skip samples. The sample to be counted is made to fit
in the range 0..999,999 by taking a modulo (% 100000). Next we check the hash table to see if there already exists
an element for the sample, and create and insert one if not; then we increment the counter for that element/sample.
Finally, once all samples have been tracked, we print out all of the sample values and their frequencies (counts).

1



randtrack.cc has the following command-line parameters:

• num threads: the number of parallel threads to create (not used in the initial version we give you);

• samples to skip: the number of samples to skip

You should carefully read and understand randtrack.cc and how it works. Note that while this is a somewhat
”toy” program for the purposes of this assignment, hash tables are a very common and important data structure
and this assignment considers parallelization in their presence.

2.2 Understanding the Hash Table

The hash table implementation is a one-dimensional array of pointers to lists. Each key value each maps (hashes)
to a certain array location based on the key-value modulo the hash-array size. Any collision (two keys that map to
the same hash-array location) is handled by inserting a new element at the head of list for that hash-array location.

Note that the hash table and list structures are implemented using the C++ template construction because they
become inlined—-this is unfortunately the only way (at least the most straight-forward way) it will work with the
current version of the transactional memory library. When this template version of the hash table is instantiated,
the types of the hash element and key value are specified, in this case ”class sample” and ”unsigned” respectively.

Note that for the sake of fair comparisons, please do not modify the size of the hash table array for any experiment.

2.3 Compiling

In this assignment you will be making and measuring several different versions of randtrack, and you want to be
able to build and run any of them at any time. It is up to you if you want to accomplish this by having different
versions of the randtrack.cc file, or instead using #ifdef’s on one copy of the file. Whichever way you choose, be
sure that you modify the Makefile to take care of the details. In other words, running ”make randtrack global lock”,
”make randtrack list lock”, and ”make randtrack tm”, etc, should all build the appropriate version of randtrack with
those names. If you are going to use #ifdef’s and have a single file, then note that any added methods or data
structures added for a lock implementation should only be built for that lock implementation that is using them.
Ie., if you add two methods and an array for the global lock implementation, those items shouldn’t be built for the
TM version if it is not using them—they should be #ifdef’ed out.

Q1. Why is it important to #ifdef out methods and datastructures that aren’t used for different versions of
randtrack?

More compilation details for this assignment:

• You want to compile using g++-4.7, a recent version with support for transactional memory.

• To compile with support for pthreads you must add the flag -lpthread to the gcc compile command line.

• To additionally enable support for transactional memory, add the flag -fgnu-tm to the gcc compile command
line.

2.4 Debugging

To debug, gdb works fine and supports pthreads (although debugging parallel code is a challenge). Adjust the
Makefile to compile with the -g option. However, for your timing runs, you should use -O3 optimization to get the
best performance.

3 Parallelizing with Pthreads

You should start by parallizing the work using pthreads, following the example code given in class. You should create
the number of threads specified by the command line argument num threads, which you can assume will be set to
either 1, 2, or 4. For dividing work among threads, for 1 thread the 1 thread should process all of the four seed
streams, for 2 threads they should each process two seed streams, and for four threads each thread processes its own
seed stream.

It is important to always verify the accuracy of the output by comparing with the output of the original program.
If you save the output in a file, eg., by running ”randtrack 1 50 > rt1.out”, you can decide the correctness of a new
version by doing ”diff rt1.out rt2.out (which should print no difference). One catch is that, for parallel versions,
elements might be inserted into the hash table lists in a different order than the original (but the counts for each

2



element should be identical). An easy way to account for this difference in the outputs is to sort the outputs before
comparing them, i.e., do ”sort -n rt1.out > rt1.outs”, ”sort -n rt2.out > rt2.outs”, then compare by doing ”diff
rt1.outs rt2.outs” which should show no difference.

Once you have created threads and divided the work among them as above, if you execute and compare with the
original you will get incorrect results, since the accesses to the shared hash table are not yet synchronized. This is
what you will do using several different methods in the next sections.

The first challenge is to carefully identify which parts of the code need to be synchronized (ie., executed atomically)
versus which are safe to do in parallel.

For further details on pthreads, an introductory tutorial is here:

http://yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

3.1 Single Global Lock

Create a version of the program called randtrack global lock that synchronizes by creating and using a single
pthread mutex around the critical shared accesses in the code. Ensure via testing that it produces the same results
as the original version as described above.

3.2 Using Transactional Memory

In theory an easier alternative to the more fine-grain locking approaches below is transactional memory (TM) as
discussed in class. gcc version 4.7 supports a TM API, and implements software TM (hardware TM is not yet
available but coming soon). After following the instructions above for parallelizing with pthreads and compiling for
pthreads and TM support, create a version of the program called randtrack tm that uses TM to synchronize the
critical section. This is done by wrapping the critical section of code with transaction atomic { } (note that
there are two underscores ’ ’ that preceed the word transaction).

After getting this working and tested, answer these questions:

Q2. How difficult was using TM compared to implementing global lock above?

3.3 List-Level Locks

While having a single global lock is easy to implement, it is often better for performance to have multiple locks that
protect smaller data structures, i.e., “fine-grain locks”.

Create a version of the program called randtrack list lock that creates a pthread mutex for every location in
the hash array (eg., one for each list), and synchronizes using those locks. You will find that this requires a bit of
thinking.

Q3. Can you implement this without modifying the hash class, or without knowing its internal implementation?

Q4. Can you properly implement this solely by modifying the hash class methods lookup and insert? Explain.

Q5. Can you implement this by adding to the hash class a new function lookup and insert if absent? Explain.

Q6. Can you implement it by adding new methods to the hash class lock list and unlock list? Explain.
Implement the simplest solution above that works (or a better one if you can think of one).

Q7. How difficult was using TM compared to implementing list locking above?

3.4 Element-Level Locks

An even finer-grain locking approach than list-level could be implemented, i.e., locking individual sample elements.
Think carefully about whether your implementation handles both the case where the key already exists in the hash
table and also when it does not exist and needs to be inserted. Call this version randtrack element lock.

3.5 Reduction Version

Rather than sharing and synchronizing on the hash table, another solution could instead give each thread its own
private copy of a hash table, each counts its streams into that local hash table, then combine the counts from the
multiple hash tables into one at the end before printing. Call this version randtrack reduction.

Q8. What are the pros and cons of this approach?

3



4 Measuring

For this homework your implementations should be measured from start to finish, using /usr/bin/time. In other
words, you will include the entire computation in your measurement, including reading and writing files, initialization,
and thread creation or other overheads associated with parallelization. Note that there is also a shell command called
“time”, but we prefer the one above. Report the “Elapsed” time.

4.1 Getting a Clean Timing Measurement

The code already has a timing function, measured at the appropriate points. Since we are measuring timing for
parallel execution using multiple processors, it is important that we take our measurements when the machine is
not heavily loaded. You can check the load on either machine with the command “w”. You should be able to get a
relatively clean measurement when the load average is less than 1.0. Since each machine has 4 processors, the load
average may be as high as 4.0 when all thread slots are busy, or even higher if they are overloaded. Once you are
confident in the correctness of your code, you probably want to write a script (perl or other) to perform all of your
runs and collect the data.

For every timing measurement always do 5 runs and average them (please only report the final average).

4.2 Experiments to Run

Run the following experiments and report the runtime results in a table. For those that implemented element-lock
or reduction versions, report results for them as well.

1. measure the original randtrack with samples to skip set to 50 (num threads can be any number, it isn’t used)

2. measure the global-lock, list-lock, (element-lock), and TM versions of randtrack with 1, 2, and 4 threads, and
with samples to skip set to 50.

Q9. For samples to skip set to 50, what is the overhead for each parallelization approach? Report this as the runtime
of the parallel version with one thread divided by the runtime of the single-threaded version.

Q10. How does each approach perform as the number of threads increases? If performance gets worse for a certain
case, explain why that may have happened.

Q11. Repeat the data collection above with samples to skip set to 100 and give the table. How does this change
impact the results compared with when set to 50? Why?

Q12. Which approach should OptsRus ship? Keep in mind that some customers might be using multicores with
more than 4 cores, while others might have only one or two cores.

5 Evaluation

Your grade will be calculated as follows:

• Global Lock (and basic pthreads): 20 points.

• TM: 15 points.

• List Lock: 20 points.

• Element Lock: 15 points.

• Reduction: 10 points.

• Answers to questions (report): 20 points.

• Total: 100 points.

4



6 Submission

Create a report that answers all of the questions above. Be sure to submit all of the files necessary for building your
solutions.

Submit your assignment by typing
submitece454f 4 *.cc
submitece454f 4 *.h
submitece454f 4 Makefile
submitece454f 4 report.txt
on one of the UG machines.

5


