2013-09-10

ECE 454
Computer Systems Programming

Introduction

Ding Yuan
ECE Dept., University of Toronto
http://www.eecg.toronto.edu/~yuan

slides courtesy: Greg Steffan

Content of this lecture

Administration (personnel, policy,
agenda, etc.)

* Boring stuff
* You can go to sleep now

Why ECE 4547
* Fun stuff
* I will wake you up

Administration

Who am 1

Ding YUAN (call me Ding)

Research: operating system, software reliability and
availability

Brief BIO:

* Ph.D. University of Illinois (UTUC), 2012

* Microsoft Research 2008

 Technique invented are requested by many large companies

2013-09-10

2013-09-10

Personnel

* Instructor:
* Ding Yuan (vuan@eecg.toronto.edu)
+ Office hour: Wednesday after the lecture
 Office: Sandford Fleming 2002E

* Homepage: http://www.eecg.toronto.edu/~yuan

* Teaching Assistants:
* Michelle Wong, Yongle Zhang, Xu Zhao

* TA available in computer lab GB251 on Thursday
before lab due date

Recommended Textbook

» Textbook is not required
* The relevant contents will be covered in the slides
* Google & Wikipedia can tell you all
I will post some online resources in Piazza

* Randal E. Bryant and David R. O’Hallaron,

+ “Computer Systems: A Programmer’s Perspective”, 274
edition, Prentice Hall 2010.

2013-09-10

Communications

* Class web site available from instructor’s home page
* http://www.eecg.toronto.edu/~yuan/teaching/ece454/
* Provides slides, agenda, grading policy, etc.
+ All information regarding the labs

* Piazza (See course homepage) used for discussion
* Q/A & discussion with peers, TAs, prof

* Bonus marks: each instructor endorsed answer will get 2
bonus marks, maximum: 4 marks

* Encourage you to help others

* UofT Portal is only used for Grades

Policies: Grading

* Exams (65%)
* Midterm (25%)
+ Final (40%)
+ All exams are open book/open notes.

* Homework (35%)
* 5 homeworks (varying % each)
* 10% penalty per day submitted late

2013-09-10

Policies: Assignments

Work groups

* You can work in groups of two for all labs (or individually)
* You can change groups for each assignment (if you want)
* No extensions for group changes mid-assignment

* Don’t put assignment code on public Google or github repositories!

Handins

+ Assignments due at 11:59pm on specified due date.
* Electronic hand-ins only
* Follow the submit procedure (as specified in lab handout)

Policies: Cheating

Cheating is a serious offence, will be punished harshly
0 grade for assignment, potential for official letter in file.

What is cheating?

+ Using someone else’s solution to finish your assignment to avoid having to
understand/learn

+ Sharing code with a non-group-member
+ Copying or retyping

What is NOT cheating?

+ Helping others use systems or tools.

+ Helping others with high-level design issues.
* Helping others debug their code.

‘We do use cheater-beaters
+ Automatically compares your solutions with others

2013-09-10

How NotTo pass ECE454

* Do not come to lecture

+ It’s nice out, the slides are online, and material in the
book anyway

« TRUTH: Lecture material is the basis for exams

« It is much more efficient to learn through discussion

* Copy other people’s project
« It is cheating!

* How can you answer the questions in midterm or final
exams?

How NotTo pass ECE454 (2)

Do not ask questions in lecture, office hours, or piazza
« It’s scary, I don’t want to embarrass myself

+ TRUTH: asking questions is the best way to clarify
lecture material at the time it is being presented

» “There is no such things as stupid question...”

Wait until the last couple of days to start a project
* The project cannot be done in the last few days

2013-09-10

The ‘ug’ Multicore
Machines

Facilities

e Official lab time: Thursdays 4-7 p.m.
+ Both SF1012 and GB 251
+ Optional: you don’t have to attend
+ TA present in GB251 4 - 6pm on Thursday before each lab due

» Identical workstations:
* (GB243: ugl32-ugl80
+ SF2102: ug201-ug225
* GB251: ug226-ug249
* Develop and measure on any of these
* Try to measure on an unloaded machine!

* Similar workstations:
* SF2204: ug51-ug75
» Can use for development, but don’t measure on these!

“"try your UG-machine accesss ASAP!

2013-09-10

Before we start

* Any questions?

2013-09-10

Why Take this Course?

* Become a superstar programmer
Most engineering jobs involve programming
Superstar programmers are increasingly in demand
A superstar programmer is worth 1000x normal — Bill Gates

Google Offers Staff Engineer $3.5 Million To
Turn Down Facebook Offer

R-\¢
gA YE MICHAEL ARRINGTON ¥

Why Take this Course?

* Better understanding of software/hardware
interaction

* Important whether you are a software or hardware type
* Considering a programming job or grad school

» Jobs and Entrepreneurial Opportunities
» Computing is at the heart of most interesting ventures

Start a Company in your 20’s!

What Good Programmers Care About

1) Readability
2) Debugability
Productivity (choice of language, practice)

3) Reliability

4) Maintainability

5) Scalability
Performance (systems understanding)

6) Efficiency =ECE 454

2013-09-10

10

2013-09-10

Let’s be more concrete

* Suppose you're building facebook
The “homepage” feature

void display_homepage (user) {
friendlist = get_friendlist (user);
foreach (friend in friendlist) {
update = get_update_status (friend);
display (update);
}

&+ How can | double the speed?
&FEasy: TAKE ECE 454!!!

Pre 2005

* To improve the performance, just buy a new computer

11

Recent Intel Processors

hn) ol R = =]

=<

19

199

199

20

“Moore’s Law”

The number of \
transistors per chip
seems to be doubling
every 18 months!

J

Increases in Transistors vs. Clock Freq.

7 b .
10 Transistors
6 [(Thousands)
10 3
105 — S - - e e . : --single-Thread
: . Per?formance
WL AT (SpecINT)
F — Frequency
r MHz
2 [Typ;ical Power
10" ¢ “(Watts)
1l Number
10" ¢ ~of Cores -
10° _ |
IR eeu I N A S
1975 1980 1985 1990 1995 2000 2005 2010 2015
Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten

2013-09-10

12

2013-09-10

A Multicore Present and Future

OO
O m (BT = [=

PentiumIV Core2 Duo Core 2 Quad

C I (1OO@O,
QOOO =) L ©©O©OL =)

© (1©O©OO]
[?@1[1: @1 OO

-/ N/

8-core 16-core

& 2x cores every 1-2yrs: 1000 cores by 2020!?

Only One Sequential Program to Run?

friendlist = get friendlist (user);

foreach (friend in friendlist) {
update = get_update_status (friend);
display (update);

Time

J void display_homepage (user) {

} (1OOOO]

©©)| [sssk

©OOO©

)| [Heeeel

16-core
&~ one core idle &~ 15 cores idle!

13

Improving Execution Time
Single Program:

Exec. Q
Time d<

©® IITII

©OOO

¥ need parallel threads to reduce execution time

void display_homepage (user) {
friendlist = get friendlist (user);
foreach (friend in friendlist) {
pthread_create(fetch_and_display, friend);
}
}

void fetch_and_display (friend) {
update = get_update_status (friend);
display (update);

}

fetch_and fetch_and fetch_and fetch_and
_display _display _display _display

lT T I I
© © o ©

2013-09-10

14

2013-09-10

Punch line: We Must Parallelize All Software!

< You will learn it in ECE 454

But...

* So far we only discussed CPU

* But is it true that faster CPU -> faster program?

* The same program may run slower on a faster CPU. Why?

void display_homepage (user) {
friendlist = get_friendlist (user);
foreach (friend in friendlist) {
update = get_update_status (friend);
display (update);
}
}

15

2013-09-10

Storage hierarchy

* Your program needs to access data. That takes time!

Fast CPU Low Capacity
Access

Main Memory

/ Disk Storage
Slow CPU Tape Storage Very Large
Access / peSioeg \ Capacity

Numbers everyone should know

L1 cache reference 0.5 ns* (L1 cache size: < 10 KB)
Branch mispredict 5 ns

L2 cache reference 7 ns (L2 cache size: hundreds KB)
Mutex lock/unlock 100 ns

Main memory reference 100 ns (mem size: GBs)
Send 2K bytes over 1 Gbps network 20,000 ns

Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns

Flash drive read 40,000 ns

Disk seek 10,000,000 ns (10 milliseconds)

Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet Cal.->Netherlands->Cal. 150,000,000 ns

*1 ns = 1/1,000,000,000 second Data from Jeff Dean
Fora 2.7 GHz CPU (my laptop), 1 cycle = 0.37 ns

16

2013-09-10

Performance optimization is
about finding the bottleneck

+ If you can avoid unnecessary disk I/O
---> your program could be 100,000 faster

* Have you heard of Facebook’s memcached?

+ If you allocate your memory in a smart way

---> your data can fit entirely in cache
* You will learn this in lab assignments

Back to the Facebook example

void display_homepage (user) {
friendlist = get_friendlist (user);
foreach (friend in friendlist) {
pthread_create(fetch_and_display, friend);
}
}

void fetch_and_display (friend) {
update = get_update_status (friend);
display (update);

b

& Challenge: the data rows too BIG!
100 Petabytes = 200,000 x my laptop

17

Back to the Facebook example

void display_homepage (user) {
friendlist = get_friendlist (user);
updates = MULTI_GET (“updates”, friendlist);
display (updates);

}

MULTI_GET

Optimization 1: parallelization

Opt. 2: Store in

memory

memory

memory instead

of hard disk

Course Content

2013-09-10

18

2013-09-10

Course Breakdown

Module 1: Code Measurement and Optimization
Module 2: Memory Management and Optimization
Module 3A: Multi-core parallelization

Module 3B: Multi-machine parallelization

1) Code Measurement and Optimization

* Topics
* Finding the bottleneck!
* code optimization principles
* measuring time on a computer and profiling
+ Understanding and using an optimizing compiler

* Assignments

+ HW1: Compiler optimization and program profiling
* basic performance profiling, finding the bottleneck.

19

2013-09-10

2) Memory Management and Opt.

Topics

* Memory hierarchy

+ Caches and Locality

* Virtual Memory

Note: all involve aspects of software, hardware, and OS

Assignments
+ HW2: Optimizing Memory Performance

* profiling, measurement, locality enhancements for cache performance
+ HW3: Writing your own memory allocator package

* understanding dynamic memory allocation (malloc)

3) Parallelization

* Topics
+ A: Parallel/multicore architectures (high-level understanding)
* Threads and threaded programming
» Synchronization and performance
* B: Parallel on multiple machines
* Big data & cloud computing

* Assignments
* HW4: Threads and Synchronization Methods
* Understanding synchronization and performance
+ HW5: Parallelizing a program

* Parallelizing and optimizing a program for multicore performance

20

A big picture

@ Topic 1: code @ @
: optimization i I
Cache || Cache Topic 3A: multi-

Topic 2: mem. core parallelization
- management

Topic 3B: parallelization
using the cloud

Homework Schedule

HW1: 2 weeks 15%
HW2: 2 weeks 20%
HW3: 4 weeks 25%
HW4: 1.5 weeks 20%
HWS5: 2 weeks 20%
100% total

2013-09-10

21

2013-09-10

The bigger picture

* Optimization is not the ONLY goal!
1) Readability
2) Debugability

More important than performance!!!!

3) Reliability
4) Maintainability
5) Scalability Premature optimization is the root of all evil!

6) Efficiency —Donald Knuth

Example 1

* Premature optimization causing bugs
* cp /proc/cpuinfo .
* Created an empty file!!! (Demo)

bool copy_reg (..) { .. .
if (src.st_size 1= @) { == Premature optimization!!!

/* Copy the file content */
}

else {
/* skip the copy if the file size = 0 */
}

}

22

2013-09-10

Example 2

* Optimization might reducing readability

int count (unsigned x) { int count (unsigned x) {
int sum; int sum, i;
while (x != @) { sum = X;
X =X > 1; for (i = 1; i < 31; i++) {
sum = sum - X; x = rotatel(x, 1);
} sum = sum + X;
return sum; }
} return -sum;

}

They’re both to count the number of ‘1’ bits in ‘x’.
How could someone else is to maintain this code?

/*
* When I wrote this, only God and
* I understood what I was doing.
* Now, only God knows

*/

23

But how do I know if my
optimization 1s “premature”?

e Hard to answer...

* “Make it work; Make it right; Make it Fast” --- Butler
Lampson

» Purpose of my program?

-- e.g., will it have a long lifetime or it’s a one-time thing (e.g., hackathon or
ACM programming contest)
» Am I optimizing for the bottleneck?

-- e.g., if the program is doing a lot of 1/ O, there is no point to optimize for
“count the number of bits in an integer”
» Am I optimizing for the common case or special case?

--e.g., the “cp” bug was optimizing for a special case. ..
* What's the price I pay? e.g., reduced readability, increase program size, etc.

* Again, “Premature optimization is the root
of all evils”

If you are only going to remember one thing from ECE
454, this is it!

* And let the fun begin!

2013-09-10

24

