
2013-­‐09-­‐17	

1	

ECE 454
Computer Systems Programming

Measuring and profiling

Ding Yuan
ECE Dept., University of Toronto

http://www.eecg.toronto.edu/~yuan

“It is a capital mistake to theorize
before one has data. Insensibly one
begins to twist facts to suit theories
instead of theories to suit facts.” -
Sherlock Holmes

2013-­‐09-­‐17	

2	

Measuring Programs
and Computers

Why Measure a Program/Computer?

•  To compare two computers/processors
•  Which one is better/faster? Which one should I buy?

•  To optimize a program
•  Which part of the program should I focus my effort on?

•  To compare program implementations
•  Which one is better/faster? Did my optimization work?

•  To find a bug
•  Why is it running much more slowly than expected?

2013-­‐09-­‐17	

3	

Basic Measurements

•  IPS: instructions per second
•  MIPS: millions of IPS
•  BIPS: billions of IPS

•  FLOPS: floating point operations per second
•  megaFLOPS: 106 FLOPS
•  gigaFLOPS: 109 FLOPS
•  teraFLOPS: 1012 FLOPS
•  petaFLOPS: 1015 FLOPS
•  Eg: playstation3 capable of 20 GFLOPS

•  IPC: instructions per processor-cycle

•  CPI: cycles per instruction
•  CPI = 1 / IPC

How not to compare processors

•  Clock frequency (MHz)?

•  IPC for the two processors could be radically different

•  CPI/IPC?

•  dependent on instruction sets used

•  dependent on efficiency of code generated by compiler

•  FLOPS?

•  only if FLOPS are important for the expected applications

•  also dependent on instruction set used

2013-­‐09-­‐17	

4	

How to measure a processor

•  Use wall-clock time (seconds)

time = IC x CPI x ClockPeriod

•  IC = instruction count (total instructions executed)

•  CPI = cycles per instruction

•  ClockPeriod = 1 / ClockFrequency = (1 / MHz)

Amdahl’s Law:
Optimizing part of a program

speedup = OldTime / NewTime

•  Eg., my program used to take 10 minutes
•  now it only takes 5 minutes after optimization
•  speedup = 10min/5min = 2.0 i.e., 2x faster

•  If only optimizing part of a program (on following
slide):
•  let f be the fraction of execution time that the

optimization applies to (1.0 > f > 0)
•  let s be the improvement factor (speedup of the

optimization)

2013-­‐09-­‐17	

5	

Amdhal’s Law Visualized

f

1-f

f/s

1-f

Optimization

O
ld

T
im

e

N
ew

T
im

e
Fthe best you can do is eliminate f; 1-f remains

Amdahl’s Law: Equations

•  let f be the fraction of execution time that the
optimization applies to (1.0 > f > 0)

•  let s be the improvement factor

NewTime = OldTime x [(1-f) + f/s]

speedup = OldTime / (OldTime x [(1-f) + f/s])

speedup = 1 / (1 – f + f/s)

2013-­‐09-­‐17	

6	

Example1: Amdahl’s Law

•  If an optimization makes loops go 3 times faster, and my
program spends 70% of its time in loops, how much
faster will my program go?

speedup = 1 / (1 – f + f/s)

 = 1 / (1 – 0.7 + 0.7/3.0)

 = 1/(0.533333)

 = 1.875

•  My program will go 1.875 times faster.

Example2: Amdahl’s Law

•  If an optimization makes loops go 4 times faster,
and applying the optimization to my program makes
it go twice as fast, what fraction of my program is
loops?

2013-­‐09-­‐17	

7	

Implications of Amdahl’s Law

Uncommon

Common

Common

Uncommon

Optimization

Foptimize the common case

Fthe common case may change!

Tools for Measuring
and Understanding

Software

2013-­‐09-­‐17	

8	

Tools for Measuring/Understanding

§  Software Timers
§  C library and OS-level timers

§  Hardware Timers and Performance Counters
§  Built into the processor chip

§  Instrumentation
§ Decorates your program with code that counts & measures

§  gprof

§  gcov

Software Timers: Command Line

•  Example: /usr/bin/time
§ Measures the time spent in user code and OS code
§ Measures entire program (can’t measure a specific function)
§ Not super-accurate, but good enough for many uses

•  $ time ls

•  user & sys --- CPU time
•  /usr/bin/time gives you more information

Fused in HW1

2013-­‐09-­‐17	

9	

Software Timers: Library: Example

Fcan measure within a program
Fused in HW2

#include	
 <sys/times.h>	
 	
 	
 //	
 C	
 library	
 functions	
 for	
 time	

unsigned	
 get_seconds()	
 {	

	
 	
 struct	
 tms	
 t;	

	
 	
 times(&t);	
 	
 //	
 fills	
 the	
 struct	

	
 	
 return	
 t.tms_utime;	
 //	
 user	
 program	
 time	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 (as	
 opposed	
 to	
 OS	
 time)	

}	

…	

unsigned	
 start_time,	
 end_time,	
 elapsed_time;	

start_time	
 =	
 get_seconds();	

do_work();	
 	
 	
 	
 //	
 function	
 to	
 measure	

end_time	
 =	
 get_seconds();	

elapsed_time	
 =	
 end_time	
 -­‐	
 start_time;	

	

Hardware: Cycle Timers

Fcan be more accurate than library (if used right)
Fused in HW2

§  Programmer can access on-chip cycle counter
§  Eg., via the x86 instruction: rdtsc (read time stamp

counter)
§  We use this in hw2:clock.c:line94 to time your solutions

§  Example use:
§  start_cycles	
 =	
 get_tsc();	
 	
 //	
 executes	
 rdtsc	

§  do_work();	

§  end_cycles	
 =	
 get_tsc();	

§  total_cycles	
 =	
 end_cycles	
 –	
 start_cycles;	

§  Can be used to compute #cycles to execute code
§ Watch out for multi-threaded program!

2013-­‐09-­‐17	

10	

Hardware: Performance Counters

•  Special on-chip event counters
§  Can be programmed to count low-level architecture events
§  Eg., cache misses, branch mispredictions, etc.

•  Can be difficult to use
•  Require OS support
•  Counters can overflow
•  Must be sampled carefully

•  Software packages can make them easier to use
§  Eg: Intel’s VTUNE, perf (recent linux)

Fperf used in HW2

Instrumentation
§  Compiler/tool inserts new code & data-structures

§  Can count/measure anything visible to software
§  Eg., instrument every load instruction to also record the load address

in a trace file.
§  Eg., instrument every function to count how many times it is called

§  “Observer effect”:
§  can’t measure system without disturbing it
§  Instrumentation code can slow down execution

§  Example instrumentors (open/freeware):
§  Intel’s PIN: general purpose tool for x86
§  Valgrind: tool for finding bugs and memory leaks
§  gprof: counting/measuring where time is spent via sampling

2013-­‐09-­‐17	

11	

Instrumentation: Using gprof

•  gprof: how it works
•  Periodically (~ every 10ms) interrupt program

•  Determine what function is currently executing
•  Increment the time counter for that function by interval (e.g., 10ms)

•  Approximates time spent in each function, #calls made
•  Note: interval should be random for rigorous sampling!

•  Usage: compile with “-pg” to enable
gcc –O2 –pg prog.c –o prog
./prog

•  Executes in normal fashion, but also generates file gmon.out
gprof prog

•  Generates profile information based on gmon.out

Fused in HW1
Fdetailed example later in lecture

Instrumentation: Using gcov

•  Gives profile of execution within a function
•  Eg., how many times each line of C code was executed
•  Can decide which loops are most important
•  Can decide which part of if/else is most important

•  Usage: compile with “-g -fprofile-arcs -ftest-coverage” to enable
gcc -g -fprofile-arcs -ftest-coverage file.c –o file.o
./prog

•  Executes in normal fashion
•  Also generates file.gcda and file.gcno for each file.o

gcov –b progc
•  Generates profile output in file.c.gcov

Fused in HW1

2013-­‐09-­‐17	

12	

Emulation/Instrumentation: valgrind

•  Primarily used to find/track memory leaks
•  Eg., if malloc() an item but forget to free it
•  Many other uses for it these days

•  valgrind is a fairly sophisticated emulator
•  a virtual machine that just-in-time (JIT) compiles
•  adds instrumentation dynamically (without rerunning gcc)
•  emulates 4-5x slower than native execution

•  Usage: (available on ug machines)
valgrind myprogram
== LEAK SUMMARY:
== definitely lost: 0 bytes in 0 blocks
== indirectly lost: 0 bytes in 0 blocks
== possibly lost: 0 bytes in 0 blocks
== still reachable: 330,372 bytes in 11,148 blocks

Demo:
Using gprof

