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Abstract

Linux is developed with a strong practical emphasis more than a theoretical one.
When new algorithms are suggested or existing implementations questioned, it is
common to request code to match the argument. Many of the algorithms used in the
Virtual Memory (VM) system were designed by theorists but the implementations
have now diverged from the theory considerably. In part, Linux does follow the
traditional development cycle of design to implementation but it is more common
for changes to be made in reaction to how the system behaved in the “real-world”
and intuitive decisions by developers. These intuitive changes can be a hindrance as
they are rarely backed by controlled, repeatable experiments. Consequently, some
design choices have been made without a strong foundation.

This has led to a situation where the VM is poorly documented except for a
small number of web sites with incomplete coverage. The existing books on Linux
are comprehensive but they try to cover the entire kernel and sometimes leave out
the details of the VM. This leads to the VM being fully understood by only a
small number of core developers. Developers looking for information on how it
functions are generally told to read the source and little or no information is available
on the theoretical basis for the implementation. This requires that even a casual
observer invest a large amount of time to read the code and study the field of
Memory Management. The problem is further compounded by the fact that the
code comments, if they even exist, only indicate what is happening in a very small
instance. This makes difficult to see how the overall system functions as is roughly
analogous to using a microscope to identify a piece of furniture.

As Linux gains in popularity, in the business as well as the academic world, more
developers are expressing an interest in developing Linux to suit their needs and the
lack of detailed documentation is a significant barrier to entry for a new developer
or researcher who wishes to study the VM.

The objective of this thesis is to document fully how the 2.4.20 VM works in-
cluding its structure, the algorithms used, the implementations thereof and the
Linux-specific features. Combined with the companion document “Code Comment-
ary on the Linux Virtual Memory Manager” the documents act as a detailed tour of
the code explaining almost line by line how the VM operates and where applicable,
explains the theoretical basis for the implementation. It will also describe how to
approach reading through the kernel source including tools aimed at making the
code easier to read, browse and understand.

It is envisioned that this will drastically reduce the amount of time a developer
or researcher needs to invest to understand what is happening inside the Linux VM.
This applies even if the VM of interest is a later version as the time needed to
understand changes and extensions is considerably less than the time required to
learn the fundamentals of the Linux VM.
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Chapter 1

Introduction

Linux is a relatively new operating system that has begun to enjoy a lot of attention
from the business and academic worlds. As the operating system matures, its feature
set, capabilities and performance grow but so does its size and complexity. The
table in Figure 1.1 shows the size of the kernel source code and size in bytes and
lines of code of the mm/ part of the kernel tree. This does not include the machine
dependent code or any of the buffer management code and does not even pretend
to be an accurate metric for complexity but still serves as a small indicator.

Version Release Date Total Size Size of mm/ Line count
1.0 March 13th, 1992 5.9MiB 96KiB 3109
1.2.13 February 8th, 1995 11MiB 136KiB 4531
2.0.39 January 9th 2001 35MiB 204KiB 6792
2.2.22 September 16th, 2002 93MiB 292KiB 9554
2.4.20 November 28th, 2002 167MiB 520KiB 15428

Table 1.1: Kernel size as an indicator of complexity

As is the habit of open source project developers in general, new developers
asking questions are often told to find their answer directly from the source or are ad-
vised to ask on the mailing list for beginner developers (http://www.kernelnewbies.org).
With the Linux Virtual Memory (VM) manager, this was a suitable response for
earlier kernels as the time required to understand the VM could be measured in
weeks. The books available on the operating system devoted enough time to the
memory management chapters to make the relatively small amount of code easy to
navigate. This is no longer the case.

The books that describe Linux’s internals [BC00] [BC03], tend to cover the entire
kernel rather than one topic with the notable exception of device drivers [RC01].
These books, particularly Understanding the Linux Kernel, provide invaluable in-
sight into kernel internals but they miss the details which are specific to the VM
and not of general interest.

Increasingly, to get a comprehensive view on how the kernel functions, the de-
veloper or researcher is required to read through the source code line by line which

12
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requires a large investment of time. This is especially true as the implementations
of several VM algorithms diverge considerably from the papers that describe them.

In this thesis, a comprehensive guide to the VM as implemented in the 2.4.20
kernel is presented. In addition to an introduction to the theoretical background
and verbal description of the implementation, a companion document called Code
Commentary On The Linux Virtual Memory Manager, hereafter referred to as the
companion document, provides a line-by-line tour of the code. It is envisioned that
with this pair of documents, the time required to have a clear understanding of the
VM, even later VMs, will be measured in weeks instead of the estimated 8 months
currently required by even an experienced developer.

The VM-specific documentation that exists today is relatively poor. It is not an
area of the kernel that many wish to get involved in for a variety of reasons ranging
from the amount of code involved, to the complexity of the subject of memory
management to the difficulty of debugging the kernel with an unstable VM.

1.1 General Kernel Literature

The second edition of Understanding the Linux Kernel was published in February
2003. It covers kernel 2.4.18 which contains a VM very similar to 2.4.20 that is
discussed in this thesis. As it provides excellent coverage of the kernel, it deserves
further discussion as a basis of comparison to this thesis.

First, the book tries to address the entire kernel and, while comprehensive, it
misses VM details which are not of general interest. For example, it is detailed here
why ZONE_NORMAL is exactly 896MiB and exactly how per-cpu caches are implemen-
ted. Other aspects of the VM, such as the boot memory allocator, which are not
of general kernel interest, are addressed by this thesis. In this thesis, the kernel is
discussed entirely from the perspective of the VM alone and includes many subtle
details that are missed by other literature.

Secondly, this thesis discusses the theory as well as the implementation so that
a researcher can follow the origin of the idea rather than possible mistaking the
implementation as being unique to Linux. By understanding the underlying idea
behind an implementation, the reader can build a conceptual model of what to
expect making the deciphering of the code much simpler.

Finally, this thesis includes a line by line code commentary to cover even the
smallest details of the VM. This type of minutiae are not covered in general books
as the reader would be overwhelmed with detail. Even a reader with a very strong
conceptual model of the VM may encounter difficulties when examining the actual
code which is a hurdle that this thesis helps them to overcome. Previously, research-
ers were required to read the source to find out many of these details which is why
specialised research such as this thesis is needed. With a clear and complete under-
standing of this thesis, later VMs can be analysed and understood in a matter of
days.
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1.2 Thesis Overview

In Chapter 2, I will go into detail on how the code may be managed and deciphered.
Three tools will be introduced that are used for the analysis, easy browsing and man-
agement of code. The first is a tool called Linux Cross Referencing (LXR) which
allows source code to be browsed as a web page with identifiers and functions high-
lighted as hyperlinks to allow easy browsing. The second is a tool called gengraph
which was developed for this project and is used to generate call graphs starting
from a particular function with the ability to limit the depth and what functions
are displayed. The last is a simple tool for managing kernels and the application of
patches. Applying patches manually can be time consuming and the use of version
control software such as CVS1 or BitKeeper2 is not always an option. With this tool,
a simple file specifies what source to use, what patches to apply and what kernel
configuration to use.

In the subsequent chapters, each part of the implementation of the Linux VM
will be discussed in detail such as how memory is described in an architecture inde-
pendent manner, how processes manage their memory, how the specific allocators
work and so on. Each will refer to the papers that describe closest the behavior of
Linux as well as covering in depth the implementation, the functions used and their
call graphs so the reader will have a clear view of how the code is structured. For a
detailed examination of the code, the reader is encouraged to consult the companion
document.

1.3 Typographic Conventions

The conventions used in this document are very simple. New concepts that are
introduced as well as URLs are in italicised font. Binaries and package names
are are in bold. Structures, field names, compile time defines, variables are in
constant-width font. At times when talking about a field in a structure, both the
structure and field name will be included like page→list for example. Filenames
are in constant-width font but include files have angle brackets around them like
<linux/mm.h> and may be found in the include/ directory of the kernel source.

1.4 About this Document

This document is available in PDF, HTML and plain text formats at
http://www.csn.ul.ie/∼mel/projects/vm. The date on the title page will indicate
when it was last updated. If you have questions, comments or suggestions, email
Mel Gorman <mel@csn.ul.ie>.

1http://www.cvshome.org/
2http://www.bitmover.com
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1.5 Companion CD

A companion CD is available and should be included with this thesis if it is provided
by University of Limerick. At time of writing, it is not publicly available but when
it is, it will be available for download at http://www.csn.ul.ie/∼mel/projects/vm/.
The CD is designed to be used under Linux and mounted on /cdrom with the
command

mel@joshua:/$ mount /dev/cdrom /cdrom -o exec

The mount point and options are only important if you wish to start the web
server that is installed on the CD. Please note that the default options normally used
for mounting CDs may not allow the server to start. The CD has three important
components:

• A web server is available which is started by /cdrom/start_server. After
starting it, the URL to access it is http://localhost:10080. It has been tested
with Red Hat 7.3 and Debian Woody;

• The “Code Commentary” companion document and this thesis are available
from the /cdrom/docs/ directory in HTML, PDF and plain text formats;

• The VM Regress, gengraph and patchset packages which are discussed in
Chapter 2 are available in /cdrom/software. gcc-3.0.1 is also provided as it
is required for building gengraph.

1.5.1 Companion CD Web Server

An unmodified copy of Apache 1.3.27 (http://www.apache.org/ ) has been built
and configured to run from the CD which must be mounted on /cdrom/. To start
it, run the script /cdrom/start_server. If there are no errors, the output should
look like:

mel@joshua:~$ /cdrom/start_server
Starting Apache Server: done
The URL to access is http://localhost:10080/

The URL supplied is a small web site which allows easy browsing of the CD. The
most noteworthy feature of the web site is a local running copy of the LXR (see
Section 2.1.2) which allows the Linux source code to be browsed as a web page with
hyperlinks for functions and identifiers. It greatly simplifies source code browsing.

To shutdown the server, execute the script /cdrom/stop_server and the CD
may be unmounted.
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1.5.2 Code Commentary Companion Document

The companion document is a considerably sized document. As opposed to including
it as a large appendix, it is available from the companion CD in PDF, HTML and
plain text formats in the /cdrom/docs directory and links are on the companion
CD’s web site. It is also available at http://www.csn.ul.ie/∼mel/projects/vm/.



Chapter 2

Code Management

One of the largest initial obstacles to understanding the code is deciding where to
start and how to easily manage, browse and get an overview of the overall code
structure. If requested on mailing lists, people will provide some suggestions on how
to proceed but a comprehensive methodology has to be developed by each developer
on their own.

The advice that is frequently offered to new developers is to read books on gen-
eral operating systems, on Linux specifically, visit the kernel newbies website1 and
then read the code, benchmark the kernel and write a few documents. There is a re-
commended reading list provided on the website but there is no set of recommended
tools for analysing and breaking down the code and, while reading the code from be-
ginning to end is admirable, it is hardly the most efficient method of understanding
the kernel.

Hence, this section is devoted to describing what tools were used during the
course of researching this document to make understanding and managing the code
easier and to aid researchers and developers in deciphering the kernel. It begins
with a guide to how developers manage their source with patches, revision tools and
how developers sometimes develop their own branch which includes their own set
of modifications to the main development tree. We then introduce diff and patch
in more detail, how to easily browse the code and analyse the flow. We then talk
about how to approach the understanding of the VM and how to submit work.

2.1 Managing the Source

The mainline or stock kernel is principally distributed as a compressed tape archive
(.tar) file available from the nearest kernel source mirror. In Ireland’s case, the mirror
is located at ftp://ftp.ie.kernel.org. The stock kernel is always the one considered
to be released by the tree maintainer. For example, at time of writing, the stock
kernels for 2.2.x are those released by Alan Cox, for 2.4.x by Marcelo Tosatti and
for 2.5.x by Linus Torvalds. At each release, the full tar file is available as well as
a smaller patch which contains the differences between the two releases. Patching

1http://www.kernelnewbies.org
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is the preferred method of upgrading for bandwidth considerations. Contributions
made to the kernel are almost always in the form of patches which is a unified diff
generated by the GNU tool diff.

Why patches This method of sending patches to be merged to the mailing list
initially sounds clumsy but it is remarkable efficient in the kernel development en-
vironment. The principal advantage of patches is that it is very easy to show what
changes have been made rather than sending the full file and viewing both versions
side by side. A developer familiar with the code being patched can easily see what
impact the changes will have and if they should be merged. In addition, it is very
easy to quote the email from the patch and request more information about partic-
ular parts of it. There are scripts available that allow emails to be piped to a script
which strips away the mail and keeps the patch available.

Subtrees At various intervals, individual influential developers may have their
own version of the kernel which they distribute as a large patch against the mainline
kernel. These subtrees generally contain features or cleanups which have not been
merged to the mainstream yet or are still being tested. Two notable subtrees are the
-rmap tree maintained by Rik Van Riel, a long time influential VM developer and
the -mm tree maintained by Andrew Morton, the current maintainer of the stock
VM. The -rmap tree has a large set of features that for various reasons never got
merged into the mainline. It is heavily influenced by the FreeBSD VM and has a
number of significant differences to the stock VM. The -mm tree is quite different
from -rmap in that it is a testing tree with patches that are waiting to be tested
before being merged into the stock kernel. Much of what exists in the mm tree
eventually gets merged.

BitKeeper In more recent times, some developers have started using a source
code control system called BitKeeper2, a proprietary version control system that
was designed with Linux as the principal consideration. BitKeeper allows developers
to have their own distributed version of the tree and other users may “pull” sets of
patches called changesets from each others trees. This distributed nature is a very
important distinction from traditional version control software which depends on a
central server.

BitKeeper allows comments to be associated with each patch which may be
displayed as a list as part of the release information for each kernel. For Linux, this
means that patches preserve the email that originally submitted the patch or the
information pulled from the tree so that the progress of kernel development is a lot
more transparent. On release, a summary of the patch titles from each developer is
displayed as a list and a detailed patch summary is also available.

As BitKeeper is a proprietary product, which has sparked any number of flame
2http://www.bitmover.com
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wars3 with free software developers, email and patches are still considered the only
method for generating discussion on code changes. In fact, some patches will not be
considered for acceptance unless there is first some discussion on the main mailing
list. In open source software, code quality is considered to be directly related to the
amount of peer review. As a number of CVS and plain patch portals are available to
the BitKeeper tree and patches are still the preferred means of discussion, it means
that at no point is a developer required to have BitKeeper to make contributions to
the kernel but the tool is still something that developers should be aware of.

2.1.1 Diff and Patch

The two tools for creating and applying patches are diff and patch, both of which
are GNU utilities available from the GNU website4. diff is used to generate patches
and patch is used to apply them. While the tools have numerous options, there is
a “preferred usage”.

Patches generated with diff should always be unified diff and generated from
one directory above the kernel source root. A unified diff includes more information
that just the differences between two lines. It begins with a two line header with
the names and creation dates of the two files that diff is comparing. After that,
the “diff” will consist of one or more “hunks”. The beginning of each hunk is marked
with a line beginning with @@ which includes the starting line in the source code and
how many lines there are before and after the hunk is applied. The hunk includes
“context” lines which show lines above and below the changes to aid a human reader.
Each line begins with a +, - or blank. If the mark is +, the line is added. If a -, the
line is removed and a blank is to leave the line alone as it is there just to provide
context. The reasoning behind generating from one directory above the kernel root
is that it is easy to see quickly which version the patch has been applied against and
it makes the scripting of applying patches easier if each patch is generated the same
way.

Let us take for example, a very simple change has been made to mm/page_alloc.c
which adds a small piece of commentary. The patch is generated as follows. Note
that this command should be all on one line minus the backslashes.

mel@joshua: kernels/ $ diff -u \
linux-2.4.20-clean/mm/page_alloc.c \
linux-2.4.20-mel/mm/page_alloc.c > example.patch

This generates a unified context diff (-u switch) between the two files and places
the patch in example.patch as shown in Figure 2.1.1.

From this patch, it is clear even at a casual glance which files are affected
(page_alloc.c), which line it starts at (76) and that the block was 8 lines be-
fore the changes and 23 after them. The new lines are clearly marked with a +.

3A regular feature of kernel discussions meaning an acrimonious argument often containing
insults bordering on the personal type.

4http://www.gnu.org
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--- linux-2.4.20-clean/mm/page_alloc.c Thu Nov 28 23:53:15 2002
+++ linux-2.4.20-mel/mm/page_alloc.c Tue Dec 3 22:54:07 2002
@@ -76,8 +76,23 @@

* triggers coalescing into a block of larger size.
*
* -- wli

+ *
+ * There is a brief explanation of how a buddy algorithm works at
+ * http://www.memorymanagement.org/articles/alloc.html . A better idea
+ * is to read the explanation from a book like UNIX Internals by
+ * Uresh Vahalia
+ *

*/

+/**
+ *
+ * __free_pages_ok - Returns pages to the buddy allocator
+ * @page: The first page of the block to be freed
+ * @order: 2^order number of pages are freed
+ *
+ * This function returns the pages allocated by __alloc_pages and tries to
+ * merge buddies if possible. Do not call directly, use free_pages()
+ **/
static void FASTCALL(__free_pages_ok (struct page *page, unsigned int order));
static void __free_pages_ok (struct page *page, unsigned int order)
{

Figure 2.1: Example Patch

If a patch consists of multiple hunks, each will be treated separately during patch
application.

Patches broadly speaking come in two varieties, plain text such as the one above
which are sent to the mailing list and a compressed form with gzip (.gz extension)
or bzip2 (.bz2 extension). It can be generally assumed that patches are taken from
one level above the kernel root and so can be applied with the option -p1. This
option means that the patch is generated with the current working directory being
one above the Linux source directory and the patch is applied while in the source
directory. Broadly speaking, this means a plain text patch to a clean tree can be
easily applied as follows:

mel@joshua: kernels/ $ cd linux-2.4.20-clean/
mel@joshua: linux-2.4.20-clean/ $ patch -p1 < ../example.patch
patching file mm/page_alloc.c
mel@joshua: linux-2.4.20-clean/ $
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To apply a compressed patch, it is a simple extension to just decompress the
patch to stdout first.

mel@joshua: linux-2.4.20-mel/ $ gzip -dc ../example.patch.gz | patch -p1

If a hunk can be applied but the line numbers are different, the hunk number
and the number of lines needed to offset will be output. These are generally safe
warnings and may be ignored. If there are slight differences in the context, it will be
applied and the level of “fuzziness” will be printed which should be double checked.
If a hunk fails to apply, it will be saved to filename.c.rej and the original file will
be saved to filename.c.orig and have to be applied manually.

2.1.2 Browsing the Code

When code is small and manageable, it is not particularly difficult to browse through
the code as operations are clustered together in the same file and there is not much
coupling between modules. The kernel unfortunately does not always exhibit this
behavior. Functions of interest may be spread across multiple files or contained as
inline functions in headers. To complicate matters, files of interest may be buried
beneath architecture specific directories making tracking them down time consum-
ing.

An early solution to the problem of easy code browsing was ctags which could
generate tag files from a set of source files. These tags could be used to jump to the
C file and line where the function existed with editors such as Vi and Emacs. This
method can become cumbersome if there are many functions with the same name.
With Linux, this is the case for functions declared in the architecture dependant
code.

A more comprehensive solution is available with the Linux Cross-Referencing
(LXR) tool available from http://lxr.linux.no. The tool provides the ability to rep-
resent source code as browsable web pages. Global identifiers such as global vari-
ables, macros and functions become hyperlinks. When clicked, the location where
it is defined is displayed along with every file and line referencing the definition.
This makes code navigation very convenient and is almost essential when reading
the code for the first time.

The tool is very easily installed as the documentation is very clear. For the
research of this document, it was deployed at http://monocle.csis.ul.ie which was
used to mirror recent development branches. All code extracts shown in this and
the companion document were taken from LXR so that the line numbers would be
visible.

2.1.3 Analysing Code Flow

As separate modules share code across multiple C files, it can be difficult to see
what functions are affected by a given code path without tracing through all the
code manually. For a large or deep code path, this can be extremely time consuming
to answer what should be a simple question.
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Based partially on the work of Martin Devera5, I developed a tool called
gengraph. The tool can be used to generate call graphs from any given C code
that has been compiled with a patched version of gcc.

During compilation with the patched compiler, files with a .cdep extension are
generated for each C file which list all functions and macros that are contained in
other C files as well as any function call that is made. These files are distilled with a
program called genfull to generate a full call graph of the entire source code which
can be rendered with dot, part of the GraphViz project6.

In kernel 2.4.20, there were a total of 28626 entries in the full.graph file gener-
ated by genfull. This call graph is essentially useless on its own because of its size
so a second tool is provided called gengraph. This program at basic usage takes
just the name of one or more functions as arguments and generates a call graph
with the requested function as the root node. This can result in unnecessary depth
to the graph or graph functions that the user is not interested in, therefore there
are three limiting options to graph generation. The first is to limit by depth where
functions that are greater than N levels deep in a call chain are ignored. The second
is to totally ignore a function so that neither it nor any of the functions it calls will
appear in the call graph. The last is to display a function, but not traverse it which
is convenient when the function is covered on a separate call graph.

All call graphs shown in these documents are generated with the gengraph pack-
age available at http://www.csn.ul.ie/∼mel/projects/gengraph as it is often much
easier to understand a subsystem at first glance when a call graph is available. It
has been tested with a number of other open source projects based on C and has
wider application than just the kernel.

2.1.4 Basic Source Management with patchset

The untarring of sources, management of patches and building of kernels is initially
interesting but quickly palls. To cut down on the tedium of patch management, a
tool was developed called patchset designed for the management of kernel sources.

It uses files called set configurations to specify what kernel source tar to use,
what patches to apply, what configuration to use for the build and what the resulting
kernel is to be called. A sample specification file to build kernel 2.4.20-rmap15a is;

linux-2.4.18.tar.gz
2.4.20-rmap15a
config_joshua

1 patch-2.4.19.gz
1 patch-2.4.20.gz
1 2.4.20-rmap15a

5http://luxik.cdi.cz/∼devik
6http://www.graphviz.org
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This first line says to unpack a source tree starting with linux-2.4.18.tar.gz.
The second line specifies that the kernel will be called 2.4.20-rmap15a and the
third line specifies which kernel configuration file to use for building the kernel.
Each line after that has two parts. The first part says what patch depth to use
i.e. what number to use with the -p switch to patch. As discussed earlier in Section
2.1.1, this is usually 1 for applying patches while in the source directory. The second
is the name of the patch stored in the patches directory. The above example will
apply two patches to update the kernel from 2.4.18 to 2.4.20 before building the
2.4.20-rmap15a kernel tree.

The package comes with three scripts. The firstmake-kernel.sh will unpack the
kernel to the kernels/ directory and build it if requested. If the target distribution
is Debian, it can also create Debian packages for easy installation. The second
make-gengraph.sh will unpack the kernel but instead of building an installable
kernel, it will generate the files required to use gengraph for creating call graphs.
The last make-lxr.sh will install the kernel to the LXR root and update the versions
so that the new kernel will be displayed on the web page.

With the three scripts, a large amount of the tedium involved with managing
kernel patches is eliminated. The tool is fully documented and freely available from
http://www.csn.ul.ie/∼mel/projects/patchset.

2.2 Getting Started

When a new developer or researcher asks how to begin reading the code, they are
often recommended to start with the initialisation code and work from there. I
do not believe that this is the best approach as initialisation is quite architecture
dependent and requires a detailed hardware knowledge to decipher it. It also does
not give much information about how a subsystem like the VM works as it is only in
the late stages of initialisation that memory is set up in the way the running system
sees it.

The best starting point for kernel documentation is first and foremost the
Documentation/ tree. It is very loosely organised but contains much Linux spe-
cific information that will be unavailable elsewhere. The second visiting point is the
Kernel Newbies website at http://www.kernelnewbies.org which is a site dedicated
to people starting kernel development and includes a Frequently Asked Questions
(FAQ) section and a recommended reading list.

The best starting point to understanding the VM, I believe, is now this docu-
ment and the companion code commentary. It describes a VM that is reasonably
comprehensive without being overly complicated. Later VMs are more complex
but are essentially extensions of the one described here rather than totally new so
understanding the 2.4.20 VM is an important starting point.

For when the code has to be approached afresh with a later VM, it is always best
to start in an isolated region that has the minimum number of dependencies. In the
case of the VM, the best starting point is the Out Of Memory (OOM) manager in
mm/oom_kill.c. It is a very gentle introduction to one corner of the VM where a
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process is selected to be killed in the event that memory in the system is low. The
second subsystem to then examine is the non-contiguous memory allocator located
in mm/vmalloc.c and discussed in Chapter 8 as it is reasonably contained within one
file. The third system should be physical page allocator located in mm/page_alloc.c
and discussed in Chapter 7 for similar reasons. The fourth system of interest is the
creation of VMAs and memory areas for processes discussed in Chapter 5. Between
these systems, they have the bulk of the code patterns that are prevalent throughout
the rest of the kernel code making the deciphering of more complex systems such as
the page replacement policy or the buffer IO much easier to comprehend.

The second recommendation that is given by experienced developers is to bench-
mark and test but unfortunately the VM is difficult to test accurately and bench-
marking is just a shade above vague handwaving at timing figures. A tool called
VM Regress was developed during the course of research and is available at
http://www.csn.ul.ie/∼mel/vmregress that lays the foundation required to build a
fully fledged testing, regression and benchmarking tool for the VM. It uses a com-
bination of kernel modules and userspace tools to test small parts of the VM in a
reproducible manner and has one benchmark for testing the page replacement policy
using a large reference string. It is intended as a framework for the development of
a testing utility and has a number of Perl libraries and helper kernel modules to do
much of the work but is in the early stages of development at time of writing.

2.3 Submitting Work

A quite comprehensive set of documents on the submission of patches is available
in the Documentation/ part of the kernel source tree and it is important to read.
There are two files SubmittingPatches and CodingStyle which cover the important
basics but there seems to be very little documentation describing how to go about
getting patches merged. Hence, this section will give a brief introduction on how,
broadly speaking, patches are managed.

First and foremost, the coding style of the kernel needs to be adhered to as
having a style inconsistent with the main kernel will be a barrier to getting merged
regardless of the technical merit. Once a patch has been developed, the first problem
is to decide where to send it. Kernel development has a definite, if non-apparent,
hierarchy of who handles patches and how to get them submitted. As an example,
we’ll take the case of 2.5.x development.

The first check to make is if the patch is very small or trivial. If it is, post it
to the main kernel mailing list. If there is no bad reaction, it can be fed to what
is called the Trivial Patch Monkey7. The trivial patch monkey is exactly what it
sounds like, it takes small patches and feeds them en-masse to the correct people.
This is best suited for documentation, commentary or one-liner patches.

Patches are managed through what could be loosely called a set of rings with
Linus in the very middle having the final say on what gets accepted into the main
tree. Linus, with rare exceptions, accepts patches only from who he refers to as his

7http://www.kernel.org/pub/linux/kernel/people/rusty/trivial/
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“lieutenants”, a group of around 10 people who he trusts to “feed” him correct code.
An example lieutenant is Andrew Morton, the VM maintainer at time of writing.
Any change to the VM has to be accepted by Andrew before it will get to Linus.
These people are generally maintainers of a particular system but sometimes will
“feed” him patches from another subsystem if they feel it is important enough.

Each of the lieutenants are active developers on different subsystems. Just like
Linus, they have a small set of developers they trust to be knowledgeable about the
patch they are sending but will also pick up patches which affect their subsystem
more readily. Depending on the subsystem, the list of people they trust will be
heavily influenced by the list of maintainers in the MAINTAINERS file. The second
major area of influence will be from the subsystem specific mailing list if there is
one. The VM does not have a list of maintainers but it does have a mailing list8.

The maintainers and lieutenants are crucial to the acceptance of patches. Linus,
broadly speaking, does not appear to wish to be convinced with argument alone on
the merit for a significant patch but prefers to hear it from one of his lieutenants,
which is understandable considering the volume of patches that exists.

In summary, a new patch should be emailed to the subsystem mailing list cc’d
to the main list to generate discussion. If there is no reaction, it should be sent to
the maintainer for that area of code if there is one and to the lieutenant if there
is not. Once it has been picked up by a maintainer or lieutenant, chances are it
will be merged. The important key is that patches and ideas must be released early
and often so developers have a chance to look at it while they are still manageable.
There are notable cases where massive patches had difficult getting merged because
there were long periods of silence with little or no discussions. A recent example of
this is the Linux Kernel Crash Dump project which still has not been merged into
the main stream because there has not been favorable responses from lieutenants or
strong support from vendors.

8http://www.linux-mm.org/mailinglists.shtml



Chapter 3

Describing Physical Memory

Linux is available for a wide range of architectures so there needs to be an
architecture-independent way of describing memory. This chapter describes the
structures used to keep account of memory banks, pages and the flags that affect
VM behavior.

The first principle concept prevalent in the VM is Non-Uniform Memory Access
(NUMA). With large scale machines, memory may be arranged into banks that
incur a different cost to access depending on their “distance” from the processor.
For example, there might be a bank of memory assigned to each CPU or a bank of
memory very suitable for DMA near device cards.

Each bank is called a node and the concept is represented under Linux by a
struct pg_data_t even if the architecture is UMA. Every node in the system is
kept on a NULL terminated list called pgdat_list and each node is linked to
the next with the field pg_data_t→node_next. For UMA architectures like PC
desktops, only one static pg_data_t structure called contig_page_data is used.
Nodes will be discussed further in Section 3.1.

Each node is divided up into a number of blocks called zones which represent
ranges within memory. Zones should not be confused with zone based allocators as
they are unrelated. A zone is described by a struct zone_t and each one is one
of ZONE_DMA, ZONE_NORMAL or ZONE_HIGHMEM. Each is suitable for a
different type of usage. ZONE_DMA is memory in the lower physical memory ranges
which certain ISA devices require. Memory within ZONE_NORMAL be directly mapped
by the kernel in the upper region of the linear address space which is discussed further
in Section 5.1. With the x86 the zones are:

ZONE_DMA First 16MiB of memory
ZONE_NORMAL 16MiB - 896MiB
ZONE_HIGHMEM 896 MiB - End

It is important to note that many kernel operations can only take place using
ZONE_NORMAL so it is the most performance critical zone. ZONE_HIGHMEM is the rest
of memory. Zones are discussed further in Section 3.2.

The system’s memory is broken up into fixed sized chunks called page frames.
Each physical page frame is represented by a struct page and all the structures
are kept in a global mem_map array which is usually stored at the beginning of
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pg_data_t

node_zones

ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM

zone_mem_map zone_mem_map  zone_mem_map 

struct page  struct page struct page  struct page struct page   struct page  

Figure 3.1: Relationship Between Nodes, Zones and Pages

ZONE_NORMAL or just after the area reserved for the loaded kernel image in low
memory machines. struct pages are discussed in detail in Section 3.3 and the
global mem_map array is discussed in detail in Section 4.7. The basic relationship
between all these structures is illustrated in Figure 3.1.

As the amount of memory directly accessible by the kernel (ZONE_NORMAL) is
limited in size, Linux supports the concept of High Memory which is discussed in
detail in Chapter 10. This chapter will discuss how nodes, zones and pages are
represented before introducing high memory management.

3.1 Nodes

As we have mentioned, each node in memory is described by a pg_data_t struct.
When allocating a page, Linux uses a node-local allocation policy to allocate memory
from the node closest to the running CPU. As processes tend to run on the same
CPU, it is likely the memory from the current node will be used. The struct is
declared as follows in <linux/mmzone.h>:
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129 typedef struct pglist_data {
130 zone_t node_zones[MAX_NR_ZONES];
131 zonelist_t node_zonelists[GFP_ZONEMASK+1];
132 int nr_zones;
133 struct page *node_mem_map;
134 unsigned long *valid_addr_bitmap;
135 struct bootmem_data *bdata;
136 unsigned long node_start_paddr;
137 unsigned long node_start_mapnr;
138 unsigned long node_size;
139 int node_id;
140 struct pglist_data *node_next;
141 } pg_data_t;

We now briefly describe each of these fields:

node_zones The zones for this node, ZONE_HIGHMEM, ZONE_NORMAL, ZONE_DMA;

node_zonelists This is the order of zones that allocations are preferred from.
build_zonelists() in page_alloc.c sets up the order when called by
free_area_init_core(). A failed allocation in ZONE_HIGHMEM may fall back
to ZONE_NORMAL or back to ZONE_DMA;

nr_zones Number of zones in this node, between 1 and 3. Not all nodes will
have three. A CPU bank may not have ZONE_DMA for example;

node_mem_map This is the first page of the struct page array representing
each physical frame in the node. It will be placed somewhere within the global
mem_map array;

valid_addr_bitmap A bitmap which describes “holes” in the memory node that
no memory exists for;

bdata This is only of interest to the boot memory allocator discussed in Chapter 6;

node_start_paddr The starting physical address of the node. An unsigned
long does not work optimally as it breaks for ia321 with Physical Address
Extension (PAE)2 for example. A more suitable solution would be to re-
cord this as a Page Frame Number (PFN) which could be trivially defined as
(page_phys_addr >> PAGE_SHIFT);

node_start_mapnr This gives the page offset within the global mem_map. It
is calculated in free_area_init_core() by calculating the number of pages
between mem_map and the local mem_map for this node called lmem_map;

1FYI from Jeff Haran: Some PowerPC variants appear to have this same problem (e.g.
PPC440GP).

2PAE is discussed further in Section 3.4.
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node_size The total number of pages in this zone;

node_id The ID of the node, starts at 0;

node_next Pointer to next node in a NULL terminated list.

All nodes in the system are maintained on a list called pgdat_list. The nodes
are placed on this list as they are initialised by the init_bootmem_core() function,
described later in Section 6.2.2. Up until late 2.4 kernels (> 2.4.18), blocks of code
that traversed the list looked something like:

pg_data_t * pgdat;
pgdat = pgdat_list;
do {

/* do something with pgdata_t */
...

} while ((pgdat = pgdat->node_next));

In more recent kernels, a macro for_each_pgdat(), which is trivially defined as
a for loop, is provided to improve code readability.

3.2 Zones

Each zone is described by a struct zone_t. It keeps track of information like
page usage statistics, free area information and locks. It is declared as follows in
<linux/mmzone.h>:

37 typedef struct zone_struct {
41 spinlock_t lock;
42 unsigned long free_pages;
43 unsigned long pages_min, pages_low, pages_high;
44 int need_balance;
45
49 free_area_t free_area[MAX_ORDER];
50
76 wait_queue_head_t * wait_table;
77 unsigned long wait_table_size;
78 unsigned long wait_table_shift;
79
83 struct pglist_data *zone_pgdat;
84 struct page *zone_mem_map;
85 unsigned long zone_start_paddr;
86 unsigned long zone_start_mapnr;
87
91 char *name;
92 unsigned long size;
93 } zone_t;
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This is a brief explanation of each field in the struct.

lock Spinlock to protect the zone;

free_pages Total number of free pages in the zone;

pages_min, pages_low, pages_high These are zone watermarks which are
described in the next section;

need_balance This flag tells the pageout kswapd to balance the zone;

free_area Free area bitmaps used by the buddy allocator;

wait_table A hash table of wait queues of processes waiting on a page to be
freed. This is of importance to wait_on_page() and unlock_page(). While
processes could all wait on one queue, this would cause a “thundering herd” of
processes to race for pages still locked when woken up;

wait_table_size Size of the hash table which is a power of 2;

wait_table_shift Defined as the number of bits in a long minus the binary
logarithm of the table size above;

zone_pgdat Points to the parent pg_data_t;

zone_mem_map The first page in the global mem_map this zone refers to;

zone_start_paddr Same principle as node_start_paddr;

zone_start_mapnr Same principle as node_start_mapnr;

name The string name of the zone, “DMA”, “Normal” or “HighMem”

size The size of the zone in pages.

3.2.1 Zone Watermarks

When available memory in the system is low, the pageout daemon kswapd is woken
up to start freeing pages (see Chapter 11). If the pressure is high, the process
will free up memory synchronously which is sometimes referred to as the direct
reclaim path. The parameters affecting pageout behavior are similar to those used
by FreeBSD [McK96] and Solaris [MM01].

Each zone has three watermarks called pages_low, pages_min and pages_high
which help track how much pressure a zone is under. The number of pages for
pages_min is calculated in the function free_area_init_core() during memory
init and is based on a ratio to the size of the zone in pages. It is calculated initially
as ZoneSizeInPages/128. The lowest value it will be is 20 pages (80K on a x86) and
the highest possible value is 255 pages (1MiB on a x86).
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pages_min When pages_min is reached, the allocator will do the kswapd work
in a synchronous fashion. There is no real equivalent in Solaris but the closest
is the desfree or minfree which determine how often the pageout scanner is
woken up;

pages_low When pages_low number of free pages is reached, kswapd is woken
up by the buddy allocator to start freeing pages. This is equivalent to when
lotsfree is reached in Solaris and freemin in FreeBSD. The value is twice
the value of pages_min by default;

pages_high Once reached, kswapd is woken, it will not consider the zone to be
“balanced” until pages_high pages are free. In Solaris, this is called lotsfree
and in BSD, it is called free_target. The default for pages_high is three
times the value of pages_min.

Whatever the pageout parameters are called in each operating system, the mean-
ing is the same, it helps determine how hard the pageout daemon or processes work
to free up pages.

3.3 Pages

Every physical page frame in the system has an associated struct page which is
used to keep track of its status. In the 2.2 kernel [BC00], this structure resembled
it’s equivilent in System V [GC94] but like the other families in UNIX, the structure
changed considerably. It is declared as follows in <linux/mm.h>:

152 typedef struct page {
153 struct list_head list;
154 struct address_space *mapping;
155 unsigned long index;
156 struct page *next_hash;
158 atomic_t count;
159 unsigned long flags;
161 struct list_head lru;
163 struct page **pprev_hash;
164 struct buffer_head * buffers;
175
176 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)
177 void *virtual;
179 #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */
180 } mem_map_t;

Here is a brief description of each of the fields:

list Pages may belong to many lists and this field is used as the list head. For
example, pages in a mapping will be in one of three circular linked links
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kept by the address_space. These are clean_pages, dirty_pages and
locked_pages. In the slab allocator, this field is used to store pointers to
the slab and cache the page is a part of. It is also used to link blocks of free
pages together;

mapping When files or devices are memory mapped3, their inodes has an as-
sociated address_space. This field will point to this address space if the
page belongs to the file. If the page is anonymous and mapping is set, the
address_space is swapper_space which manages the swap address space.
An anonymous page is one that is not backed by any file or device, such as
one allocated for malloc();

index This field has two uses and what it means depends on the state of the page
what it means. If the page is part of a file mapping, it is the offset within the
file. If the page is part of the swap cache this will be the offset within the
address_space for the swap address space (swapper_space). Secondly, if a
block of pages is being freed for a particular process, the order (power of two
number of pages being freed) of the block being freed is stored in index. This
is set in the function __free_pages_ok();

next_hash Pages that are part of a file mapping are hashed on the inode and
offset. This field links pages together that share the same hash bucket;

count The reference count to the page. If it drops to 0, it may be freed. Any
greater and it is in use by one or more processes or is in use by the kernel like
when waiting for IO;

flags These are flags which describe the status of the page. All of them are
declared in <linux/mm.h> and are listed in Table 3.1. There are a number
of macros defined for testing, clearing and setting the bits which are all listed
in Table 3.2;

lru For the page replacement policy, pages that may be swapped out will exist
on either the active_list or the inactive_list declared in page_alloc.c.
This is the list head for these LRU lists;

pprev_hash The complement to next_hash;

buffers If a page has buffers for a block device associated with it, this field is used
to keep track of the buffer_head. An anonymous page mapped by a process
may also have an associated buffer_head if it is backed by a swap file. This
is necessary as the page has to be synced with backing storage in block sized
chunks defined by the underlying filesystem;

virtual Normally only pages from ZONE_NORMAL are directly mapped by the kernel.
To address pages in ZONE_HIGHMEM, kmap() is used to map the page for the

3Frequently abbreviated to mmaped during kernel discussions.
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kernel which is described further in Chapter 10. There are only a fixed number
of pages that may be mapped. When it is mapped, this is its virtual address;

The type mem_map_t is a typedef for struct page so it can be easily referred to
within the mem_map array.

3.3.1 Mapping Pages to Zones

Up until as recently as kernel 2.4.18, a struct page stored a reference to its zone
with page→zone which was later considered wasteful, as even such a small pointer
consumes a lot of memory when thousands of struct pages exist. In more recent
kernels, the zone field has been removed and instead the top ZONE_SHIFT (8 in the
x86) bits of the page→flags are used to determine the zone a page belongs to.
First a zone_table of zones is set up. It is declared in <linux/page_alloc.c> as:

33 zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];
34 EXPORT_SYMBOL(zone_table);

MAX_NR_ZONES is the maximum number of zones that can be in a node, i.e. 3.
MAX_NR_NODES is the maximum number of nodes that may exist. This table is treated
like a multi-dimensional array. During free_area_init_core(), all the pages in a
node are initialised. First it sets the value for the table

734 zone_table[nid * MAX_NR_ZONES + j] = zone;

Where nid is the node ID, j is the zone index and zone is the zone_t struct. For
each page, the function set_page_zone() is called as

788 set_page_zone(page, nid * MAX_NR_ZONES + j);

page is the page to be set. So, clearly the index in the zone_table is stored in
the page.

3.4 High Memory

As the address space usable by the kernel (ZONE_NORMAL) is limited in size, the kernel
has support for the concept of High Memory. Two thresholds of high memory exist
on 32-bit x86 systems, one at 4GiB and a second at 64GiB. The 4GiB limit is related
to the amount of memory that may be addressed by a 32-bit physical address. To
access memory between the range of 1GiB and 4GiB, the kernel temporarily maps
pages from high memory into ZONE_NORMAL. This is discussed further in Chapter 10.

The second limit at 64GiB is related to Physical Address Extension (PAE) which
is an Intel invention to allow more RAM to be used with 32 bit systems. It makes 4
extra bits available for the addressing of memory, allowing up to 236 bytes (64GiB)
of memory to be addressed.
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Bit name Description
PG_active This bit is set if a page is on the active_list LRU

and cleared when it is removed. It marks a page as
being hot

PG_arch_1 Quoting directly from the code: PG_arch_1 is an ar-
chitecture specific page state bit. The generic code
guarantees that this bit is cleared for a page when it
first is entered into the page cache

PG_checked Only used by the EXT2 filesystem
PG_dirty This indicates if a page needs to be flushed to disk.

When a page is written to that is backed by disk, it is
not flushed immediately, this bit is needed to ensure a
dirty page is not freed before it is written out

PG_error If an error occurs during disk I/O, this bit is set
PG_highmem Pages in high memory cannot be mapped permanently

by the kernel. Pages that are in high memory are
flagged with this bit during mem_init()

PG_launder This bit is important only to the page replacement
policy. When the VM wants to swap out a page, it
will set this bit and call the writepage() function.
When scanning, if it encounters a page with this bit
and PG_locked set, it will wait for the I/O to complete

PG_locked This bit is set when the page must be locked in memory
for disk I/O. When I/O starts, this bit is set and re-
leased when it completes

PG_lru If a page is on either the active_list or the
inactive_list, this bit will be set

PG_referenced If a page is mapped and it is referenced through the
mapping, index hash table, this bit is set. It is used
during page replacement for moving the page around
the LRU lists

PG_reserved This is set for pages that can never be swapped out. It
is set by the boot memory allocator (See Chapter 6 for
pages allocated during system startup. Later it is used
to flag “holes” where no physical memory exists

PG_slab This will flag a page as being used by the slab allocator
PG_skip This was used by some Sparc architectures to skip over

parts of the address space but is no longer used. In 2.6,
it is totally removed

PG_unused This bit is literally unused
PG_uptodate When a page is read from disk without error, this bit

will be set.

Table 3.1: Flags Describing Page Status
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Bit name Set Test Clear
PG_active SetPageActive() PageActive() ClearPageActive()
PG_arch_1 n/a n/a n/a
PG_checked SetPageChecked() PageChecked() n/a
PG_dirty SetPageDirty() PageDirty() ClearPageDirty()
PG_error SetPageError() PageError() ClearPageError()
PG_highmem n/a PageHighMem() n/a
PG_launder SetPageLaunder() PageLaunder() ClearPageLaunder()
PG_locked LockPage() PageLocked() UnlockPage()
PG_lru TestSetPageLRU() PageLRU() TestClearPageLRU()
PG_referenced SetPageReferenced() PageReferenced() ClearPageReferenced()
PG_reserved SetPageReserved() PageReserved() ClearPageReserved()
PG_skip n/a n/a n/a
PG_slab PageSetSlab() PageSlab() PageClearSlab()
PG_unused n/a n/a n/a
PG_uptodate SetPageUptodate() PageUptodate() ClearPageUptodate()

Table 3.2: Macros For Testing, Setting and Clearing Page Status Bits

PAE allows a processor to address up to 64GiB in theory but, in practice, pro-
cesses in Linux still cannot access that much RAM as the virtual address space is
still only 4GiB. This has led to some disappointment from users who have tried to
malloc() all their RAM with one process.

Secondly, PAE does not allow the kernel itself to have this much RAM available.
The struct page used to describe each page frame still requires 44 bytes and this
uses kernel virtual address space in ZONE_NORMAL. That means that to describe 1GiB
of memory, approximately 11MiB of kernel memory is required. Thus, with 16GiB,
176MiB of memory is consumed, putting significant pressure on ZONE_NORMAL. This
does not sound too bad until other structures are taken into account which use
ZONE_NORMAL. Even very small structures such as Page Table Entries (PTEs) require
about 16MiB in the worst case. This makes 16GiB about the practical limit for
available physical memory Linux on an x86. If more memory needs to be accessed,
the advice given is simple and straightforward, buy a 64 bit machine.



Chapter 4

Page Table Management

Linux layers the machine independent/dependent layer in an unusual manner in
comparison to other operating systems [CP99]. Other operating systems have ob-
jects which manage the underlying physical pages such as the pmap object in BSD
but Linux instead maintains the concept of a three-level page table in the architec-
ture independent code even if the underlying architecture does not support it. While
this is relatively easy to understand, it also means that the distinction between dif-
ferent types of pages is very blurry and page types are identified by their flags or
what lists they exist on rather than the objects they belong to.

Architectures that manage their MMU differently are expected to emulate the
three-level page tables. For example, on the x86 without PAE enabled, only two
page table levels are available. The Page Middle Directory (PMD) is defined to be
of size 1 and “folds back” directly onto the Page Global Directory (PGD) which is
optimised out at compile time. Unfortunately, for architectures that do not manage
their cache or Translation Lookaside Buffer (TLB) automatically, hooks that are
machine dependent have to be explicitly left in the code for when the TLB and
CPU caches need to be altered and flushed even if they are null operations on some
architectures like the x86. Fortunately, the functions and how they have to be used
are very well documented in the cachetlb.txt file in the kernel documentation
tree [Mil00].

This chapter will begin by describing how the page table is arranged and what
types are used to describe the three separate levels of the page table followed by
how a virtual address is broken up into its component parts for navigating the table.
Once covered, it will be discussed how the lowest level entry, the Page Table Entry
(PTE) and what bits are used by the hardware. After that, the macros used for
navigating a page table, setting and checking attributes will be discussed before
talking about how the page table is populated and how pages are allocated and
freed for the use with page tables. Finally, it will be discussed how the page tables
are initialised during boot strapping.

36
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4.1 Describing the Page Directory

Each process has its own Page Global Directory (PGD) which is a physical page
frame containing an array of pgd_t, an architecture specific type defined in
<asm/page.h>. The page tables are loaded differently on each architecture. On
the x86, the process page table is loaded by copying the pointer to the PGD into
the cr3 register which has the side effect of flushing the TLB. In fact this is how
the function __flush_tlb() is implemented in the architecture dependent code.

Each active entry in the PGD table points to a page frame containing an array
of Page Middle Directory (PMD) entries of type pmd_t which in turn point to page
frames containing Page Table Entries (PTE) of type pte_t, which finally point
to page frames containing the actual user data. In the event the page has been
swapped out to backing storage, the swap entry is stored in the PTE and used by
do_swap_page() during page fault to find the swap entry containing the page data.

Any given linear address may be broken up into parts to yield offsets within
these three page table levels and an offset within the actual page. To help break
up the linear address into its component parts, a number of macros are provided in
triplets for each page table level, namely a SHIFT, a SIZE and a MASK macro. The
SHIFT macros specifies the length in bits that are mapped by each level of the page
tables as illustrated in Figure 4.1.

Figure 4.1: Linear Address Bit Size Macros

The MASK values can be ANDd with a linear address to mask out all the upper
bits and are frequently used to determine if a linear address is aligned to a given
level within the page table. The SIZE macros reveal how many bytes are addressed
by each entry at each level. The relationship between the SIZE and MASK macros is
illustrated in Figure 4.2.

For the calculation of each of the triplets, only SHIFT is important as the other
two are calculated based on it. For example, the three macros for page level on the
x86 are:

5 #define PAGE_SHIFT 12
6 #define PAGE_SIZE (1UL << PAGE_SHIFT)
7 #define PAGE_MASK (~(PAGE_SIZE-1))
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Figure 4.2: Linear Address Size and Mask Macros

PAGE_SHIFT is the length in bits of the offset part of the linear address space
which is 12 bits on the x86. The size of a page is easily calculated as 2PAGE_SHIFT

which is the equivalent of the code above. Finally the mask is calculated as the
negation of the bits which make up the PAGE_SIZE - 1. If a page needs to be
aligned on a page boundary, PAGE_ALIGN() is used. This macro adds PAGE_SIZE -
1 is added to the address before simply ANDing it with the PAGE_MASK.

PMD_SHIFT is the number of bits in the linear address which are mapped by the
second level part of the table. The PMD_SIZE and PMD_MASK are calculated in a
similar way to the page level macros.

PGDIR_SHIFT is the number of bits which are mapped by the top, or first level,
of the page table. The PGDIR_SIZE and PGDIR_MASK are calculated in the same
manner as above.

The last three macros of importance are the PTRS_PER_x which determine the
number of entries in each level of the page table. PTRS_PER_PGD is the number of
pointers in the PGD, 1024 on an x86 without PAE. PTRS_PER_PMD is for the PMD,
1 on the x86 without PAE and PTRS_PER_PTE is for the lowest level, 1024 on the
x86.

4.2 Describing a Page Table Entry

As mentioned, each entry is described by the structures pte_t, pmd_t and pgd_t
for PTEs, PMDs and PGDs respectively. Even though these are often just unsigned
integers, they are defined as structures for two reasons. The first is for type protec-
tion so that they will not be used inappropriately. The second is for features like
PAE on the x86 where an additional 4 bits is used for addressing more than 4GiB of
memory. To store the protection bits, pgprot_t is defined which holds the relevant
flags and is usually stored in the lower bits of a page table entry.

For type casting, 4 macros are provided in asm/page.h, which takes the above
types and returns the relevant part of the structures. They are pte_val(),
pmd_val(), pgd_val() and pgprot_val(). To reverse the type casting, 4 more
macros are provided __pte(), __pmd(), __pgd() and __pgprot().
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Where exactly the protection bits are stored is architecture dependent. For
illustration purposes, we will examine the case of an x86 architecture without PAE
enabled but the same principles apply across architectures. On an x86 with no PAE,
the pte_t is simply a 32 bit integer within a struct. Each pte_t points to an address
of a page frame and all the addresses pointed to are guaranteed to be page aligned.
Therefore, there are PAGE_SHIFT (12) bits in that 32 bit value that are free for status
bits of the page table entry. A number of the protection and status bits are listed
in Table 4.1 but what bits exist and what they mean varies between architectures.

Bit Function
_PAGE_PRESENT Page is resident in memory and not swapped out
_PAGE_PROTNONE Page is resident but not accessable
_PAGE_RW Set if the page may be written to
_PAGE_USER Set if the page is accessible from user space
_PAGE_DIRTY Set if the page is written to
_PAGE_ACCESSED Set if the page is accessed

Table 4.1: Page Table Entry Protection and Status Bits

These bits are self-explanatory except for the _PAGE_PROTNONE which we will
discuss further. On the x86 with Pentium III and higher, this bit is called the Page
Attribute Table (PAT)1 and is used to indicate the size of the page the PTE is
referencing. In a PGD entry, this same bit is the PSE bit so obviously these bits are
meant to be used in conjunction.

As Linux does not use the PSE bit, the PAT bit is free in the PTE for other pur-
poses. There is a requirement for having a page resident in memory but inaccessible
to the userspace process such as when a region is protected with mprotect() with
the PROT_NONE flag. When the region is to be protected, the _PAGE_PRESENT bit
is cleared and the _PAGE_PROTNONE bit is set. The macro pte_present() checks if
either of these bits are set and so the kernel itself knows the PTE is present, just
inaccessible to userspace which is a subtle, but important point. As the hardware
bit _PAGE_PRESENT is clear, a page fault will occur if the page is accessed so Linux
can enforce the protection while still knowing the page is resident if it needs to swap
it out or the process exits.

4.3 Using Page Table Entries

Macros are defined in asm/pgtable.h which are important for the navigation and
examination of page table entries. To navigate the page directories, three mac-
ros are provided which break up a linear address space into its component parts.
pgd_offset() takes an address and the mm_struct for the process and returns the
PGD entry that covers the requested address. pmd_offset() takes a PGD entry

1With earlier architectures such as the Pentium II, this bit was simply reserved.
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Figure 4.3: Page Table Layout

and an address and returns the relevant PMD. pte_offset() takes a PMD and
returns the relevant PTE. The remainder of the linear address provided is the offset
within the page. The relationship between these fields is illustrated in Figure 4.3

The second round of macros determine if the page table entries are present or
may be used.

• pte_none(), pmd_none() and pgd_none() return 1 if the corresponding entry
does not exist;

• pte_present(), pmd_present() and pgd_present() return 1 if the corres-
ponding page table entries have the PRESENT bit set;

• pte_clear(), pmd_clear() and pgd_clear() will clear the corresponding
page table entry;

• pmd_bad() and pgd_bad() are used to check entries when passed as input
parameters to functions that may change the value of the entries. Whether it
returns 1 varies between the few architectures that define these macros but for
those that actually define it, making sure the page entry is marked as present
and accessed are the two most important checks.

There are many parts of the VM which are littered with page table walk code
and it is important to recognise it. A very simple example of a page table walk is
the function follow_page() in mm/memory.c. The following is an excerpt from that
function, the parts unrelated to the page table walk are omitted:

407 pgd_t *pgd;
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408 pmd_t *pmd;
409 pte_t *ptep, pte;
410
411 pgd = pgd_offset(mm, address);
412 if (pgd_none(*pgd) || pgd_bad(*pgd))
413 goto out;
414
415 pmd = pmd_offset(pgd, address);
416 if (pmd_none(*pmd) || pmd_bad(*pmd))
417 goto out;
418
419 ptep = pte_offset(pmd, address);
420 if (!ptep)
421 goto out;
422
423 pte = *ptep;

It simply uses the three offset macros to navigate the page tables and the _none()
and _bad() macros to make sure it is looking at a valid page table.

The third set of macros examine and set the permissions of an entry. The
permissions determine what a userspace process can and cannot do with a particular
page. For example, the kernel page table entries are never readable by a userspace
process.

• The read permissions for an entry are tested with pte_read(), set with
pte_mkread() and cleared with pte_rdprotect();

• The write permissions are tested with pte_write(), set with pte_mkwrite()
and cleared with pte_wrprotect();

• The execute permissions are tested with pte_exec(), set with pte_mkexec()
and cleared with pte_exprotect(). It is worth nothing that with the x86
architecture, there is no means of setting execute permissions on pages so
these three macros act the same way as the read macros;

• The permissions can be modified to a new value with pte_modify() but its use
is almost non-existent. It is only used in the function change_pte_range()
in mm/mprotect.c.

The fourth set of macros examine and set the state of an entry. There are only
two bits that are important in Linux, the dirty bit and the accessed bit. To check
these bits, the macros pte_dirty() and pte_young() macros are used. To set the
bits, the macros pte_mkdirty() and pte_mkyoung() are used. To clear them, the
macros pte_mkclean() and pte_old() are available.
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4.4 Translating and Setting Page Table Entries

This set of functions and macros deal with the mapping of addresses and pages to
PTEs and the setting of the individual entries.

mk_pte() takes a struct page and protection bits and combines them together
to form the pte_t that needs to be inserted into the page table. A similar macro
mk_pte_phys() exists which takes a physical page address as a parameter.

pte_page() returns the struct page which corresponds to the PTE entry.
pmd_page() returns the struct page containing the set of PTEs.

set_pte() takes a pte_t such as that returned by mk_pte() and places it within
the process’s page tables. pte_clear() is the reverse operation. An additional
function is provided called ptep_get_and_clear() which clears an entry from the
process page table and returns the pte_t. This is important when some modification
needs to be made to either the PTE protection or the struct page itself.

4.5 Allocating and Freeing Page Tables

The last set of functions deal with the allocation and freeing of page tables. Page
tables, as stated, are physical pages containing an array of entries and the allocation
and freeing of physical pages is a relatively expensive operation, both in terms of
time and the fact that interrupts are disabled during page allocation. The allocation
and deletion of page tables, at any of the three levels, is a very frequent operation
so it is important the operation is as quick as possible.

Hence the pages used for the page tables are cached in a number of different
lists called quicklists. Each architecture implements these caches differently but the
principles used are the same. For example, not all architectures cache PGDs because
the allocation and freeing of them only happens during process creation and exit.
As both of these are very expensive operations, the allocation of another page is
negligible.

PGDs, PMDs and PTEs have two sets of functions each for the allocation and
freeing of page tables. The allocation functions are pgd_alloc(), pmd_alloc()
and pte_alloc() respectively and the free functions are, predictably enough, called
pgd_free(), pmd_free() and pte_free().

Broadly speaking, the three implement caching with the use of three caches
called pgd_quicklist, pmd_quicklist and pte_quicklist. Architectures imple-
ment these three lists in different ways but one method is through the use of a LIFO
type structure. Ordinarily, a page table entry contains pointers to other pages con-
taining page tables or data. While cached, the first element of the list is used to
point to the next free page table. During allocation, one page is popped off the list
and during free, one is placed as the new head of the list. A count is kept of how
many pages are used in the cache.

The quick allocation function from the pgd_quicklist is not externally defined
outside of the architecture although get_pgd_fast() is a common choice for the
function name. The cached allocation function for PMDs and PTEs are publicly
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defined as pmd_alloc_one_fast() and pte_alloc_one_fast().
If a page is not available from the cache, a page will be allocated using the

physical page allocator (see Chapter 7). The functions for the three levels of page
tables are get_pgd_slow(), pmd_alloc_one() and pte_alloc_one().

Obviously a large number of pages may exist on these caches and so there is
a mechanism in place for pruning them. Each time the caches grow or shrink,
a counter is incremented or decremented and it has a high and low watermark.
check_pgt_cache() is called in two places to check these watermarks. When the
high watermark is reached, entries from the cache will be freed until the cache size
returns to the low watermark. The function is called after clear_page_tables()
when a large number of page tables are potentially reached and is also called by the
system idle task.

4.6 Kernel Page Tables

When the system first starts, paging is not enabled as page tables do not magically
initialise themselves. Each architecture implements this differently so only the x86
case will be discussed. The page table initialisation is divided into two phases. The
bootstrap phase sets up page tables for just 8MiB so the paging unit can be enabled.
The second phase initialises the rest of the page tables. We discuss both of these
phases below.

4.6.1 Bootstrapping

The assembler function startup_32() is responsible for enabling the paging unit in
arch/i386/kernel/head.S. While all normal kernel code in vmlinuz is compiled
with the base address at PAGE_OFFSET + 1MiB, the kernel is actually loaded begin-
ning at the first megabyte (0x00100000) of memory2. The bootstrap code in this
file treats 1MiB as its base address by subtracting __PAGE_OFFSET from any address
until the paging unit is enabled so before the paging unit is enabled, a page table
mapping has to be established which translates the 8MiB of physical memory at the
beginning of physical memory to the correct place after PAGE_OFFSET.

Initialisation begins with statically defining at compile time an array called
swapper_pg_dir which is placed using linker directives at 0x00101000. It then
establishes page table entries for 2 pages, pg0 and pg1. As the Page Size Extension
(PSE) bit is set in the cr4 register, pages translated are 4MiB pages, not 4KiB as
is the normal case. The first pointers to pg0 and pg1 are placed to cover the region
1-9MiB and the second pointers to pg0 and pg1 are placed at PAGE_OFFSET+1MiB.
This means that when paging is enabled, they will map to the correct pages using
either physical or virtual addressing.

Once this mapping has been established, the paging unit is turned on by setting a
bit in the cr0 register and a jump takes places immediately to ensure the Instruction
Pointer (EIP register) is correct.

2The first megabyte is used by some devices for communication with the BIOS and is skipped.
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4.6.2 Finalising

The function responsible for finalising the page tables is called paging_init(). The
call graph for this function on the x86 can be seen on Figure 4.4.

paging_init

pagetable_init kmap_init zone_sizes_init

alloc_bootmem_low_pages

fixrange_init kmap_get_fixmap_pte

Figure 4.4: Call Graph: paging_init()

For each pgd_t used by the kernel, the boot memory allocator (see Chapter 6)
is called to allocate a page for the PMD. Similarly, a page will be allocated for each
pmd_t allocator. If the CPU has the PSE flag available, it will be set to enable
extended paging. This means that each page table entry in the kernel paging tables
will be 4MiB instead of 4KiB. If the CPU supports the PGE flag, it also will be set
so that the page table entry will be global. Lastly, the page tables from PKMAP_BASE
are set up with the function fixrange_init(). Once the page table has been fully
setup, the statically defined page table at swapper_pg_dir is loaded again into the
cr3 register and the TLB is flushed.

4.7 Mapping addresses to struct pages

There is a requirement for Linux to have a fast method of mapping virtual ad-
dresses to physical addresses and for mapping struct pages to their physical ad-
dress. Linux achieves this by knowing where in both virtual and physical memory
the global mem_map array is as the global array has pointers to all struct pages rep-
resenting physical memory in the system. All architectures achieve this with similar
mechanisms but for illustration purposes, we will only examine the x86 carefully.
This section will first discuss how physical addresses are mapped to kernel virtual
addresses and then what this means to the mem_map array.

4.7.1 Mapping Physical to Virtual Kernel Addresses

As we saw in Section 4.6, Linux sets up a direct mapping from the physical address
0 to the virtual address PAGE_OFFSET at 3GiB on the x86. This means that on
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the x86, any virtual address can be translated to the physical address by simply
subtracting PAGE_OFFSET which is essentially what the function virt_to_phys()
with the macro __pa() does:

/* from <asm-i386/page.h> */
132 #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

/* from <asm-i386/io.h> */
76 static inline unsigned long virt_to_phys(volatile void * address)
77 {
78 return __pa(address);
79 }

Obviously the reverse operation involves simply adding PAGE_OFFSET which is
carried out by the function phys_to_virt() with the macro __va(). Next we see
how this helps the mapping of struct pages to physical addresses.

There is one exception where virt_to_phys() cannot be used to convert vir-
tual addresses to physical ones3. Specifically, on the PPC and ARM architectures,
virt_to_phys() cannot be used to convert address that have been returned by the
function consistent_alloc(). consistent_alloc() is used on PPC and ARM
architectures to return memory from non-cached for use with DMA.

4.7.2 Mapping struct pages to Physical Addresses

As we saw in Section 4.6.1, the kernel image is located at the physical address 1MiB,
which of course translates to the virtual address PAGE_OFFSET + 0x00100000 and a
virtual region totaling about 8MiB is reserved for the image which is the region that
can be addressed by two PGDs. This would imply that the first available memory
to use is located at 0xC0800000 but that is not the case. Linux tries to reserve
the first 16MiB of memory for ZONE_DMA. This means the first virtual area used
for kernel allocations is 0xC1000000 which is where the global mem_map is usually
located. ZONE_DMA will still get used, but only when absolutely necessary.

Physical addresses are translated to struct pages by treating them as an index
into the mem_map array. Shifting a physical address PAGE_SHIFT bits to the right will
treat it as a PFN from physical address 0 which is also an index within the mem_map
array. This is exactly what the macro virt_to_page() does which is declared as
follows in <asm-i386/page.h>:

#define virt_to_page(kaddr) (mem_map + (__pa(kaddr) >> PAGE_SHIFT))

virt_to_page() takes the virtual address kaddr, converts it to the physical ad-
dress with __pa(), converts it into an array index by bit shifting it right PAGE_SHIFT
bits and indexing into the mem_map by simply adding them together. No macro is
available for converting struct pages to physical addresses but at this stage, it
should be obvious to see how it could be calculated.

3This tricky issue was pointed out to me by Jeffrey Haran.
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4.7.3 Initialising mem_map

The mem_map area is created during system startup in one of two fashions. On
NUMA systems, the function free_area_init_node() is called for each active node
in the system and on UMA systems, free_area_init() is used. Both use the core
function free_area_init_core() to perform the actual task of allocating memory
for the mem_map portions and initialising the zones. Predictably, UMA calls the core
function directly with contig_page_data and the global mem_map as parameters.

The core function free_area_init_core() allocates a local lmem_map for the
node being initialised. The memory for the array is allocated from the boot memory
allocator with alloc_bootmem_node() (see Chapter 6). With UMA architectures,
this newly allocated memory becomes the global mem_map but it is slightly different
for NUMA.

NUMA architectures allocate the memory for lmem_map within their own memory
node. The global mem_map never gets explicitly allocated but instead is set to
PAGE_OFFSET where it is treated as a virtual array. The address of the local map
is stored in pg_data_t→node_mem_map which exists somewhere within the virtual
mem_map. For each zone that exists in the node, the address within the virtual
mem_map for the zone is stored in zone_t→zone_mem_map. All the rest of the code
then treats mem_map as a real array as only valid regions within it will be used by
nodes.



Chapter 5

Process Address Space

One of the principal advantages of virtual memory is that each process has its own
virtual address space, which is mapped to physical memory by the operating system.
In this chapter we will discuss the process address space and how Linux manages it.

The kernel treats the userspace portion of the address space very differently to
the kernel portion. For example, allocations for the kernel are satisfied immediately1

and are visible globally no matter what process is on the CPU. With a process, space
is simply reserved in the linear address space by pointing a page table entry to a
read-only globally visible page filled with zeros. On writing, a page fault is triggered
which results in a new page being allocated, filled with zeros2, placed in the page
table entry and marked writable.

The userspace portion is not trusted or presumed to be constant. After each
context switch, the userspace portion of the linear address space can potentially
change except when a lazy Translation Lookaside Buffer (TLB) switch is used as
discussed later in Section 5.3. As a result of this, the kernel must be prepared to
catch all exception and addressing errors raised from userspace. This is discussed in
Section 5.5.

This chapter begins with how the linear address space is broken up and what
the purpose of each section is. We then cover the structures maintained to describe
each process, how they are allocated, initialised and then destroyed. Next, we will
cover how individual regions within the process space are created and all the various
functions associated with them. That will bring us to exception handling related to
the process address space, page faulting and the various cases that occur to satisfy
a page fault. Finally, we will cover how the kernel safely copies information to and
from userspace.

1vmalloc() is partially an exception as a minor page fault may occur to update the process
page tables, but the page will still be allocated immediately upon request.

2It is filled with zeros so that the new page will appear exactly the same as the global zero filled
page to userspace

47
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5.1 Linear Address Space

From a user perspective, the address space is a flat linear address space but pre-
dictably, the kernel’s perspective is very different. The linear address space is split
into two parts, the userspace part which potentially changes with each full context
switch and the kernel address space which remains constant. The location of the
split is determined by the value of PAGE_OFFSET which is at 0xC0000000 on the x86.
This means that 3GiB is available for the process to use while the remaining 1GiB
is always mapped by the kernel.

The linear virtual address space as the kernel sees it is illustrated in Figure 5.1.
The area up to PAGE_OFFSET is reserved for userspace and potentially changes with
every context switch. In x86, this is defined as 0xC0000000 or at the 3GiB mark
leaving the upper 1GiB of address space for the kernel.

Figure 5.1: Kernel Address Space

8MiB (the amount of memory addressed by two PGDs3) is reserved at PAGE_OFFSET
for loading the kernel image to run. It is placed here during kernel page tables ini-
tialisation as discussed in Section 4.6.1. Somewhere shortly after the image4, the
mem_map for UMA architectures, as discussed in Chapter 3, is stored. With NUMA
architectures, portions of the virtual mem_map will be scattered throughout this re-
gion and where they are actually located is architecture dependent.

The region between PAGE_OFFSET and VMALLOC_START - VMALLOC_OFFSET is
the physical memory map and the size of the region depends on the amount of
available RAM. As we saw in Section 4.6, page table entries exist to map phys-
ical memory to the virtual address range beginning at PAGE_OFFSET. Between the
physical memory map and the vmalloc address space, there is a gap of space
VMALLOC_OFFSET in size, which on the x86 is 8MiB, to guard against out of bounds
errors. For illustration, on a x86 with 32MiB of RAM, VMALLOC_START will be
located at PAGE_OFFSET + 0x02000000 + 0x00800000.

In low memory systems, the remaining amount of the virtual address space,
minus a 2 page gap, is used by vmalloc() for representing non-contiguous memory

38MiB is simply a reasonable amount of space to reserve for the purposes of loading the kernel
image

4Usually at the 16MiB mark to keep memory reserved for ZONE_DMA.
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allocations in a contiguous virtual address space. In high memory systems, the
vmalloc area extends as far as PKMAP_BASE minus the two page gap and two extra
regions are introduced. The first, which begins at PKMAP_BASE, is an area reserved
for the mapping of high memory pages into low memory with kmap() as discussed
in Chapter 10. The second is for fixed virtual address mappings which extend from
FIXADDR_START to FIXADDR_TOP. Fixed virtual addresses are needed for subsys-
tems that need to know the virtual address at compile time such as the Advanced
Programmable Interrupt Controller (APIC)5. FIXADDR_TOP is statically defined to
be 0xFFFFE000 on the x86 which is one page before the end of the virtual ad-
dress space. The size of the fixed mapping region is calculated at compile time in
__FIXADDR_SIZE and used to index back from FIXADDR_TOP to give the start of the
region FIXADDR_START

The region required for vmalloc(), kmap() and the fixed virtual address mapping
is what limits the size of ZONE_NORMAL. As the running kernel needs these functions,
a region of at least VMALLOC_RESERVE will be reserved at the top of the address space.
VMALLOC_RESERVE is architecture specific but on the x86, it is defined as 128MiB.
This is why ZONE_NORMAL is generally referred to being only 896MiB in size; it is the
1GiB of the upper potion of the linear address space minus the minimum 128MiB
that is reserved for the vmalloc region.

5.2 Managing the Address Space

The address space usable by the process is managed by a high level mm_struct which
is roughly analogous to the vmspace struct in BSD [McK96].

Each address space consists of a number of page-aligned regions of memory that
are in use. They never overlap and represent a set of addresses which contain pages
that are related to each other in terms of protection and purpose. These regions
are represented by a struct vm_area_struct and are roughly analogous to the
vm_map_entry struct in BSD. For clarity, a region may represent the process heap
for use with malloc(), a memory mapped file such as a shared library or a block
of anonymous memory allocated with mmap(). The pages for this region may still
have to be allocated, be active and resident or have been paged out.

If a region is backed by a file, its vm_file field will be set. By traversing
vm_file→f_dentry→d_inode→i_mapping, the associated address_space for the
region may be obtained. The address_space has all the filesystem specific inform-
ation required to perform page-based operations on disk.

A number of system calls are provided which affect the address space and regions.
These are listed in Table 5.1

5Further discussion on the APIC is beyond the scope of this document.
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System Call Description
fork() Creates a new process with a new address space. All the

pages are marked Copy-On-Write (COW) and are shared
between the two processes until a page fault occurs. Once
a write-fault occurs, a copy is made of the COW page
for the faulting process. This is sometimes referred to as
breaking a COW page

clone() clone() allows a new process to be created that shares
parts of its context with its parent and is how threading
is implemented in Linux. clone() without the CLONE_VM
set will create a new address space which is essentially
the same as fork()

mmap() mmap creates a new region within the process linear ad-
dress space

mremap() Remaps or resizes a region of memory. If the virtual
address space is not available for the mapping, the region
may be moved unless the move is forbidden by the caller.

munmap() This destroys part or all of a region. If the region being
unmapped is in the middle of an existing region, the
existing region is split into two separate regions

shmat() This attaches a shared memory segment to a process ad-
dress space

shmdt() Removes a shared memory segment from an address
space

execve() This loads a new executable file replacing the current
address space

exit() Destroys an address space and all regions

Table 5.1: System Calls Related to Memory Regions

5.3 Process Address Space Descriptor

The process address space is described by the mm_struct struct meaning that only
one exists for each process and is shared between threads. In fact, threads are
identified in the task list by finding all task_structs which have pointers to the
same mm_struct.

A unique mm_struct is not needed for kernel threads as they will never page
fault or access the userspace portion6. This results in the task_struct→mm field
for kernel threads always being NULL. For some tasks such as the boot idle task,
the mm_struct is never setup but for kernel threads, a call to daemonize() will call
exit_mm() to decrement the usage counter.

As Translation Lookaside Buffer (TLB) flushes are extremely expensive, espe-

6The only exception is faulting in vmalloc space for updating the current page tables against
the master page table which is treated as a special case by the page fault handling code.
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cially with architectures such as the PPC, a technique called lazy TLB is employed
which avoids unnecessary TLB flushes by processes which do not access the user-
space page tables7. The call to switch_mm(), which results in a TLB flush, is
avoided by “borrowing” the mm_struct used by the previous task and placing it in
task_struct→active_mm. This technique has made large improvements to context
switches times.

When entering lazy TLB, the function enter_lazy_tlb() is called to ensure
that a mm_struct is not shared between processors in SMP machines, making it
a NULL operation on UP machines. The second time use of lazy TLB is during
process exit when start_lazy_tlb() is used briefly while the process is waiting to
be reaped by the parent.

The struct has two reference counts called mm_users and mm_count for two types
of “users”. mm_users is a reference count of processes accessing the userspace portion
of this mm_struct, such as the page tables and file mappings. Threads and the
swap_out() code for instance will increment this count making sure a mm_struct is
not destroyed early. When it drops to 0, exit_mmap() will delete all mappings and
tear down the page tables before decrementing the mm_count.

mm_count is a reference count of the “anonymous users” for the mm_struct ini-
tialised at 1 for the “real” user. An anonymous user is one that does not necessarily
care about the userspace portion and is just borrowing the mm_struct. Example
users are kernel threads which use lazy TLB switching. When this count drops
to 0, the mm_struct can be safely destroyed. Both reference counts exist because
anonymous users need the mm_struct to exist even if the userspace mappings get
destroyed and there is no point delaying the teardown of the page tables.

The mm_struct is defined in <linux/sched.h> as follows:
7Remember that the kernel portion of the address space is always visible.
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210 struct mm_struct {
211 struct vm_area_struct * mmap;
212 rb_root_t mm_rb;
213 struct vm_area_struct * mmap_cache;
214 pgd_t * pgd;
215 atomic_t mm_users;
216 atomic_t mm_count;
217 int map_count;
218 struct rw_semaphore mmap_sem;
219 spinlock_t page_table_lock;
220
221 struct list_head mmlist;
222
226 unsigned long start_code, end_code, start_data, end_data;
227 unsigned long start_brk, brk, start_stack;
228 unsigned long arg_start, arg_end, env_start, env_end;
229 unsigned long rss, total_vm, locked_vm;
230 unsigned long def_flags;
231 unsigned long cpu_vm_mask;
232 unsigned long swap_address;
233
234 unsigned dumpable:1;
235
236 /* Architecture-specific MM context */
237 mm_context_t context;
238 };

The meaning of each of the field in this sizeable struct is as follows:

mmap The head of a linked list of all VMA regions in the address space;

mm_rb The VMAs are arranged in a linked list and in a red-black tree for fast
lookups. This is the root of the tree;

mmap_cache The VMA found during the last call to find_vma() is stored in
this field on the assumption that the area will be used again soon;

pgd The Page Global Directory for this process;

mm_users A reference count of users accessing the userspace portion of the ad-
dress space as explained at the beginning of the section;

mm_count A reference count of the anonymous users for the mm_struct starting
at 1 for the “real” user as explained at the beginning of this section;

map_count Number of VMAs in use;
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mmap_sem This is a long lived lock which protects the VMA list for readers
and writers. As users of this lock require it for a long time and may need to
sleep, a spinlock is inappropriate. A reader of the list takes this semaphore
with down_read(). If they need to write, it is taken with down_write() and
the page_table_lock spinlock is later acquired while the VMA linked lists
are being updated;

page_table_lock This protects most fields on the mm_struct. As well as the page
tables, it protects the RSS (see below) count and the VMA from modification;

mmlist All mm_structs are linked together via this field;

start_code, end_code The start and end address of the code section;

start_data, end_data The start and end address of the data section;

start_brk, brk The start and end address of the heap;

start_stack Predictably enough, the start of the stack region;

arg_start, arg_end The start and end address of command line arguments;

env_start, env_end The start and end address of environment variables;

rss Resident Set Size (RSS) is the number of resident pages for this process;

total_vm The total memory space occupied by all VMA regions in the process;

locked_vm The number of resident pages locked in memory;

def_flags Only one possible value, VM_LOCKED. It is used to determine if all future
mappings are locked by default or not;

cpu_vm_mask A bitmask representing all possible CPUs in an SMP system.
The mask is used by an InterProcessor Interrupt (IPI) to determine if a pro-
cessor should execute a particular function or not. This is important during
TLB flush for each CPU;

swap_address Used by the pageout daemon to record the last address that was
swapped from when swapping out entire processes;

dumpable Set by prctl(), this flag is important only when tracing a process;

context Architecture specific MMU context.

There are a small number of functions for dealing with mm_structs. They are
described in Table 5.2.
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Function Description
mm_init() Initialises a mm_struct by setting starting values for

each field, allocating a PGD, initialising spinlocks etc.
allocate_mm() Allocates a mm_struct() from the slab allocator
mm_alloc() Allocates a mm_struct using allocate_mm() and calls

mm_init() to initialise it
exit_mmap() Walks through a mm_struct and unmaps all VMAs as-

sociated with it
copy_mm() Makes an exact copy of the current tasks mm_struct

for a new task. This is only used during fork
free_mm() Returns the mm_struct to the slab allocator

Table 5.2: Functions related to memory region descriptors

5.3.1 Allocating a Descriptor

Two functions are provided to allocate a mm_struct. To be slightly confusing, they
are essentially the same but with small important differences. allocate_mm() is
just a preprocessor macro which allocates a mm_struct from the slab allocator (see
Chapter 9). mm_alloc() allocates from slab and then calls mm_init() to initialise
it.

5.3.2 Initialising a Descriptor

The first mm_struct in the system that is initialised is called init_mm(). As all
subsequent mm_struct’s are copies, the first one has to be statically initialised at
compile time. This static initialisation is performed by the macro INIT_MM().

242 #define INIT_MM(name) \
243 { \
244 mm_rb: RB_ROOT, \
245 pgd: swapper_pg_dir, \
246 mm_users: ATOMIC_INIT(2), \
247 mm_count: ATOMIC_INIT(1), \
248 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem), \
249 page_table_lock: SPIN_LOCK_UNLOCKED, \
250 mmlist: LIST_HEAD_INIT(name.mmlist), \
251 }

Once it is established, new mm_structs are created using their parent mm_struct
as a template. The function responsible for the copy operation is copy_mm() and it
uses init_mm() to initialise process specific fields.
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5.3.3 Destroying a Descriptor

While a new user increments the usage count with atomic_inc(&mm->mm_users),
it is decremented with a call to mmput(). If the mm_users count reaches zero, all
the mapped regions are destroyed with exit_mmap() and the page tables destroyed
as there are no longer any users of the userspace portions. The mm_count count
is decremented with mmdrop() as all the users of the page tables and VMAs are
counted as one mm_struct user. When mm_count reaches zero, the mm_struct will
be destroyed.

5.4 Memory Regions

The full address space of a process is rarely used, only sparse regions are. Each
region is represented by a vm_area_struct which never overlap and represent a set
of addresses with the same protection and purpose. Examples of a region include
a read-only shared library loaded into the address space or the process heap. A
full list of mapped regions a process has may be viewed via the proc interface at
/proc/PID/maps where PID is the process ID of the process that is to be examined.

The region may have a number of different structures associated with it as illus-
trated in Figure 5.2. At the top, there is the vm_area_struct which on its own is
enough to represent anonymous memory.

If a file is memory mapped, the struct file is available through the vm_file field
which has a pointer to the struct inode. The inode is used to get the struct
address_space which has all the private information about the file including a set
of pointers to filesystem functions which perform the filesystem specific operations
such as reading and writing pages to disk.

The struct vm_area_struct is declared as follows in <linux/mm.h>:



5.4. Memory Regions 56

44 struct vm_area_struct {
45 struct mm_struct * vm_mm;
46 unsigned long vm_start;
47 unsigned long vm_end;
49
50 /* linked list of VM areas per task, sorted by address */
51 struct vm_area_struct *vm_next;
52
53 pgprot_t vm_page_prot;
54 unsigned long vm_flags;
55
56 rb_node_t vm_rb;
57
63 struct vm_area_struct *vm_next_share;
64 struct vm_area_struct **vm_pprev_share;
65
66 /* Function pointers to deal with this struct. */
67 struct vm_operations_struct * vm_ops;
68
69 /* Information about our backing store: */
70 unsigned long vm_pgoff;
72 struct file * vm_file;
73 unsigned long vm_raend;
74 void * vm_private_data;
75 };

vm_mm The mm_struct this VMA belongs to;

vm_start The starting address of the region;

vm_end The end address of the region;

vm_next All the VMAs in an address space are linked together in an address-
ordered singly linked list via this field;

vm_page_prot The protection flags that are set for each PTE in this VMA. The
different bits are described in Table 4.1;

vm_flags A set of flags describing the protections and properties of the VMA.
They are all defined in <linux/mm.h> and are described in Table 5.3

vm_rb As well as being in a linked list, all the VMAs are stored on a red-black tree
for fast lookups. This is important for page fault handling when finding the
correct region quickly is important, especially for a large number of mapped
regions;
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vm_next_share Shared VMA regions based on file mappings (such as shared
libraries) linked together with this field;

vm_pprev_share The complement of vm_next_share;

vm_ops The vm_ops field contains functions pointers for open(), close() and
nopage(). These are needed for syncing with information from the disk;

vm_pgoff This is the page aligned offset within a file that is memory mapped;

vm_file The struct file pointer to the file being mapped;

vm_raend This is the end address of a read-ahead window. When a fault occurs,
a number of additional pages after the desired page will be paged in. This
field determines how many additional pages are faulted in;

vm_private_data Used by some device drivers to store private information. Not
of concern to the memory manager.

Figure 5.2: Data Structures related to the Address Space
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Protection Flags
Flags Description
VM_READ Pages may be read
VM_WRITE Pages may be written
VM_EXEC Pages may be executed
VM_SHARED Pages may be shared
VM_DONTCOPY VMA will not be copied on fork
VM_DONTEXPAND Prevents a region being resized. Flag is unused
mmap Related Flags
VM_MAYREAD Allow the VM_READ flag to be set
VM_MAYWRITE Allow the VM_WRITE flag to be set
VM_MAYEXEC Allow the VM_EXEC flag to be set
VM_MAYSHARE Allow the VM_SHARE flag to be set
VM_GROWSDOWN Shared segment (probably stack) is allowed to grow

down
VM_GROWSUP Shared segment (probably heap) is allowed to grow up
VM_SHM Pages are used by shared SHM memory segment
VM_DENYWRITE What MAP_DENYWRITE during mmap translates to.

Now unused
VM_EXECUTABLE What MAP_EXECUTABLE during mmap translates to.

Now unused
Locking Flags
VM_LOCKED If set, the pages will not be swapped out. Set by

mlock()
VM_IO Signals that the area is a mmaped region for IO to

a device. It will also prevent the region being core
dumped

VM_RESERVED Do not swap out this region, used by device drivers
madvise() Flags
VM_SEQ_READ A hint stating that pages will be accessed sequen-

tially
VM_RAND_READ A hint stating that readahead in the region is use-

less

Figure 5.3: Memory Region Flags
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All the regions are linked together on a linked list ordered by address via the
vm_next field. When searching for a free area, it is a simple matter of traversing the
list but a frequent operation is to search for the VMA for a particular address such
as during page faulting for example. In this case, the red-black tree is traversed as
it has O(log n) search time on average. The tree is ordered so that lower addresses
than the current node are on the left leaf and higher addresses are on the right.

5.4.1 File/Device backed memory regions

In the event the region is backed by a file, the vm_file leads to an associated
address_space as shown in Figure 5.2. The struct contains information of relevance
to the filesystem such as the number of dirty pages which must be flushed to disk.
It is declared as follows in <linux/fs.h>:

401 struct address_space {
402 struct list_head clean_pages;
403 struct list_head dirty_pages;
404 struct list_head locked_pages;
405 unsigned long nrpages;
406 struct address_space_operations *a_ops;
407 struct inode *host;
408 struct vm_area_struct *i_mmap;
409 struct vm_area_struct *i_mmap_shared;
410 spinlock_t i_shared_lock;
411 int gfp_mask;
412 };

A brief description of each field is as follows:

clean_pages A list of clean pages which do not have to be synchronised with the
disk;

dirty_pages Pages that the process has touched and need to by sync-ed with the
backing storage;

locked_pages The list of pages locked in memory;

nrpages Number of resident pages in use by the address space;

a_ops A struct of function pointers within the filesystem;

host The host inode the file belongs to;

i_mmap A pointer to the VMA the address space is part of;

i_mmap_shared A pointer to the next VMA which shares this address space;

i_shared_lock A spinlock to protect this structure;
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gfp_mask The mask to use when calling __alloc_pages() for new pages.

Periodically the memory manager will need to flush information to disk. The
memory manager doesn’t know and doesn’t care how information is written to disk,
so the a_ops struct is used to call the relevant functions. It is defined as follows in
<linux/fs.h>:

383 struct address_space_operations {
384 int (*writepage)(struct page *);
385 int (*readpage)(struct file *, struct page *);
386 int (*sync_page)(struct page *);
387 /*
388 * ext3 requires that a successful prepare_write()

* call be followed
389 * by a commit_write() call - they must be balanced
390 */
391 int (*prepare_write)(struct file *, struct page *,

unsigned, unsigned);
392 int (*commit_write)(struct file *, struct page *,

unsigned, unsigned);
393 /* Unfortunately this kludge is needed for FIBMAP.

* Don’t use it */
394 int (*bmap)(struct address_space *, long);
395 int (*flushpage) (struct page *, unsigned long);
396 int (*releasepage) (struct page *, int);
397 #define KERNEL_HAS_O_DIRECT
398 int (*direct_IO)(int, struct inode *, struct kiobuf *,

unsigned long, int);
399 };

These fields are all function pointers which are described as follows;

writepage Write a page to disk. The offset within the file to write to is stored
within the page struct. It is up to the filesystem specific code to find the block.
See buffer.c:block_write_full_page();

readpage Read a page from disk. See buffer.c:block_read_full_page();

sync_page Sync a dirty page with disk. See buffer.c:block_sync_page();

prepare_write This is called before data is copied from userspace into a page that
will be written to disk. With a journaled filesystem, this ensures the filesystem
log is up to date. With normal filesystems, it makes sure the needed buffer
pages are allocated. See buffer.c:block_prepare_write();

commit_write After the data has been copied from userspace, this function is
called to commit the information to disk. See buffer.c:block_commit_write();
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bmap Maps a block so that raw IO can be performed. Only of concern to the
filesystem specific code;

flushpage This makes sure there is no IO pending on a page before releasing it.
See buffer.c:discard_bh_page();

releasepage This tries to flush all the buffers associated with a page before freeing
the page itself. See try_to_free_buffers().

Function Description
find_vma() Finds the VMA that covers a given ad-

dress. If the region does not exist, it re-
turns the VMA closest to the requested ad-
dress

find_vma_prev() Same as find_vma() except it also gives
the VMA pointing to the returned VMA.
It is not often used, with sys_mprotect()
being the notable exception, as it is usually
find_vma_prepare() that is required

find_vma_prepare() Same as find_vma() except that it will re-
turn the VMA pointing to the returned
VMA as well as the red-black tree nodes
needed to perform an insertion into the
tree

find_vma_intersection() Returns the VMA which intersects a given
address range. Useful when checking if a
linear address region is in use by any VMA

vma_merge() Attempts to expand the supplied VMA to
cover a new address range. If the VMA
can not be expanded forwards, the next
VMA is checked to see if it may be expan-
ded backwards to cover the address range
instead. Regions may be merged if there
is no file/device mapping and the permis-
sions match

get_unmapped_area() Returns the address of a free region of
memory large enough to cover the reques-
ted size of memory. Used principally when
a new VMA is to be created

insert_vm_struct() Inserts a new VMA into a linear address
space

Table 5.3: Memory Region VMA API
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5.4.2 Creating A Memory Region

The system call mmap() is provided for creating new memory regions within a pro-
cess. For the x86, the function calls sys_mmap2() which calls do_mmap2() directly
with the same parameters. do_mmap2() is responsible for acquiring the parameters
needed by do_mmap_pgoff(), which is the principle function for creating new areas
for all architectures.

do_mmap2() first clears the MAP_DENYWRITE and MAP_EXECUTABLE bits from
the flags parameter as they are ignored by Linux, which is confirmed by the
mmap() manual page. If a file is being mapped, do_mmap2() will look up the
struct file based on the file descriptor passed as a parameter and acquire the
mm_struct→mmap_sem semaphore before calling do_mmap_pgoff().

do_mmap_pgoff() begins by performing some basic sanity checks. It first checks
that the appropriate filesystem or device functions are available if a file or device is
being mapped. It then ensures the size of the mapping is page aligned and that it
does not attempt to create a mapping in the kernel portion of the address space. It
then makes sure the size of the mapping does not overflow the range of pgoff and
finally that the process does not have too many mapped regions already.

This rest of the function is large but broadly speaking it takes the following
steps:

• Sanity check the parameters;

• Find a free linear address space large enough for the memory mapping. If
a filesystem or device specific get_unmapped_area() function is provided, it
will be used otherwise arch_get_unmapped_area() is called;

• Calculate the VM flags and check them against the file access permissions;

• If an old area exists where the mapping is to take place, fix it up so that it is
suitable for the new mapping;

• Allocate a vm_area_struct from the slab allocator and fill in its entries;

• Link in the new VMA;

• Call the filesystem or device specific mmap function;

• Update statistics and return.

5.4.3 Finding a Mapped Memory Region

A common operation is to find the VMA a particular address belongs to, such
as during operations like page faulting, and the function responsible for this is
find_vma(). The function find_vma() and other API functions affecting memory
regions are listed in Table 5.3.

It first checks the mmap_cache field which caches the result of the last call to
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find_vma() as it is quite likely the same region will be needed a few times in
succession. If it is not the desired region, the red-black tree stored in the mm_rb field
is traversed. If the desired address is not contained within any VMA, the function
will return the VMA closest to the requested address so it is important callers double
check to ensure the returned VMA contains the desired address.

A second function called find_vma_prev() is provided which is functionally the
same as find_vma() except that it also returns a pointer to the VMA preceding the
desired VMA8 which is required as the list is a singly linked list. This is rarely used
but notably, it is used when two VMAs are being compared to determine if they
may be merged. It is also used when removing a memory region so that the singly
linked list may be updated.

The last function of note for searching VMAs is find_vma_intersection()
which is used to find a VMA which overlaps a given address range. The most
notable use of this is during a call to do_brk() when a region is growing up. It is
important to ensure that the growing region will not overlap an old region.

5.4.4 Finding a Free Memory Region

When a new area is to be memory mapped, a free region has to be found that is
large enough to contain the new mapping. The function responsible for finding a
free area is get_unmapped_area().

As the call graph in Figure 5.5 indicates, there is little work involved with finding
an unmapped area. The function is passed a number of parameters. A struct file
is passed representing the file or device to be mapped as well as pgoff which is the
offset within the file that is been mapped. The requested address for the mapping
is passed as well as its length. The last parameter is the protection flags for the
area.

get_unmapped_area

arch_get_unmapped_area

find_vma

Figure 5.5: Call Graph: get_unmapped_area()

If a device is being mapped, such as a video card, the associated

8The VMA list is one of the very rare cases where a singly linked list is used in the kernel.
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f_op→get_unmapped_area() is used. This is because devices or files may have
additional requirements for mapping that generic code can not be aware of, such as
the address having to be aligned to a particular virtual address.

If there are no special requirements, the architecture specific function
arch_get_unmapped_area() is called. Not all architectures provide their own func-
tion. For those that don’t, there is a generic function provided in mm/mmap.c.

5.4.5 Inserting a memory region

The principal function for inserting a new memory region is insert_vm_struct()
whose call graph can be seen in Figure 5.6. It is a very simple function which
first calls find_vma_prepare() to find the appropriate VMAs the new region is to
be inserted between and the correct nodes within the red-black tree. It then calls
__vma_link() to do the work of linking in the new VMA.

insert_vm_struct

find_vma_prepare vma_link

lock_vma_mappings __vma_link unlock_vma_mappings

__vma_link_list __vma_link_rb __vma_link_file

rb_insert_color

__rb_rotate_right __rb_rotate_left

Figure 5.6: Call Graph: insert_vm_struct()

The function insert_vm_struct() is rarely used as it does not increase the
map_count field. Instead, the function commonly used is __insert_vm_struct()
which performs the same tasks except that it increments map_count.

Two varieties of linking functions are provided, vma_link() and __vma_link().
vma_link() is intended for use when no locks are held. It will acquire all the
necessary locks, including locking the file if the VMA is a file mapping before calling
__vma_link() which places the VMA in the relevant lists.
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It is important to note that many functions do not use the insert_vm_struct()
functions but instead prefer to call find_vma_prepare() themselves followed by a
later vma_link() to avoid having to traverse the tree multiple times.

The linking in __vma_link() consists of three stages which are contained in
three separate functions. __vma_link_list() inserts the VMA into the linear,
singly linked list. If it is the first mapping in the address space (i.e. prev is NULL),
it will become the red-black tree root node. The second stage is linking the node
into the red-black tree with __vma_link_rb(). The final stage is fixing up the file
share mapping with __vma_link_file() which basically inserts the VMA into the
linked list of VMAs via the vm_pprev_share() and vm_next_share() fields.

5.4.6 Merging contiguous regions

Linux used to have a function called merge_segments() [Haca] which was respons-
ible for merging adjacent regions of memory together if the file and permissions
matched. The objective was to remove the number of VMAs required, especially
as many operations resulted in a number of mappings being created such as calls
to sys_mprotect(). This was an expensive operation as it could result in large
portions of the mappings being traversed and was later removed as applications,
especially those with many mappings, spent a long time in merge_segments().

The equivalent function which exists now is called vma_merge() and it is only
used in two places. The first user is sys_mmap() which calls it if an anonymous
region is being mapped, as anonymous regions are frequently mergable. The second
time is during do_brk() which is expanding one region into a newly allocated one
where the two regions should be merged. Rather than merging two regions, the
function vma_merge() checks if an existing region may be expanded to satisfy the
new allocation negating the need to create a new region. A region may be expanded
if there are no file or device mappings and the permissions of the two areas are the
same.

Regions are merged elsewhere, although no function is explicitly called to perform
the merging. The first is during a call to sys_mprotect() during the fixup of areas
where the two regions will be merged if the two sets of permissions are the same
after the permissions in the affected region change. The second is during a call to
move_vma() when it is likely that similar regions will be located beside each other.

5.4.7 Remapping and moving a memory region

mremap() is a system call provided to grow or shrink an existing memory mapping.
This is implemented by the function sys_mremap() which may move a memory
region if it is growing or it would overlap another region and MREMAP_FIXED is not
specified in the flags. The call graph is illustrated in Figure 5.7.

If a region is to be moved, do_mremap() first calls get_unmapped_area() to find
a region large enough to contain the new resized mapping and then calls move_vma()
to move the old VMA to the new location. See Figure 5.8 for the call graph to
move_vma().
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sys_mremap

do_mremap

do_munmap find_vma vm_enough_memory make_pages_present get_unmapped_area move_vma

nr_free_pages

Figure 5.7: Call Graph: sys_mremap()

move_vma

find_vma_prev move_page_tables insert_vm_struct do_munmap make_pages_present

Figure 5.8: Call Graph: move_vma()

First move_vma() checks if the new location may be merged with the VMAs
adjacent to the new location. If they can not be merged, a new VMA is allocated
literally one PTE at a time. Next move_page_tables() is called(see Figure 5.9 for
its call graph) which copies all the page table entries from the old mapping to the
new one. While there may be better ways to move the page tables, this method
makes error recovery trivial as backtracking is relatively straight forward.

The contents of the pages are not copied. Instead, zap_page_range() is called
to swap out or remove all the pages from the old mapping and the normal page fault
handling code will swap the pages back in from backing storage or from files or will
call the device specific do_nopage() function.

5.4.8 Locking a Memory Region

Linux can lock pages from an address range into memory via the system call mlock()
which is implemented by sys_mlock() whose call graph is shown in Figure 5.10.
At a high level, the function is simple; it creates a VMA for the address range
to be locked, sets the VM_LOCKED flag on it and forces all the pages to be present
with make_pages_present(). A second system call mlockall() which maps to
sys_mlockall() is also provided which is a simple extension to do the same work
as sys_mlock() except for every VMA on the calling process. Both functions rely
on the core function do_mlock() to perform the real work of finding the affected
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move_page_tables

move_one_page zap_page_range

get_one_pte alloc_one_pte copy_one_pte

pte_alloc

zap_pmd_range

zap_pte_range

Figure 5.9: Call Graph: move_page_tables()

VMAs and deciding what function is needed to fix up the regions as described later.
There are some limitations to what memory may be locked. The address range

must be page aligned as VMAs are page aligned. This is addressed by simply
rounding the range up to the nearest page aligned range. The second proviso is
that the process limit RLIMIT_MLOCK imposed by the system administrator may not
be exceeded. The last proviso is that each process may only lock half of physical
memory at a time. This is a bit non-functional as there is nothing to stop a process
forking a number of times and each child locking a portion but as only root processes
are allowed to lock pages, it does not make much difference. It is safe to presume
that a root process is trusted and knows what it is doing. If it does not, the system
administrator with the resulting broken system probably deserves it and gets to keep
both parts of it.

5.4.9 Unlocking the region

The system calls munlock() and munlockall() provide the corollary for the locking
functions and map to sys_munlock() and sys_munlockall() respectively. The
functions are much simpler than the locking functions as they do not have to make
numerous checks. They both rely on the same do_mmap() function to fix up the
regions.

5.4.10 Fixing up regions after locking

When locking or unlocking, VMAs will be affected in one of four ways, each of
which must be fixed up by mlock_fixup(). The locking may affect the whole
VMA in which case mlock_fixup_all() is called. The second condition, handled
by mlock_fixup_start(), is where the start of the region is locked, requiring that
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sys_mlock

do_mlock

find_vma mlock_fixup

mlock_fixup_all mlock_fixup_start mlock_fixup_end mlock_fixup_middle make_pages_present

lock_vma_mappings __insert_vm_struct unlock_vma_mappings

Figure 5.10: Call Graph: sys_mlock()

a new VMA be allocated to map the new area. The third condition, handled by
mlock_fixup_end(), is predictably enough where the end of the region is locked.
Finally, mlock_fixup_middle() handles the case where the middle of a region is
mapped requiring two new VMAs to be allocated.

It is interesting to note that VMAs created as a result of locking are never
merged, even when unlocked. It is presumed that processes which lock regions will
need to lock the same regions over and over again and it is not worth the processor
power to constantly merge and split regions.

5.4.11 Deleting a memory region

The function responsible for deleting memory regions or parts thereof is do_munmap().
It is a relatively simple operation in comparison to the other memory region related
operations and is basically divided up into three parts. The first is to fix up the
red-black tree for the region that is about to be unmapped. The second is to release
the pages and PTEs related to the region to be unmapped and the third is to fix up
the regions if a hole has been generated.

To ensure the red-black tree is ordered correctly, all VMAs to be affected by the
unmap are placed on a linked list called free and then deleted from the red-black
tree with rb_erase(). The regions if they still exist will be added with their new
addresses later during the fixup.

Next the linked list VMAs on free is walked through and checked to en-
sure it is not a partial unmapping. Even if a region is just to be partially un-
mapped, remove_shared_vm_struct() is still called to remove the shared file map-
ping. Again, if this is a partial unmapping, it will be recreated during fixup.
zap_page_range() is called to remove all the pages associated with the region about
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do_munmap

remove_shared_vm_struct zap_page_rangeunmap_fixup free_pgtables

lock_vma_mappings __remove_shared_vm_structunlock_vma_mappings__insert_vm_struct

Figure 5.11: Call Graph: do_munmap()

to be unmapped before unmap_fixup() is called to handle partial unmappings.
Lastly free_pgtables() is called to try and free up all the page table entries

associated with the unmapped region. It is important to note that the page table
entry freeing is not exhaustive. It will only unmap full PGD directories and their
entries so for example, if only half a PGD was used for the mapping, no page table
entries will be freed. This is because a finer grained freeing of page table entries
would be too expensive to free up data structures that are both small and likely to
be used again.

5.4.12 Deleting all memory regions

During process exit, it is necessary to unmap all VMAs associated with a mm_struct.
The function responsible is exit_mmap(). It is a very simply function which flushes
the CPU cache before walking through the linked list of VMAs, unmapping each
of them in turn and freeing up the associated pages before flushing the TLB and
deleting the page table entries. It is covered in detail in the Code Commentary.

5.5 Exception Handling

A very important part of VM is how exceptions related to bad kernel address ref-
erences are caught9 which are not a result of a kernel bug10. This section does not
cover the exceptions that are raised with errors such as divide by zero, we are only
concerned with the exception raised as the result of a page fault. There are two
situations where a bad reference may occur. The first is where a process sends an
invalid pointer to the kernel via a system call which the kernel must be able to safely
trap as the only check made initially is that the address is below PAGE_OFFSET. The
second is where the kernel uses copy_from_user() or copy_to_user() to read or
write data from userspace.

9Many thanks go to Ingo Oeser for clearing up the details of how this is implemented.
10Of course bad references due to kernel bugs should rightfully cause the system to have a minor

fit.
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At compile time, the linker creates an exception table in the __ex_table sec-
tion of the kernel code segment which starts at __start___ex_table and ends at
__stop___ex_table. Each entry is of type exception_table_entry which is a pair
consisting of an execution point and a fixup routine. When an exception occurs that
the page fault handler cannot manage, it calls search_exception_table() to see if
a fixup routine has been provided for an error at the faulting instruction. If module
support is compiled, each module’s exception table will also be searched.

If the address of the current exception is found in the table, the corresponding
location of the fixup code is returned and executed. We will see in Section 5.7 how
this is used to trap bad reads and writes to userspace.

5.6 Page Faulting

Pages in the process linear address space are not necessarily resident in memory. For
example, allocations made on behalf of a process are not satisfied immediately as the
space is just reserved with the vm_area_struct. Other examples of non-resident
pages include the page having been swapped out to backing storage or writing a
read-only page.

Linux, like most operating systems, has a Demand Fetch policy as its fetch policy
for dealing with pages not resident. This states that the page is only fetched from
backing storage when the hardware raises a page fault exception which the operating
system traps and allocates a page. The characteristics of backing storage imply that
some sort of page prefetching policy would result in less page faults [MM87] but
Linux is fairly primitive in this respect. When a page is paged in from swap space,
a number of pages after it, up to 2page_cluster are read in by swapin_readahead()
and placed in the swap cache. Unfortunately there is only a chance that pages
likely to be used soon will be adjacent in the swap area making it a poor prepaging
policy. Linux would likely benefit from a prepaging policy that adapts to program
behavior [KMC02].

There are two types of page fault, major and minor faults. Major page faults
occur when data has to be read from disk which is an expensive operation, else
the fault is referred to as a minor, or soft page fault. Linux maintains statistics
on the number of these types of page faults with the task_struct→maj_flt and
task_struct→min_flt fields respectively.

The page fault handler in Linux is expected to recognise and act on a number
of different types of page faults listed in Table 5.4 which will be discussed in detail
later in this chapter.

Each architecture registers an architecture-specific function for the handling of
page faults. While the name of this function is arbitrary, a common choice is
do_page_fault() whose call graph for the x86 is shown in Figure 5.12.

This function is provided with a wealth of information such as the address of
the fault, whether the page was simply not found or was a protection error, whether
it was a read or write fault and whether it is a fault from user or kernel space. It
is responsible for determining which type of fault has occurred and how it should
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Exception Type Action
Region valid but page not al-
located

Minor Allocate a page frame from the
physical page allocator

Region not valid but is beside
an expandable region like the
stack

Minor Expand the region and allocate
a page

Page swapped out but present
in swap cache

Minor Remove the page from the
swap cache and allocate it to
the process

Page swapped out to backing
storage

Major Find where the page with in-
formation stored in the PTE
and read it from disk

Page write when marked read-
only

Minor If the page is a COW page,
make a copy of it, mark it writ-
able and assign it to the pro-
cess. If it is in fact a bad write,
send a SIGSEGV signal

Region is invalid or process has
no permissions to access

Error Send a SEGSEGV signal to the
process

Fault occurred in the kernel
portion address space

Minor If the fault occurred in the
vmalloc area of the address
space, the current process page
tables are updated against the
master page table held by
init_mm. This is the only valid
kernel page fault that may oc-
cur

Fault occurred in the userspace
region while in kernel mode

Error If a fault occurs, it means a ker-
nel system did not copy from
userspace properly and caused
a page fault. This is a ker-
nel bug which is treated quite
severely.

Table 5.4: Reasons For Page Faulting
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do_page_fault

force_sig_info find_vma handle_mm_fault search_exception_table

handle_pte_fault pte_alloc

do_wp_page do_swap_page establish_pte do_no_page

do_anonymous_page lru_cache_add

search_one_table

Figure 5.12: Call Graph: do_page_fault()

be handled by the architecture-independent code. The flow chart, in Figure 5.17,
shows broadly speaking what this function does. In the figure, identifiers with a
colon after them corresponds to the label as shown in the code.

handle_mm_fault() is the architecture independent top level function for fault-
ing in a page from backing storage, performing COW and so on. If it returns 1, it
was a minor fault, 2 was a major fault, 0 sends a SIGBUS error and any other value
invokes the out of memory handler.

5.6.1 Handling a Page Fault

Once the exception handler has decided the fault is a valid page fault in a valid
memory region, the architecture-independent function handle_mm_fault(), whose
call graph is shown in Figure 5.13, takes over. It allocates the required page table
entries if they do not already exist and calls handle_pte_fault().

Based on the properties of the PTE, one of the handler functions shown in Fig-
ure 5.13 will be used. The first stage of the decision is to check if the PTE is
marked not present or if it has been allocated which is checked by pte_present()
and pte_none(). If no PTE has been allocated (pte_none() returned true),
do_no_page() is called which handles Demand Allocation, otherwise it is a page
that has been swapped out to disk and do_swap_page() performs Demand Paging .

The second option is if the page is being written to. If the PTE is write protected,
then do_wp_page() is called as the page is a Copy-On-Write (COW) page. A COW
page is one which is shared between multiple processes(usually a parent and child)
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handle_mm_fault

pte_alloc handle_pte_fault

do_no_page do_swap_page do_wp_page

do_anonymous_page

Figure 5.13: Call Graph: handle_mm_fault()

until a write occurs after which a private copy is made for the writing process. A
COW page is recognised because the VMA for the region is marked writable even
though the individual PTE is not. If it is not a COW page, the page is simply
marked dirty as it has been written to.

The last option is if the page has been read and is present but a fault still
occurred. This can occur with some architectures that do not have a three level
page table. In this case, the PTE is simply established and marked young.

5.6.2 Demand Allocation

When a process accesses a page for the very first time, the page has to be allocated
and possibly filled with data by the do_no_page() function. If the parent VMA
provided a vm_ops struct with a nopage() function, it is called. This is of importance
to a memory mapped device such as a video card which needs to allocate the page
and supply data on access or to a mapped file which must retrieve its data from
backing storage. We will first discuss the case where the faulting page is anonymous
as this is the simpliest case.

Handling anonymous pages If vm_area_struct→vm_ops field is not filled or
a nopage() function is not supplied, the function do_anonymous_page() is called
to handle an anonymous access. There are only two cases to handle, first time read
and first time write. As it is an anonymous page, the first read is an easy case as no
data exists so the system-wide empty_zero_page which is just a page of zeros11 is
mapped for the PTE and the PTE is write protected. The PTE is write protected
so that another page fault will occur if the process writes to the page.

11On the x86, it is zerod out in the function mem_init().
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do_no_page

do_anonymous_page

lru_cache_add mark_page_accessed

Figure 5.14: Call Graph: do_no_page()

If this is the first write to the page alloc_page() is called to allocate a free page
(see Chapter 7) and is zero filled by clear_user_highpage(). Assuming the page
was successfully allocated, the Resident Set Size (RSS) field in the mm_struct will
be incremented; flush_page_to_ram() is called as required when a page has been
inserted into a userspace process by some architectures to ensure cache coherency.
The page is then inserted on the LRU lists so it may be reclaimed later by the page
reclaiming code. Finally the page table entries for the process are updated for the
new mapping.

Handling file/device backed pages If backed by a file or device, a nopage()
function will be provided. In the file backed case the function filemap_nopage()
is the nopage() function for allocating a page and reading a page-sized amount of
data from disk. Each device driver provides a different nopage() whose internals
are unimportant to us here as long as it returns a valid struct page to use.

On return of the page, a check is made to ensure a page was successfully allocated
and appropriate errors returned if not. A check is then made to see if an early COW
break should take place. An early COW break will take place if the fault is a write
to the page and the VM_SHARED flag is not included in the managing VMA. An early
break is a case of allocating a new page and copying the data across before reducing
the reference count to the page returned by the nopage() function.

In either case, a check is then made with pte_none() to ensure there is not a
PTE already in the page table that is about to be used. It is possible with SMP
that two faults would occur for the same page at close to the same time and as the
spinlocks are not held for the full duration of the fault, this check has to be made at
the last instant. If there has been no race, the PTE is assigned, statistics updated
and the architecture hooks for cache coherency called.
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5.6.3 Demand Paging

When a page is swapped out to backing storage, the function do_swap_page() is
responsible for reading the page back in. The information needed to find it is stored
within the PTE itself. The information within the PTE is enough to find the page in
swap. As pages may be shared between multiple processes, they can not always be
swapped out immediately. Instead, when a page is swapped out, it is placed within
the swap cache.

do_swap_page

lookup_swap_cache swapin_readahead

read_swap_cache_async

mark_page_accessed lock_page swap_free remove_exclusive_swap_page can_share_swap_page unlock_page

activate_page

activate_page_nolock

exclusive_swap_page page_waitqueue

Figure 5.15: Call Graph: do_swap_page()

A shared page can not be swapped out immediately because there is no way of
mapping a struct page to the PTEs of each process it is shared between. Searching
the page tables of all processes is simply far too expensive. It is worth noting that
the late 2.5.x kernels and 2.4.x with a custom patch have what is called Reverse
Mapping (RMAP). With RMAP, the PTEs a page is mapped by are linked together
by a chain so they can be reverse looked up.

With the swap cache existing, it is possible that when a fault occurs it still exists
in the swap cache. If it is, the reference count to the page is simply increased and it
is placed within the process page tables again and registers as a minor page fault.

If the page exists only on disk swapin_readahead() is called which reads in the
requested page and a number of pages after it. The number of pages read in is
determined by the variable page_cluster defined in mm/swap.c. On low memory
machines with less than 16MiB of RAM, it is initialised as 2 or 3 otherwise. The
number of pages read in is 2page_cluster unless a bad or empty swap entry is en-
countered. This works on the premise that a seek is the most expensive operation
in time so once the seek has completed, the succeeding pages should also be read in.

5.6.4 Copy On Write (COW) Pages

Traditionally when a process forked, the parent address space was copied to duplicate
it for the child. This was an extremely expensive operation as it is possible a
significant percentage of the process would have to be swapped in from backing
storage. To avoid this considerable overhead, a technique called Copy-On-Write
(COW) is employed.

During fork, the PTEs of the two processes are made read-only so that when
a write occurs there will be a page fault. Linux recognises a COW page because
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do_wp_page

can_share_swap_page unlock_page

establish_pte

copy_cow_page break_cow lru_cache_add

exclusive_swap_page page_waitqueue

Figure 5.16: Call Graph: do_wp_page()

even though the PTE is write protected, the controlling VMA shows the region is
writable. It uses the function do_wp_page() to handle it by making a copy of the
page and assigning it to the writing process. If necessary, a new swap slot will be
reserved for the page. With this method, only the page table entries have to be
copied during a fork.

5.7 Copying To/From Userspace

It is not safe to access memory in the process address space directly as there is no way
to quickly check if the page addressed is resident or not. Linux relies on the MMU
to raise exceptions when the address is invalid and have the Page Fault Exception
handler catch the exception and fix it up. In the x86 case, assembler is provided
by the __copy_user() to trap exceptions where the address is totally useless. The
location of the fixup code is found when the function search_exception_table()
is called. Linux provides an ample API (mainly macros) for copying data to and
from the user address space safely as shown in Table 5.5.

All the macros map on to assembler functions which all follow similar patterns of
implementation so for illustration purposes, we’ll just trace how copy_from_user()
is implemented on the x86.

copy_from_user() calls either __constant_copy_from_user() or __generic_copy_from_user()
depending on whether the size of the copy is known at compile time or not. If the size
is known at compile time, there are different assembler optimisations to copy data
in 1, 2 or 4 byte strides otherwise the distinction between the two copy functions is
not important.

The generic copy function eventually calls the function __copy_user_zeroing()
in <asm-i386/uaccess.h> which has three important parts. The first part is the
assembler for the actual copying of size number of bytes from userspace. If any
page is not resident, a page fault will occur and if the address is valid, it will get
swapped in as normal. The second part is “fixup” code and the third part is the
__ex_table mapping the instructions from the first part to the fixup code in the
second part.
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copy_from_user(void *to, const void *from, unsigned long n)
Copies n bytes from the user address space (from) to the kernel address

space (to)

copy_to_user(void *to, const void *from, unsigned long n)
Copies n bytes from the kernel address space (from) to the user address

space (to)

get_user(void *to, void *from)
Copies an integer value from userspace (from) to kernel space (to)

put_user(void *from, void *to)
Copies an integer value from kernel space (from) to userspace (to)

strncpy_from_user(char *dst, const char *src, long count)
Copies a null terminated string of at most count bytes long from

userspace (src) to kernel space (dst)

strlen_user(const char *s, long n)
Returns the length, upper bound by n, of the userspace string including

the terminating NULL

Table 5.5: Accessing Process Address Space API

These pairings of execution points and fixup routines, as described in Sec-
tion 5.5, are copied to the kernel exception handle table by the linker. If an
invalid address is read, the function do_page_fault() will fall through, call
search_exception_table() and find the EIP where the faulty read took place
and jump to the fixup code which copies zeros into the remaining kernel space, fixes
up registers and returns. In this manner, the kernel can safely access userspace with
no expensive checks and letting the MMU hardware handle the exceptions.

All the other functions that access userspace follow a similar pattern.
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Figure 5.17: do_page_fault Flow Diagram



Chapter 6

Boot Memory Allocator

It is impractical to statically initialise all the core kernel memory structures at com-
pile time as there are simply far too many permutations of hardware configurations.
Yet to set up even the basic structures requires memory as even the physical page
allocator, discussed in the next chapter, needs to allocate memory to initialise itself.
But how can the physical page allocator allocate memory to initialise itself?

To address this, a specialised allocator called the Boot Memory Allocator is used.
It is based on the most basic of allocators, a First Fit allocator which uses a bitmap
to represent memory [Tan01] instead of linked lists of free blocks. If a bit is 1, the
page is allocated and 0 if unallocated. To satisfy allocations of sizes smaller than
a page, the allocator records the Page Frame Number (PFN) of the last allocation
and the offset the allocation ended at. Subsequent small allocations are “merged”
together and stored on the same page.

The reader may ask why this allocator is not used for the running system. One
compelling reason is that although the first fit allocator does not suffer badly from
fragmentation [JW98], memory frequently has to linearly searched to satisfy an
allocation. As this is examining bitmaps, it gets very expensive, especially as the
first fit algorithm tends to leave many small free blocks at the beginning of physical
memory which still get scanned for large allocations, thus making the process very
wasteful [WJNB95].

There are two very similar but distinct APIs for the allocator. One is for UMA
architectures, listed in Table 6.1 and the other is for NUMA, listed in Table 6.2. The
principle difference is that the NUMA API must be supplied with the node affected
by the operation but as the callers of these APIs exist in the architecture dependant
layer, it is not a significant problem.

This chapter will begin with a description of the structure the allocator uses
to describe the physical memory available for each node. We will then illustrate
how the limits of physical memory and the sizes of each zone are discovered before
talking about how the information is used to initialised the boot memory allocator
structures. The allocation and free routines will then be discussed before finally
talking about how the boot memory allocator is retired.

80



6.1. Representing the Boot Map 81

6.1 Representing the Boot Map

A bootmem_data struct exists for each node of memory in the system. It contains
the information needed for the boot memory allocator to allocate memory for a node
such as the bitmap representing allocated pages and where the memory is located.
It is declared as follows in <linux/bootmem.h>:

25 typedef struct bootmem_data {
26 unsigned long node_boot_start;
27 unsigned long node_low_pfn;
28 void *node_bootmem_map;
29 unsigned long last_offset;
30 unsigned long last_pos;
31 } bootmem_data_t;

The fields of this struct are as follows:

node_boot_start This is the starting physical address of the represented block;

node_low_pfn This is the end physical address, in other words, the end of the
ZONE_NORMAL this node represents;

node_bootmem_map This is the location of the bitmap representing allocated
or free pages with each bit;

last_offset This is the offset within the the page of the end of the last allocation.
If 0, the page used is full;

last_pos This is the the PFN of the page used with the last allocation. Using
this with the last_offset field, a test can be made to see if allocations can
be merged with the page used for the last allocation rather than using up a
full new page.

6.2 Initialising the Boot Memory Allocator

Each architecture is required to supply a setup_arch() function which, among
other tasks, is responsible for acquiring the necessary parameters to initialise the
boot memory allocator.

Each architecture has its own function to get the necessary parameters. On
the x86, it is called setup_memory() but on other architectures such as MIPS or
Sparc, it is called bootmem_init() or the case of the PPC, do_init_bootmem().
Regardless of the architecture, the tasks are essentially the same. The parameters
it needs to calculate are:

min_low_pfn This is the lowest PFN that is available in the system;
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max_low_pfn This is the highest PFN that may be addressed by low memory
(ZONE_NORMAL);

highstart_pfn This is the PFN of the beginning of high memory (ZONE_HIGHMEM);

highend_pfn This is the last PFN in high memory;

max_pfn Finally, this is the last PFN available to the system.

6.2.1 Calculating The Size of Zones

setup_memory

find_max_pfn find_max_low_pfn init_bootmem register_bootmem_low_pages

reserve_bootmem

find_smp_config

init_bootmem_core free_bootmem

free_bootmem_core

reserve_bootmem_core

find_intel_smp

smp_scan_config

mpf_checksum

Figure 6.1: Call Graph: setup_memory()

The PFN is an offset, counted in pages, within the physical memory map. The
first PFN usable by the system, min_low_pfn is located at the beginning of the first
page after _end which is the end of the loaded kernel image. The value is stored as
a file scope variable in mm/bootmem.c for use with the boot memory allocator.

How the last page frame in the system, max_pfn, is calculated is quite archi-
tecture specific. In the x86 case, the function find_max_pfn() reads through the
whole e820 1 map for the highest page frame. The value is also stored as a file scope
variable in mm/bootmem.c.

The value of max_low_pfn is calculated on the x86 with find_max_low_pfn()
and it marks the end of ZONE_NORMAL. This is the physical memory directly ac-
cessible by the kernel and is related to the kernel/userspace split in the linear
address space marked by PAGE_OFFSET. The value, with the others, is stored in

1e820 is a table provided by the BIOS describing what physical memory is available, reserved
or non-existent.
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mm/bootmem.c. Note that in low memory machines, the max_pfn will be the same
as the max_low_pfn.

With the three variables min_low_pfn, max_low_pfn and max_pfn, it is straight-
forward to calculate the start and end of high memory and place them as file scope
variables in arch/i386/init.c as highstart_pfn and highend_pfn. The values
are used later to initialise the high memory pages for the physical page allocator as
we will see in Section 6.5.

6.2.2 Initialising bootmem_data

Once the limits of usable physical memory are known, one of two boot memory
initialisation functions are selected and provided with the start and end PFN for
the node to be initialised. init_bootmem(), which initialises contig_page_data, is
used by UMA architectures, while init_bootmem_node() is for NUMA to initialise
a specified node. Both function are trivial and rely on init_bootmem_core() to do
the real work.

The first task of the core function is to insert this pgdat_data_t into the
pgdat_list as at the end of this function, the node is ready for use. It then records
the starting and end address for this node in its associated bootmem_data_t and
allocates the bitmap representing page allocations. The size in bytes2 of the bitmap
required is straightforward:

mapsize =
(end_pfn− start_pfn) + 7

8

The bitmap in stored at the physical address pointed to by
bootmem_data_t→node_boot_start and the virtual address to the map is placed
in bootmem_data_t→node_bootmem_map. As there is no architecture independ-
ent way to detect “holes” in memory, the entire bitmap is initialised to 1, ef-
fectively marking all pages allocated. It is up to the architecture dependent
code to set the bits of usable pages to 0. In the case of the x86, the function
register_bootmem_low_pages() reads through the e820 map and calls free_bootmem()
for each usable page to set the bit to 0 before using reserve_bootmem() to reserve
the pages needed by the actual bitmap.

6.3 Allocating Memory

The reserve_bootmem() function may be used to reserve pages for use by the
caller but is very cumbersome to use for general allocations. There are four func-
tions provided for easy allocations on UMA architectures called alloc_bootmem(),
alloc_bootmem_low(), alloc_bootmem_pages() and alloc_bootmem_low_pages()
which are fully described in Table 6.1. All of these macros call __alloc_bootmem()
with different parameters. See the call graph in Figure 6.2.

2Hence the division by 8.
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alloc_bootmem

__alloc_bootmem

__alloc_bootmem_core

alloc_bootmem_low alloc_bootmem_pages alloc_bootmem_low_pages

Figure 6.2: Call Graph: __alloc_bootmem()

Similar functions exist for NUMA which take the node as an additional
parameter, as listed in Table 6.2. They are called alloc_bootmem_node(),
alloc_bootmem_pages_node() and alloc_bootmem_low_pages_node(). All of
these macros call __alloc_bootmem_node() with different parameters.

The parameters to either __alloc_bootmem() and __alloc_bootmem_node()
are essentially the same. They are

pgdat This is the node to allocate from. It is omitted in the UMA case as it is
assumed to be contig_page_data;

size This is the size in bytes of the requested allocation;

align This is the number of bytes that the request should be aligned to. For small
allocations, they are aligned to SMP_CACHE_BYTES, which on the x86 will align
to the L1 hardware cache;

goal This is the preferred starting address to begin allocating from. The “low”
functions will start from physical address 0 where as the others will begin
from MAX_DMA_ADDRESS which is the maximum address DMA transfers may
be made from on this architecture.

The core function for all the allocation APIs is __alloc_bootmem_core(). It
is a large function but with simple steps that can be broken down. The function
linearly scans memory starting from the goal address for a block of memory large
enough to satisfy the allocation. With the API, this address will either be 0 for
DMA-friendly allocations or MAX_DMA_ADDRESS otherwise.

The clever part, and the main bulk of the function, deals with deciding if this new
allocation can be merged with the previous one. It may be merged if the following
conditions hold:

• The page used for the previous allocation (bootmem_data→pos) is adjacent
to the page found for this allocation;



6.4. Freeing Memory 85

• The previous page has some free space in it (bootmem_data→offset != 0);

• The alignment is less than PAGE_SIZE.

Regardless of whether the allocations may be merged or not, the pos and offset
fields will be updated to show the last page used for allocating and how much of the
last page was used. If the last page was fully used, the offset is 0.

6.4 Freeing Memory

In contrast to the allocation functions, only two free function are provided which
are free_bootmem() for UMA and free_bootmem_node() for NUMA. They both
call free_bootmem_core() with the only difference being that a pgdat is supplied
with NUMA.

The core function is relatively simple in comparison to the rest of the allocator.
For each full page affected by the free, the corresponding bit in the bitmap is set to
0. If it already was 0, BUG() is called to signal a double-free.

An important restriction with the free functions is that only full pages may be
freed. It is never recorded when a page is partially allocated so if only partially
freed, the full page remains reserved. This is not as major a problem as it appears
as the allocations always persist for the lifetime of the system; However, it is still
an important restriction for developers during boot time.

6.5 Retiring the Boot Memory Allocator

Late in the bootstrapping process, the function start_kernel() is called which
knows it is safe to remove the boot allocator and all its associated data structures.
Each architecture is required to provide a function mem_init() that is responsible
for destroying the boot memory allocator and its associated structures.

The purpose of the function is quite simple. It is responsible for calculating the
dimensions of low and high memory and printing out an informational message to
the user as well as performing final initialisations of the hardware if necessary. On
the x86, the principal function of concern for the VM is the free_pages_init().

This function first tells the boot memory allocator to retire itself by call-
ing free_all_bootmem() for UMA architectures or free_all_bootmem_node() for
NUMA. Both call the core function free_all_bootmem_core() with different para-
meters. The core function is simple in principle and performs the following tasks:

• For all unallocated pages known to the allocator for this node;

– Clear the PG_reserved flag in its struct page;

– Set the count to 1;

– Call __free_pages() so that the buddy allocator (discussed next chapter)
can build its free lists.
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mem_init

set_max_mapnr_init free_pages_init nr_free_pages test_wp_bit

free_all_bootmem page_is_ram

free_all_bootmem_core

__free_pages

do_test_wp_bit

Figure 6.3: Call Graph: mem_init()

• Free all pages used for the bitmap and give them to the buddy allocator.

At this stage, the buddy allocator now has control of all the pages in low memory
which leaves only the high memory pages. The remainder of the free_pages_init()
function is responsible for those. After free_all_bootmem() returns, it first counts
the number of reserved pages for accounting purposes and then calls the function
one_highpage_init() for every page between highstart_pfn and highend_pfn.

This function simple clears the PG_reserved flag, sets the PG_highmem flag, sets
the count to 1 and calls __free_pages() to release it to the buddy allocator in the
same manner free_all_bootmem_core() did.

At this point, the boot memory allocator is no longer required and the buddy
allocator is the main physical page allocator for the system. An interesting feature
to note is that not only is the data for the boot allocator removed but also the code.
All the init function declarations used for bootstrapping the system are marked
__init such as the following;

321 unsigned long __init free_all_bootmem (void)

All of these functions are placed together in the .init section by the linker. On
the x86, the function free_initmem() walks through all pages from __init_begin
to __init_end and frees up the pages to the buddy allocator. With this method,
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Linux can free up a considerable amount of memory3 that is used by bootstrapping
code that is no longer required.

327 pages were freed while booting the kernel running on the machine this document is composed
on.
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init_bootmem(unsigned long start, unsigned long page)
This initialises the memory between 0 and the PFN page. The begin-

ning of usable memory is at the PFN start

reserve_bootmem(unsigned long addr, unsigned long size)
Mark the pages between the address addr and addr+size reserved.

Requests to partially reserve a page will result in the full page being
reserved

free_bootmem(unsigned long addr, unsigned long size)
Mark the pages between the address addr and addr+size free

alloc_bootmem(unsigned long size)
Allocate size number of bytes from ZONE_NORMAL. The allocation will

be aligned to the L1 hardware cache to get the maximum benefit from
the hardware cache

alloc_bootmem_low(unsigned long size)
Allocate size number of bytes from ZONE_DMA. The allocation will be

aligned to the L1 hardware cache

alloc_bootmem_pages(unsigned long size)
Allocate size number of bytes from ZONE_NORMAL aligned on a page

size so that full pages will be returned to the caller

alloc_bootmem_low_pages(unsigned long size)
Allocate size number of bytes from ZONE_NORMAL aligned on a page

size so that full pages will be returned to the caller

bootmem_bootmap_pages(unsigned long pages)
Calculate the number of pages required to store a bitmap representing

the allocation state of pages number of pages

free_all_bootmem()
Used at the boot allocator end of life. It cycles through all pages in

the bitmap. For each one that is free, the flags are cleared and the page
is freed to the physical page allocator (See next chapter) so the runtime
allocator can set up its free lists

Table 6.1: Boot Memory Allocator API for UMA Architectures
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init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
unsigned long startpfn, unsigned long endpfn)

For use with NUMA architectures. It initialise the memory between
PFNs startpfn and endpfn with the first usable PFN at freepfn. Once
initialised, the pgdat node is inserted into the pgdat_list

reserve_bootmem_node(pg_data_t *pgdat, unsigned long
physaddr, unsigned long size)

Mark the pages between the address addr and addr+size on the spe-
cified node pgdat reserved. Requests to partially reserve a page will result
in the full page being reserved

free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
unsigned long size)

Mark the pages between the address addr and addr+size on the spe-
cified node pgdat free

alloc_bootmem_node(pg_data_t *pgdat, unsigned long size)
Allocate size number of bytes from ZONE_NORMAL on the specified

node pgdat. The allocation will be aligned to the L1 hardware cache to
get the maximum benefit from the hardware cache

alloc_bootmem_pages_node(pg_data_t *pgdat, unsigned long
size)

Allocate size number of bytes from ZONE_NORMAL on the specified
node pgdat aligned on a page size so that full pages will be returned to
the caller

alloc_bootmem_low_pages_node(pg_data_t *pgdat, unsigned long
size)

Allocate size number of bytes from ZONE_NORMAL on the specified
node pgdat aligned on a page size so that full pages will be returned to
the caller

bootmem_bootmap_pages(unsigned long pages)
Same function as used for the UMA case. Calculate the number of

pages required to store a bitmap representing the allocation state of
pages number of pages

free_all_bootmem_node(pg_data_t *pgdat)
Used at the boot allocator end of life. It cycles through all pages in

the bitmap for the specified node. For each one that is free, the page
flags are cleared and the page is freed to the physical page allocator (See
next chapter) so the runtime allocator can set up its free lists

Table 6.2: Boot Memory Allocator API for NUMA Architectures
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Physical Page Allocation

This chapter describes how physical pages are managed and allocated in Linux.
The principal algorithm used is the Binary Buddy Allocator , devised by Know-
lton [Kno65] and further described by Knuth [Knu68]. It is has been shown to be
extremely fast in comparison to other allocators [KB85].

This is an allocation scheme which combines a normal power-of-two allocator
with free buffer coalescing [Vah96] and the basic concept behind it is quite simple.
Memory is broken up into large blocks of pages where each block is a power of two
number of pages. If a block of the desired size is not available, a large block is
broken up in half and the two blocks are buddies to each other. One half is used for
the allocation and the other is free. The blocks are continuously halved as necessary
until a block of the desired size is available. When a block is later freed, the buddy
is examined and the two coalesced if it is free.

This chapter will begin with describing how Linux remembers what blocks of
memory are free. After that the methods for allocating and freeing pages will be
discussed in details. The subsequent section will cover the flags which affect the
allocator behavior and finally the problem of fragmentation and how the allocator
handles it will be covered.

7.1 Managing Free Blocks

As stated, the allocator maintains blocks of free pages where each block is a power
of two number of pages. The exponent for the power of two sized block is referred
to as the order . An array of free_area_t structures are maintained for each order
that points to a linked list of blocks of pages that are free as indicated by Figure
7.1.

Hence, the 0th element of the array will point to a list of free page blocks of
size 20 or 1 page, the 1st element will be a list of 21 (2) pages up to 2MAX_ORDER−1

number of pages, where the MAX_ORDER is currently defined as 10. This eliminates
the chance that a larger block will be split to satisfy a request where a smaller
block would have sufficed. The page blocks are maintained on a linear linked list
via page→list.
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Figure 7.1: Free page block management

Each zone has a free_area_t struct array called free_area[MAX_ORDER]. It is
declared in <linux/mm.h> as follows:

22 typedef struct free_area_struct {
23 struct list_head free_list;
24 unsigned long *map;
25 } free_area_t;

The fields in this struct are simply:

free_list A linked list of free page blocks;

map A bitmap representing the state of a pair of buddies.

Linux saves memory by only using one bit instead of two to represent each pair
of buddies. Each time a buddy is allocated or freed, the bit representing the pair of
buddies is toggled so that the bit is zero if the pair of pages are both free or both full
and 1 if only one buddy is in use. To toggle the correct bit, the macro MARK_USED()
in page_alloc.c is used which is declared as follows:

164 #define MARK_USED(index, order, area) \
165 __change_bit((index) >> (1+(order)), (area)->map)

index is the index of the page within the global mem_map array. By shifting
it right by 1+order bits, the bit within map representing the pair of buddies is
revealed.

7.2 Allocating Pages

Linux provides a quite sizable API for the allocation of page frames. All of them take
a gfp_mask as a parameter which is a set of flags that determine how the allocator
will behave. The flags are discussed in Section 7.4.
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The allocation API functions all use the core function __alloc_pages() but the
APIs exist so that the correct node and zone will be chosen. Different users will
require different zones such as ZONE_DMA for certain device drivers or ZONE_NORMAL
for disk buffers and callers should not have to be aware of what node is being used.
A full list of page allocation APIs are listed in Table 7.1.

alloc_page(unsigned int gfp_mask)
Allocate a single page and return a struct address

alloc_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages and returns a struct page

get_free_page(unsigned int gfp_mask)
Allocate a single page, zero it and return a virtual address

__get_free_page(unsigned int gfp_mask)
Allocate a single page and return a virtual address

__get_free_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages and return a virtual address

__get_dma_pages(unsigned int gfp_mask, unsigned int order)
Allocate 2order number of pages from the DMA zone and return a struct

page

Table 7.1: Physical Pages Allocation API

Allocations are always for a specified order, 0 in the case where a single page is
required. If a free block cannot be found of the requested order, a higher order block
is split into two buddies. One is allocated and the other is placed on the free list for
the lower order. Figure 7.2 shows where a 24 block is split and how the buddies are
added to the free lists until a block for the process is available.

When the block is later freed, the buddy will be checked. If both are free, they
are merged to form a higher order block and placed on the higher free list where its
buddy is checked and so on. If the buddy is not free, the freed block is added to the
free list at the current order. During these list manipulations, interrupts have to be
disabled to prevent an interrupt handler manipulating the lists while a process has
them in an inconsistent state. This is achieved by using an interrupt safe spinlock.

The second decision to make is which memory node or pg_data_t to use.
Linux uses a node-local allocation policy which aims to use the memory bank as-
sociated with the CPU running the page allocating process. Here, the function
_alloc_pages() is what is important as this function is different depending on
whether the kernel is built for a UMA (function in mm/page_alloc.c) or NUMA
(function in mm/numa.c) machine.
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Figure 7.2: Allocating physical pages

Regardless of which API is used, __alloc_pages() in mm/page_alloc.c is the
heart of the allocator. This function, which is never called directly, examines the
selected zone and checks if it is suitable to allocate from based on the number of
available pages. If the zone is not suitable, the allocator may fall back to other
zones. The order of zones to fall back on are decided at boot time by the function
build_zonelists() but generally ZONE_HIGHMEM will fall back to ZONE_NORMAL and
that in turn will fall back to ZONE_DMA. If number of free pages reaches the pages_low
watermark, it will wake kswapd to begin freeing up pages from zones and if memory
is extremely tight, the caller will do the work of kswapd itself.

alloc_pages

_alloc_pages

__alloc_pages

balance_classzone rmqueue

try_to_free_pages_zone __free_pages_ok expand

Figure 7.3: Call Graph: alloc_pages()

Once the zone has finally been decided on, the function rmqueue() is called to
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allocate the block of pages or split higher level blocks if one of the appropriate size
is not available.

7.3 Free Pages

The API for the freeing of pages is a lot simpler and exists to help remember the
order of the block to free. One disadvantage of a buddy allocator is that the caller
has to remember the size of the original allocation. The API for freeing is listed in
Table 7.2.

__free_pages(struct page *page, unsigned int order)
Free an order number of pages from the given page

__free_page(struct page *page)
Free a single page

free_page(void *addr)
Free a page from the given virtual address

Table 7.2: Physical Pages Free API

The principal function for freeing pages is __free_pages_ok() and it should not
be called directly. Instead the function __free_pages() is provided which performs
simple checks first as indicated in Figure 7.4.

__free_pages

__free_pages_ok

lru_cache_del

__lru_cache_del

Figure 7.4: Call Graph: __free_pages()

When a buddy is freed, Linux tries to coalesce the buddies together immediately
if possible. This is not optimal as the worst case scenario will have many coalitions
followed by the immediate splitting of the same blocks [Vah96] although it is worth



7.4. Get Free Page (GFP) Flags 95

noting later development kernels have implemented a lazy buddy system [BL89]
which delays the coalescing of buddies until it is necessary.

To detect if the buddies can be merged or not, Linux checks the bit corresponding
to the affected pair of buddies in free_area→map. As one buddy has just been freed
by this function, it is obviously known that at least one buddy is free. If the bit in
the map is 0 after toggling, we know that the other buddy must also be free because
if the bit is 0, it means both buddies are either both free or both allocated. If both
are free, they may be merged.

Calculating the address is a well known concept [Knu68]. As the allocations are
always in blocks of size 2k, the address of the block, or at least its offset within
zone_mem_map will also be a power of 2k. The end result is that there will always
be at least k number of zeros to the right of the address. To get the address of the
buddy, the kth bit from the right is examined. If it is 0, then the buddy will have
this bit flipped. To get this bit, Linux creates a mask which is calculated as

mask = (∼ 0 << k)

The mask we are interested in is

imask = 1+ ∼ mask

Linux takes a shortcut in calculating this by noting that

imask = −mask = 1+ ∼ mask

Once the buddy is merged, it is removed for the free list and the newly coalesced
pair moves to the next higher order to see if it may also be merged.

7.4 Get Free Page (GFP) Flags

A persistent concept through the whole VM is the Get Free Page (GFP) flags. These
flags determine how the allocator and kswapd will behave for the allocation and
freeing of pages. For example, an interrupt handler may not sleep so it will not have
the __GFP_WAIT flag set as this flag indicates the caller may sleep. There are three
sets of GFP flags, all defined in <linux/mm.h>.

The first of the three is the set of zone modifiers listed in Table 7.3. These flags
indicate that the caller must try to allocate from a particular zone. The reader
will note there is not a zone modifier for ZONE_NORMAL. This is because the zone
modifier flag is used as an offset within an array and 0 implicitly means allocate
from ZONE_NORMAL.

The next flags are action modifiers listed in Table 7.4. They change the behavior
of the VM and what the calling process may do. The low level flags on their own are
too primitive to be easily used. It is difficult to know what the correct combinations
are for each instance so a few high level combinations are defined and listed in
Table 7.5. For clarity the __GFP_ is removed from the table combinations so, the
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Flag Description
__GFP_DMA Allocate from ZONE_DMA if possible
__GFP_HIGHMEM Allocate from ZONE_HIGHMEM if possible
GFP_DMA Alias for __GFP_DMA

Table 7.3: Low Level GFP Flags Affecting Zone Allocation

__GFP_HIGH flag will read as HIGH below. The combinations to form the high level
flags are listed in Table 7.6

To help understand this, take GFP_ATOMIC as an example. It has only the
__GFP_HIGH flag set. This means it is high priority, will use emergency pools (if
they exist) but will not sleep, perform IO or access the filesystem. This flag would
be used by an interrupt handler for example.

Flag Description
__GFP_WAIT Indicates that the caller is not high priority and can

sleep or reschedule
__GFP_HIGH Used by a high priority or kernel process. Kernel 2.2.x

used it to determine if a process could access emergency
pools of memory. In 2.4.x kernels, it does not appear to
be used

__GFP_IO Indicates that the caller can perform low level IO.
In 2.4.x, the main affect this has is determining if
try_to_free_buffers() can flush buffers or not. It
is used by at least one journaled filesystem

__GFP_HIGHIO Determines that IO can be performed on pages mapped
in high memory. Only used in try_to_free_buffers()

__GFP_FS Indicates if the caller can make calls to the filesystem
layer. This is used when the caller is filesystem related,
the buffer cache for instance, and wants to avoid recurs-
ively calling itself

Table 7.4: Low Level GFP Flags Affecting Allocator Behavior

7.4.1 Process Flags

A process may also set flags in the task_struct which affects allocator behavior.
The full list of process flags are defined in <linux/sched.h> but only the ones
affecting VM behavior are listed in Table 7.7.
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High Level Flag Low Level Flag Combination
GFP_ATOMIC HIGH
GFP_NOIO HIGH | WAIT
GFP_NOHIGHIO HIGH | WAIT | IO
GFP_NOFS HIGH | WAIT | IO | HIGHIO
GFP_KERNEL HIGH | WAIT | IO | HIGHIO | FS
GFP_NFS HIGH | WAIT | IO | HIGHIO | FS
GFP_USER WAIT | IO | HIGHIO | FS
GFP_HIGHUSER WAIT | IO | HIGHIO | FS | HIGHMEM
GFP_KSWAPD WAIT | IO | HIGHIO | FS

Table 7.5: Low Level GFP Flag Combinations For High Level

7.5 Avoiding Fragmentation

One important problem that must be addressed with any allocator is the problem
of internal and external fragmentation. External fragmentation is the inability to
service a request because the available memory exists only in small blocks. Internal
fragmentation is defined as the wasted space where a large block had to be as-
signed to service a small request. In Linux, external fragmentation is not a serious
problem as large requests for contiguous pages are rare and usually vmalloc() (see
Chapter 8) is sufficient to service the request. The lists of free blocks ensure that
large blocks do not have to be split unnecessarily.

Internal fragmentation is the single most serious failing of the binary buddy
system. While fragmentation is expected to be in the region of 28% [WJNB95],
it has been shown that it can be in the region of 60%, in comparison to just 1%
with the first fit allocator [JW98]. It has also been shown that using variations of
the buddy system will not help the situation significantly [PN77]. To address this
problem, Linux uses a slab allocator [Bon94] to carve up pages into small blocks of
memory for allocation [Tan01] which is discussed further in Chapter 9. With this
combination of allocators, the kernel can ensure that the amount of memory wasted
due to internal fragmentation is kept to a minimum.
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High Level Flag Description
GFP_ATOMIC This flag is used whenever the caller cannot sleep

and must be serviced if at all possible. Any inter-
rupt handler that requires memory must use this
flag to avoid sleeping or performing IO. Many sub-
systems during init will use this system such as
buffer_init() and inode_init()

GFP_NOIO This is used by callers who are already performing
an IO related function. For example, when the loop
back device is trying to get a page for a buffer head,
it uses this flag to make sure it will not perform
some action that would result in more IO. If fact, it
appears the flag was introduced specifically to avoid
a deadlock in the loopback device.

GFP_NOHIGHIO This is only used in one place in
alloc_bounce_page() during the creating of
a bounce buffer for IO in high memory

GFP_NOFS This is only used by the buffer cache and filesystems
to make sure they do not recursively call themselves
by accident

GFP_KERNEL The most liberal of the combined flags. It indic-
ates that the caller is free to do whatever it pleases.
Strictly speaking the difference between this flag and
GFP_USER is that this could use emergency pools of
pages but that is a no-op on 2.4.x kernels

GFP_NFS This flag is defunct. In the 2.0.x series, this flag
determined what the reserved page size was. Nor-
mally 20 free pages were reserved. If this flag was
set, only 5 would be reserved. Now it is not treated
differently anywhere

GFP_USER Another flag of historical significance. In the 2.2.x
series, an allocation was given a LOW, MEDIUM or
HIGH priority. If memory was tight, a request with
GFP_USER (low) would fail where as the others would
keep trying. Now it has no significance and is not
treated any different to GFP_KERNEL

GFP_HIGHUSER This flag indicates that the allocator should allocate
from ZONE_HIGHMEM if possible. It is used when the
page is allocated on behalf of a user process

GFP_KSWAPD More historical significance. In reality this is not
treated any different to GFP_KERNEL

Table 7.6: High Level GFP Flags Affecting Allocator Behavior
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Flag Description
PF_MEMALLOC This flags the process as a memory allocator. kswapd

sets this flag and it is set for any process that is about
to be killed by the Out Of Memory (OOM) killer which
is discussed in Chapter 13. It tells the buddy allocator
to ignore zone watermarks and assign the pages if at
all possible

PF_MEMDIE This is set by the OOM killer and functions the same
as the PF_MEMALLOC flag by telling the page allocator
to give pages if at all possible as the process is about
to die

PF_FREE_PAGES Set when the buddy allocator calls
try_to_free_pages() itself to indicate that free
pages should be reserved for the calling process in
__free_pages_ok() instead of returning to the free
lists

Table 7.7: Process Flags Affecting Allocator Behavior



Chapter 8

Non-Contiguous Memory Allocation

It is preferable when dealing with large amounts of memory to use physically con-
tiguous physical pages in memory both for cache related and memory access latency
issues. Unfortunately, due to external fragmentation problems with the buddy al-
locator, this is not always possible. Linux provides a mechanism via vmalloc()
where non-contiguous physically memory can be used that is contiguous in virtual
memory.

An area is reserved in the virtual address space between VMALLOC_START and
VMALLOC_END. The location of VMALLOC_START depends on the amount of available
physical memory but the region will always be at least VMALLOC_RESERVE in size,
which on the x86 is 128MiB. The exact size of the region is discussed in Section 5.1.

The page tables in this region are adjusted as necessary to point to physical
pages which are allocated with the normal physical page allocator. This means that
allocation must be a multiple of the hardware page size. As allocations require
altering the kernel page tables, there is a limitation on how much memory can be
mapped with vmalloc() as only the virtual addresses space between VMALLOC_START
and VMALLOC_END is available. As a result, it is used sparingly in the core kernel. In
2.4.20, it is only used for storing the swap map information (see Chapter 12) and
for loading kernel modules into memory.

This small chapter begins with a description of how the kernel tracks which areas
in the vmalloc address space are used and how regions are allocated and freed.

8.1 Describing Virtual Memory Areas

The vmalloc address space is managed with a resource map allocator [Vah96]. The
struct vm_struct is responsible for storing the base,size pairs. It is defined in
<linux/vmalloc.h> as:

14 struct vm_struct {
15 unsigned long flags;
16 void * addr;
17 unsigned long size;
18 struct vm_struct * next;
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19 };

Here is a brief description of the fields in this small struct.

flags These set either to VM_ALLOC, in the case of use with vmalloc() or
VM_IOREMAP when ioremap is used to map high memory into the kernel virtual
address space;

addr This is the starting address of the memory block;

size This is, predictably enough, the size in bytes;

next is a pointer to the next vm_struct. They are ordered by address and the
list is protected by the vmlist_lock lock.

As is clear, the areas are linked together via the next field and are ordered by
address for simple searches. Each area is separated by at least one page to protect
against overruns. This is illustrated by the gaps in Figure 8.1

Figure 8.1: vmalloc Address Space

When the kernel wishes to allocate a new area, the vm_struct list is searched
linearly by the function get_vm_area(). Space for the struct is allocated with
kmalloc(). When the virtual area is used for remapping an area for IO (commonly
referred to as ioremapping), this function will be called directly to map the requested
area.

8.2 Allocating A Non-Contiguous Area

The functions vmalloc(), vmalloc_dma() and vmalloc_32() are provided to al-
locate a memory area that is contiguous in virtual address space. They all take a
single parameter size which is rounded up to the next page alignment. They all
return a linear address for the new allocated area.

As is clear from the call graph shown in Figure 8.2, there are two steps to
allocating the area.

The first step with get_vm_area() finds a region large enough to store the
request. It searches through a linear linked list of vm_structs and returns a new
struct describing the allocated region.
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vmalloc

__vmalloc

get_vm_area vmalloc_area_pages

pmd_alloc alloc_area_pmd

pte_alloc alloc_area_pte

Figure 8.2: Call Graph: vmalloc()

The second step is to allocate the necessary PGD entries with vmalloc_area_pages(),
PMD entries with alloc_area_pmd() and PTE entries with alloc_area_pte() be-
fore finally allocating the page with alloc_page().

The page table updated by vmalloc() is not the current process but the master
page table referenced by init_mm→pgd. This means that a process accessing the
vmalloc area will cause a page fault exception as its page tables are not pointing
to the correct area. There is a special case in the page fault handling code which
knows that the fault occured in the vmalloc area and updates the current process
page tables using information from the master page table.

8.3 Freeing A Non-Contiguous Area

The function vfree() is responsible for freeing a virtual area. It linearly searches the
list of vm_structs looking for the desired region and then calls vmfree_area_pages()
on the region of memory to be freed.

vmfree_area_pages() is the exact opposite of vmalloc_area_pages(). It walks
the page tables freeing up the page table entries and associated pages for the region.
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vmalloc(unsigned long size)
Allocate a number of pages in vmalloc space that satisfy the requested

size

vmalloc_dma(unsigned long size)
Allocate a number of pages from ZONE_DMA

vmalloc_32(unsigned long size)
Allocate memory that is suitable for 32 bit addressing. This ensures

that the physical page frames are in ZONE_NORMAL which 32 bit devices
will require

Table 8.1: Non-Contiguous Memory Allocation API

vfree(void *addr)
Free a region of memory allocated with vmalloc(), vmalloc_dma()

or vmalloc_32()

Table 8.2: Non-Contiguous Memory Free API

vfree

vmfree_area_pages

flush_tlb_all free_area_pmd

free_area_pte

__free_pages

Figure 8.3: Call Graph: vfree()



Chapter 9

Slab Allocator

In this chapter, the general purpose allocator is described. It is a slab allocator
which is very similar in many respects to the general kernel allocator used in Sol-
aris [MM01]. It is heavily based on the first slab allocator paper by Bonwick [Bon94]
with many improvements that bear a close resemblance to those described in his later
paper [BA01]. We will begin with a quick overview of the allocator followed by a
description of the different structures used before giving an in-depth tour of each
task the allocator is responsible for.

The basic idea behind the slab allocator is to have caches of commonly used
objects kept in an initialised state available for use by the kernel. Without an
object based allocator, the kernel will spend much of its time allocating, initialising
and freeing the same object. The slab allocator aims to to cache the freed object so
that the basic structure is preserved between uses [Bon94].

The slab allocator consists of a variable number of caches that are linked together
on a doubly linked circular list called a cache chain. A cache, in the context of the
slab allocator, is a manager for a number of objects of a particular type like the
mm_struct or fs_cache cache and is managed by a struct kmem_cache_s discussed
in detail later. The caches are linked via the next field in the cache struct.

Each cache maintains blocks of contiguous pages in memory called slabs which are
carved up into small chunks for the data structures and objects the cache manages.
The relationship between these different structures is illustrated in Figure 9.1.

The slab allocator has three principle aims:

• The allocation of small blocks of memory to help eliminate internal fragment-
ation that would be otherwise caused by the buddy system;

• The caching of commonly used objects so that the system does not waste
time allocating, initialising and destroying objects. Benchmarks on Solaris
showed excellent speed improvements for allocations with the slab allocator in
use [Bon94];

• The better utilisation of hardware cache by aligning objects to the L1 or L2
caches.
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Figure 9.1: Layout of the Slab Allocator

To help eliminate internal fragmentation normally caused by a binary buddy
allocator, two sets of caches of small memory buffers ranging from 25 (32) bytes
to 217 (131072) bytes are maintained. One cache set is suitable for use with DMA
devices. These caches are called size-N and size-N(DMA) where N is the size of the
allocation, and a function kmalloc() (see Section 9.4.1) is provided for allocating
them. With this, the single greatest problem with the low level page allocator is
addressed. The sizes caches are discussed in further detail in Section 9.4.

The second task of the slab allocator is to maintain caches of commonly used
objects. For many structures used in the kernel, the time needed to initialise an
object is comparable to, or exceeds, the cost of allocating space for it. When a
new slab is created, a number of objects are packed into it and initialised using a
constructor if available. When an object is freed, it is left in its initialised state so
that object allocation will be quick.

The final task of the slab allocator is hardware cache utilization. If there is
space left over after objects are packed into a slab, the remaining space is used to
color the slab. By giving objects in different slabs different offsets, they will be
assigned to different CPU cache lines helping ensure that objects from the same
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cache will be unlikely to flush each other. With this, space that would otherwise
be wasted fulfills a new function. Linux does not attempt to color pages [Kes91],
or order where objects are placed such as those described for data [GAV95] or code
segments [HK97] but the scheme used does help improve cache line usage. Cache
colouring is further discussed in Section 9.1.5. On an SMP system, a further step is
taken to help cache utilization where each cache has a small array of objects reserved
for each CPU. This is discussed further in Section 9.5.

The slab allocator provides the additional option of slab debugging if the option is
set at compile time with CONFIG_SLAB_DEBUG. Two debugging features are providing
called red zoning and object poisoning. With red zoning, a marker is placed at either
end of the object. If this mark is disturbed, the allocator knows the object where
a buffer overflow occured and reports it. Poisoning an object will fill it with a
predefined bit pattern(defined 0x5A in mm/slab.c) at slab creation and after a free.
At allocation, this pattern is examined and if it is changed, the allocator knows that
the object was used before it was allocated and flags it.

The small, but powerful, API which the allocator exports is listed in Table 9.5.

9.1 Caches

One cache exists for each type of object that is to be cached. For a full list of caches
available on a running system, run cat /proc/slabinfo . This file gives some basic
information on the caches. An excerpt from the output of this file looks like:

slabinfo - version: 1.1 (SMP)
kmem_cache 80 80 248 5 5 1 : 252 126
urb_priv 0 0 64 0 0 1 : 252 126
tcp_bind_bucket 15 226 32 2 2 1 : 252 126
inode_cache 5714 5992 512 856 856 1 : 124 62
dentry_cache 5160 5160 128 172 172 1 : 252 126
mm_struct 240 240 160 10 10 1 : 252 126
vm_area_struct 3911 4480 96 112 112 1 : 252 126
size-64(DMA) 0 0 64 0 0 1 : 252 126
size-64 432 1357 64 23 23 1 : 252 126
size-32(DMA) 17 113 32 1 1 1 : 252 126
size-32 850 2712 32 24 24 1 : 252 126

Each of the column fields correspond to a field in the struct kmem_cache_s
structure. The columns listed in the excerpt above are:

cache-name A human readable name such as “tcp_bind_bucket”;

num-active-objs Number of objects that are in use;

total-objs How many objects are available in total including unused;

obj-size The size of each object, typically quite small;
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num-active-slabs Number of slabs containing objects that are active;

total-slabs How many slabs in total exist;

num-pages-per-slab The pages required to create one slab, typically 1.

If SMP is enabled like in the example excerpt, two more columns will be displayed
after a colon. They refer to the per CPU cache described in Section 9.5. The
columns are:

limit This is the number of free objects the pool can have before half of it is given
to the global free pool;

batchcount The number of objects allocated for the processor in a block when
no objects are free.

To speed allocation and freeing of objects and slabs they are arranged into three
lists; slabs_full, slabs_partial and slabs_free. slabs_full has all its objects
in use. slabs_partial has free objects in it and so is a prime candidate for allocation
of objects. slabs_free has no allocated objects and so is a prime candidate for slab
destruction.

9.1.1 Cache Descriptor

All information describing a cache is stored in a struct kmem_cache_s declared in
mm/slab.c. This is an extremely large struct and so will be described in parts.

190 struct kmem_cache_s {
193 struct list_head slabs_full;
194 struct list_head slabs_partial;
195 struct list_head slabs_free;
196 unsigned int objsize;
197 unsigned int flags;
198 unsigned int num;
199 spinlock_t spinlock;
200 #ifdef CONFIG_SMP
201 unsigned int batchcount;
202 #endif
203

Most of these fields are of interest when allocating or freeing objects.

slabs_* These are the three lists where the slabs are stored as described in the
previous section;

objsize This is the size of each object packed into the slab;
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flags These flags determine how parts of the allocator will behave when dealing
with the cache. See Section 9.1.2;

num This is the number of objects contained in each slab;

spinlock A spinlock protecting the structure from concurrent accessses;

batchcount This is the number of objects that will be allocated in batch for the
per-cpu caches as described in the previous section.

206 unsigned int gfporder;
209 unsigned int gfpflags;
210
211 size_t colour;
212 unsigned int colour_off;
213 unsigned int colour_next;
214 kmem_cache_t *slabp_cache;
215 unsigned int growing;
216 unsigned int dflags;
217
219 void (*ctor)(void *, kmem_cache_t *, unsigned long);
222 void (*dtor)(void *, kmem_cache_t *, unsigned long);
223
224 unsigned long failures;
225

This block deals with fields of interest when allocating or freeing slabs from the
cache.

gfporder This indicates the size of the slab in pages. Each slab consumes 2gfporder

pages as these are the allocation sizes the buddy allocator provides;

gfpflags The GFP flags used when calling the buddy allocator to allocate pages
are stored here. See Section 7.4 for a full list;

colour Each slab stores objects in different cache lines if possible. Cache colouring
will be further discussed in Section 9.1.5;

colour_off This is the byte alignment to keep slabs at. For example, slabs for
the size-X caches are aligned on the L1 cache;

colour_next This is the next colour line to use. This value wraps back to 0 when
it reaches colour;

growing This flag is set to indicate if the cache is growing or not. If it is, it is
much less likely this cache will be selected to reap free slabs under memory
pressure;
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dflags These are the dynamic flags which change during the cache lifetime. See
Section 9.1.3;

ctor A complex object has the option of providing a constructor function to be
called to initialise each new object. This is a pointer to that function and may
be NULL;

dtor This is the complementing object destructor and may be NULL;

failures This field is not referred to anywhere in the code.

227 char name[CACHE_NAMELEN];
228 struct list_head next;

These are set during cache creation

name This is the human readable name of the cache;

next This is the next cache on the cache chain.

229 #ifdef CONFIG_SMP
231 cpucache_t *cpudata[NR_CPUS];
232 #endif

cpudata This is the per-cpu data and is discussed further in Section 9.5.

233 #if STATS
234 unsigned long num_active;
235 unsigned long num_allocations;
236 unsigned long high_mark;
237 unsigned long grown;
238 unsigned long reaped;
239 unsigned long errors;
240 #ifdef CONFIG_SMP
241 atomic_t allochit;
242 atomic_t allocmiss;
243 atomic_t freehit;
244 atomic_t freemiss;
245 #endif
246 #endif
247 };

These figures are only available if the CONFIG_SLAB_DEBUG option is set during
compile time. They are all beancounters and not of general interest. The statistics
for /proc/slabinfo are calculated when the proc entry is read by another process
by examining every slab used by each cache rather than relying on these fields to be
available.
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num_active The current number of active objects in the cache is stored here;

num_allocations A running total of the number of objects that have been al-
located on this cache is stored in this field;

high_mark This is the highest value num_active has had to date;

grown This is the number of times kmem_cache_grow() has been called;

reaped The number of times this cache has been reaped is kept here;

errors This field is never used;

allochit This is the total number of times an allocation has used the per-cpu
cache;

allocmiss To complement allochit, this is the number of times an allocation
has missed the per-cpu cache;

freehit This is the number of times a free was placed on a per-cpu cache;

freemiss This is the number of times an object was freed and placed on the global
pool.

9.1.2 Cache Static Flags

A number of flags are set at cache creation time that remain the same for the
lifetime of the cache. They affect how the slab is structured and how objects are
stored within it. All the flags are stored in a bitmask in the flags field of the
cache descriptor. The full list of possible flags that may be used are declared in
<linux/slab.h>.

There are three principle sets. The first set is internal flags which are set only
by the slab allocator and is listed in Table 9.1. The only relevant flag is the
CFGS_OFF_SLAB flag which determines where the slab descriptor is stored.

Flag Description
CFGS_OFF_SLAB Indicates that the slab managers for this cache are

kept off-slab. This is discussed further in Section 9.2.1
CFLGS_OPTIMIZE This flag is only ever set and never used

Table 9.1: Internal cache static flags

The second set are set by the cache creator and they determine how the allocator
treats the slab and how objects are stored. They are listed in Table 9.2.

The last flags are only available if the compile option CONFIG_SLAB_DEBUG is set.
They determine what additional checks will be made to slabs and objects and are
primarily of interest only when new caches are being developed.
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Flag Description
SLAB_HWCACHE_ALIGN Align the objects to the L1 CPU cache
SLAB_MUST_HWCACHE_ALIGN Force alignment to the L1 CPU cache even

if very wasteful or debugging
SLAB_NO_REAP Never reap slabs in this cache
SLAB_CACHE_DMA Use memory from ZONE_DMA

Table 9.2: Cache static flags set by caller

Flag Description
SLAB_DEBUG_FREE Perform expensive checks on free
SLAB_DEBUG_INITIAL After an object is freed, the constructor is called

with a flag set that tells it to check to make sure
it is initialised correctly

SLAB_RED_ZONE This places a marker at either end of objects to
trap overflows

SLAB_POISON Poison objects with a known pattern for trap-
ping changes made to objects not allocated or
initialised

Table 9.3: Cache static debug flags

To prevent callers using the wrong flags a CREATE_MASK is defined in mm/slab.c
consisting of all the allowable flags. When a cache is being created, the requested
flags are compared against the CREATE_MASK and reported as a bug if invalid flags
are used.

9.1.3 Cache Dynamic Flags

The dflags field has only one flag, DFLGS_GROWN, but it is important. The flag is set
during kmem_cache_grow() so that kmem_cache_reap() will be unlikely to choose
the cache for reaping. When the function does find a cache with this flag set, it
skips the cache and removes the flag.

9.1.4 Cache Allocation Flags

These flags correspond to the GFP page flag options for allocating pages for slabs.
Callers sometimes call with either SLAB_* or GFP_* flags, but they really should use
only SLAB_* flags. They correspond directly to the flags described in Section 7.4 so
will not be discussed in detail here. It is presumed the existence of these flags are
for clarity and in case the slab allocator needed to behave differently in response to
a particular flag but in reality, there is no difference.
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Flag Description
SLAB_ATOMIC Equivalent to GFP_ATOMIC
SLAB_DMA Equivalent to GFP_DMA
SLAB_KERNEL Equivalent to GFP_KERNEL
SLAB_NFS Equivalent to GFP_NFS
SLAB_NOFS Equivalent to GFP_NOFS
SLAB_NOHIGHIO Equivalent to GFP_NOHIGHIO
SLAB_NOIO Equivalent to GFP_NOIO
SLAB_USER Equivalent to GFP_USER

Table 9.4: Cache Allocation Flags

9.1.5 Cache Colouring

To utilise hardware cache better, the slab allocator will offset objects in different
slabs by different amounts depending on the amount of space left over in the slab.
The offset is in units of BYTES_PER_WORD unless SLAB_HWCACHE_ALIGN is set in which
case it is aligned to blocks of L1_CACHE_BYTES for alignment to the L1 hardware
cache.

During cache creation, it is calculated how many objects can fit on a slab (see
Section 9.2.7) and how many bytes would be wasted. Based on wastage, two figures
are calculated for the cache descriptor

colour This is the number of different offsets that can be used;

colour_off This is the multiple to offset each objects by in the slab.

With the objects offset, they will use different lines on the associative hardware
cache. Therefore, objects from slabs are less likely to overwrite each other in memory.

The result of this is best explained by an example. Let us say that s_mem (the
address of the first object) on the slab is 0 for convenience, that 100 bytes are
wasted on the slab and alignment is to be at 32 bytes to the L1 Hardware Cache on
a Pentium II.

In this scenario, the first slab created will have its objects start at 0. The second
will start at 32, the third at 64, the fourth at 96 and the fifth will start back at 0.
With this, objects from each of the slabs will not hit the same hardware cache line
on the CPU. The value of colour is 3 and colour_off is 32.

9.1.6 Cache Creation

The function kmem_cache_create() is responsible for creating new caches and
adding them to the cache chain. The tasks that are taken to create a cache are

• Perform basic sanity checks for bad usage;

• Perform debugging checks if CONFIG_SLAB_DEBUG is set;
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• Allocate a kmem_cache_t from the cache_cache slab cache ;

• Align the object size to the word size;

• Calculate how many objects will fit on a slab;

• Align the slab size to the hardware cache;

• Calculate colour offsets ;

• Initialise remaining fields in cache descriptor;

• Add the new cache to the cache chain.

Figure 9.2 shows the call graph relevant to the creation of a cache; each function
is fully described in the Code Commentary.

kmem_cache_create

kmem_cache_alloc kmem_cache_estimate kmem_find_general_cachep enable_cpucache

__kmem_cache_alloc kmem_tune_cpucache

Figure 9.2: Call Graph: kmem_cache_create()

9.1.7 Cache Reaping

When a slab is freed, it is placed on the slabs_free list for future use. Caches do
not automatically shrink themselves so when kswapd notices that memory is tight,
it calls kmem_cache_reap() to free some memory. This function is responsible for
selecting a cache that will be required to shrink its memory usage. It is worth noting
that cache reaping does not take into account what memory node or zone is under
pressure. This means that with a NUMA or high memory machine, it is possible
the kernel will spend a lot of time freeing memory from regions that are under no
memory pressure but this is not a problem for architectures like the x86 which has
only one bank of memory.

The call graph in Figure 9.3 is deceptively simple as the task of selecting the
proper cache to reap is quite long. In the event that there are numerous caches in
the system, only REAP_SCANLEN1 caches are examined in each call. The last cache to
be scanned is stored in the variable clock_searchp so as not to examine the same
caches repeatedly. For each scanned cache, the reaper does the following

1REAP_SCANLEN is statically defined as 10.
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kmem_cache_reap

__free_block kmem_slab_destroy

kmem_cache_free_one kmem_freepages kmem_cache_free

Figure 9.3: Call Graph: kmem_cache_reap()

• Check flags for SLAB_NO_REAP and skip if set;

• If the cache is growing, skip it;

• if the cache has grown recently (DFLGS_GROWN is set in dflags), skip it but
clear the flag so it will be reaped the next time;

• Count the number of free slabs in slabs_free and calculate how many pages
that would free in the variable pages;

• If the cache has constructors or large slabs, adjust pages to make it less likely
for the cache to be selected;

• If the number of pages that would be freed exceeds REAP_PERFECT, free half
of the slabs in slabs_free;

• Otherwise scan the rest of the caches and select the one that would free the
most pages for freeing half of its slabs in slabs_free.

9.1.8 Cache Shrinking

When a cache is selected to shrink itself, the steps it takes are simple and brutal

• Delete all objects in the per CPU caches;

• Delete all slabs from slabs_free unless the growing flag gets set.

Linux is nothing, if not subtle.
Two varieties of shrink functions are provided with confusingly similar names.

kmem_cache_shrink() removes all slabs from slabs_free and returns the number
of pages freed as a result. This is the principal function exported for use by the slab
allocator users.
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kmem_cache_shrink

__kmem_cache_shrink_locked

kmem_slab_destroy

Figure 9.4: Call Graph: kmem_cache_shrink()

__kmem_cache_shrink

drain_cpu_caches __kmem_cache_shrink_locked

free_block smp_call_function_all_cpus kmem_slab_destroy

Figure 9.5: Call Graph: __kmem_cache_shrink()

The second function __kmem_cache_shrink() frees all slabs from slabs_free
and then verifies that slabs_partial and slabs_full are empty. This is for in-
ternal use only and is important during cache destruction when it doesn’t matter
how many pages are freed, just that the cache is empty.

9.1.9 Cache Destroying

When a module is unloaded, it is responsible for destroying any cache with the func-
tion kmem_cache_destroy(). It is important that the cache is properly destroyed as
two caches of the same human-readable name are not allowed to exist. Core kernel
code often does not bother to destroy its caches as their existence persists for the
life of the system. The steps taken to destroy a cache are

• Delete the cache from the cache chain;

• Shrink the cache to delete all slabs;

• Free any per CPU caches (kfree());
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• Delete the cache descriptor from the cache_cache.

kmem_cache_destroy

__kmem_cache_shrink kfree kmem_cache_free

Figure 9.6: Call Graph: kmem_cache_destroy()

9.2 Slabs

This section will describe how a slab is structured and managed. The struct which
describes it is much simpler than the cache descriptor, but how the slab is arranged
is considerably more complex. It is declared as follows:

typedef struct slab_s {
struct list_head list;
unsigned long colouroff;
void *s_mem;
unsigned int inuse;
kmem_bufctl_t free;

} slab_t;

The fields in this simple struct are as follows:

list This is the linked list the slab belongs to. This will be one of slab_full,
slab_partial or slab_free from the cache manager;

colouroff This is the colour offset from the base address of the first object within
the slab. The address of the first object is s_mem + colouroff;

s_mem This gives the starting address of the first object within the slab;

inuse This gives the number of active objects in the slab;

free This is an array of bufctls used for storing locations of free objects. See
Section 9.2.3 for further details.

The reader will note that given the slab manager or an object within the slab,
there does not appear to be an obvious way to determine what slab or cache they
belong to. This is addressed by using the list field in the struct page that makes
up the cache. SET_PAGE_CACHE() and SET_PAGE_SLAB() use the next and prev
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pages

cache

page->list.next

slab

page->list.prev

object object 

Figure 9.7: Page to Cache and Slab Relationship

fields on the page→list to track what cache and slab an object belongs to. To get
the descriptors from the page, the macros GET_PAGE_CACHE() and GET_PAGE_SLAB()
are available. This set of relationships is illustrated in Figure 9.7

The last issue is where the slab management struct is kept. Slab managers are
kept either on (CFLGS_OFF_SLAB set in the static flags) or off-slab. Where they are
placed are determined by the size of the object during cache creation.

9.2.1 Storing the Slab Descriptor

If the objects are larger than a threshold (512 bytes on x86), CFGS_OFF_SLAB is set
in the cache flags and the slab descriptor is kept off-slab in one of the sizes cache
(see Section 9.4). The selected sizes cache is large enough to contain the struct
slab_t and kmem_cache_slabmgmt() allocates from it as necessary. This limits the
number of objects that can be stored on the slab because there is limited space for
the bufctls but that is unimportant as the objects are large and so there should
not be many stored in a single slab.

Alternatively, the slab manger is reserved at the beginning of the slab. When
stored on-slab, enough space is kept at the beginning of the slab to store both the
slab_t and the kmem_bufctl_t array. The array is responsible for tracking where
the next free object is stored and is discussed later in the chapter. The objects are
stored after the kmem_bufctl_t array.

Figure 9.8 should help clarify what a slab with the descriptor on-slab looks like
and Figure 9.9 illustrates how a cache uses a sizes cache to store the slab descriptor
when the descriptor is kept off-slab.
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cache->slabs_free

Slab Descriptor

slab_t kmem_bufctl_t array Object Object Object Object Object Object

Free Object Information

First Object Address (s_mem)

Figure 9.8: Slab With Descriptor On-Slab

9.2.2 Slab Creation

At this point, we have seen how the cache is created, but on creation, it is an
empty cache with empty lists for its slab_full, slab_partial and slabs_free.
New slabs are allocated to a cache by calling the function kmem_cache_grow().
This is frequently called “cache growing” and occurs when no objects are left in the
slabs_partial list and there are no slabs in slabs_free. The tasks it fulfills are

• Perform basic sanity checks to guard against bad usage;

• Calculate colour offset for objects in this slab;

• Allocate memory for slab and acquire a slab descriptor;

• Link the pages used for the slab to the slab and cache descriptors described in
Section 9.2;

• Initialise objects in the slab;

• Add the slab to the cache.

9.2.3 Tracking Free Objects

The slab allocator has got to have a quick and simple means of tracking where free
objects are on the partially filled slabs. It achieves this by using a kmem_bufctl_t
array that is associated with each slab manager as obviously it is up to the slab
manager to know where its free objects are.
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Size-X Cache

slab_t kmem_bufctl_t

Object Object Object Object Object Object Object Object Object

First Object Address (s_mem)

cache

Figure 9.9: Slab With Descriptor Off-Slab

Historically, and according to the paper describing the slab allocator [Bon94],
kmem_bufctl_t was a linked list of objects. In Linux 2.2.x, this struct was a union
of three items, a pointer to the next free object, a pointer to the slab manager and
a pointer to the object. Which it was depended on the state of the object.

Today, the slab and cache an object belongs to is determined by the struct
page and kmem_bufctl_t is simply an integer array of object indices. The number
of elements in the array is the same as the number of objects on the slab.

141 typedef unsigned int kmem_bufctl_t;

As the array is kept after the slab descriptor and there is no pointer to the first
element directly, a helper macro slab_bufctl() is provided.

163 #define slab_bufctl(slabp) \
164 ((kmem_bufctl_t *)(((slab_t*)slabp)+1))

This seemingly cryptic macro is quite simple when broken down. The para-
meter slabp is a pointer to the slab manager. The block ((slab_t*)slabp)+1
casts slabp to a slab_t struct and adds 1 to it. This will give a slab_t * pointer
to the beginning of the kmem_bufctl_t array. (kmem_bufctl_t *) recasts that
pointer back to the required type. The results in blocks of code that contain
slab_bufctl(slabp)[i]. Translated, that says “take a pointer to a slab descriptor,
offset it with slab_bufctl() to the beginning of the kmem_bufctl_t array and
return the ith element of the array”.

The index to the next free object in the slab is stored in slab_t→free elimin-
ating the need for a linked list to track free objects. When objects are allocated or
freed, this pointer is updated based on information in the kmem_bufctl_t array.
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kmem_cache_grow

kmem_getpages kmem_cache_slabmgmt kmem_cache_init_objs

__get_free_pages kmem_cache_alloc

__kmem_cache_alloc

Figure 9.10: Call Graph: kmem_cache_grow()

9.2.4 Initialising the kmem_bufctl_t Array

When a cache is grown, all the objects and the kmem_bufctl_t array on the slab
are initialised. The array is filled with the index of each object beginning with 1
and ending with the marker BUFCTL_END. For a slab with 5 objects, the elements of
the array would look like Figure 9.11.

1 2 3 4 BUFCTL_END

Figure 9.11: Initialised kmem_bufctl_t Array

The value 0 is stored in slab_t→free as the 0th object is the first free object to
be used. The idea is that for a given object n, the index of the next free object will
be stored in kmem_bufctl_t[n]. Looking at the array above, the next object free
after 0 is 1. After 1, there are two and so on. As the array is used, this arrangement
will make the array act as a LIFO for free objects.

9.2.5 Finding the Next Free Object

kmem_cache_alloc() will call kmem_cache_alloc_one_tail() when allocating an
object to perform the “real” work of updating the kmem_bufctl_t() array.

slab_t→free has the index of the first free object. The index of the next free
object is at kmem_bufctl_t[slab_t→free]. In code terms, this looks like

1253 objp = slabp->s_mem + slabp->free*cachep->objsize;
1254 slabp->free=slab_bufctl(slabp)[slabp->free];
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slabp→s_mem is the index of the first object on the slab. slabp→free is the
index of the object to allocate and it has to be multiplied by the size of an object.

The index of the next free object is stored at kmem_bufctl_t[slabp→free].
There is no pointer directly to the array hence the helper macro slab_bufctl()
is used. Note that the kmem_bufctl_t array is not changed during allocations but
that the elements that are unallocated are unreachable. For example, after two
allocations, index 0 and 1 of the kmem_bufctl_t array are not pointed to by any
other element.

9.2.6 Updating kmem_bufctl_t

The kmem_bufctl_t list is only updated when an object is freed in the function
kmem_cache_free_one(). The array is updated with this block of code:

1451 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;
1452
1453 slab_bufctl(slabp)[objnr] = slabp->free;
1454 slabp->free = objnr;

objp is the object about to be freed and objnr is its index. kmem_bufctl_t[objnr]
is updated to point to the current value of slabp→free, effectively placing the ob-
ject pointed to by free on the pseudo linked list. slabp→free is updated to the
object being freed so that it will be the next one allocated.

9.2.7 Calculating the Number of Objects on a Slab

During cache creation, the function kmem_cache_estimate() is called to estimate
how many objects may be stored on a single slab taking into account whether the
slab descriptor must be stored on-slab or off-slab and the size of each kmem_bufctl_t
needed to track if an object is free or not. It returns the number of objects that
may be stored and how many bytes are wasted. The number of wasted bytes is
important if cache colouring is to be used.

The calculation is quite basic and takes the following steps

• Initialise wastage to be the total size of the slab, PAGE_SIZEgfp_order;

• Subtract the amount of space required to store the slab descriptor;

• Count up the number of objects that may be stored. Include the size of the
kmem_bufctl_t if the slab descriptor is stored on the slab. Keep increasing
the size of i until the slab is filled;

• Return the number of objects and bytes wasted.
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9.2.8 Slab Destroying

When a cache is being shrunk or destroyed, the slabs will be deleted. As the objects
may have destructors, these must be called, so the tasks of this function are:

• If available, call the destructor for every object in the slab;

• If debugging is enabled, check the red marking and poison pattern;

• Free the pages the slab uses.

The call graph at Figure 9.12 is very simple.

kmem_slab_destroy

kmem_freepages kmem_cache_free

Figure 9.12: Call Graph: kmem_slab_destroy()

9.3 Objects

This section will cover how objects are managed. At this point, most of the really
hard work has been completed by either the cache or slab managers.

9.3.1 Initialising Objects in a Slab

When a slab is created, all the objects in it are put in an initialised state. If a
constructor is available, it is called for each object and it is expected that objects
are left in an initialised state upon free. Conceptually the initialisation is very simple,
cycle through all objects and call the constructor and initialise the kmem_bufctl for
it. The function kmem_cache_init_objs() is responsible for initialising the objects.

9.3.2 Object Allocation

The function kmem_cache_alloc() is responsible for allocating one object to the
caller which behaves slightly different in the UP and SMP cases. Figure 9.13 shows
the basic call graph that is used to allocate an object in the SMP case.

There are four basic steps. The first step (kmem_cache_alloc_head()) covers
basic checking to make sure the allocation is allowable. The second step is to select
which slabs list to allocate from. This will be one of slabs_partial or slabs_free.
If there are no slabs in slabs_free, the cache is grown (see Section 9.2.2) to create
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kmem_cache_alloc

__kmem_cache_alloc

kmem_cache_alloc_head kmem_cache_alloc_one kmem_cache_alloc_one_tail kmem_cache_grow

Figure 9.13: Call Graph: kmem_cache_alloc()

a new slab in slabs_free. The final step is to allocate the object from the selected
slab.

The SMP case takes one further step. Before allocating one object, it will check
to see if there is one available from the per-CPU cache and will use it if there is. If
there is not, it will allocate batchcount number of objects in bulk and place them
in its per-cpu cache. See Section 9.5 for more information on the per-cpu caches.

9.3.3 Object Freeing

kmem_cache_free() is used to free objects and it has a relatively simple task. Just
like kmem_cache_alloc(), it behaves differently in the UP and SMP cases. The
principal difference between the two cases is that in the UP case, the object is
returned directly to the slab but with the SMP case, the object is returned to the
per-cpu cache. In both cases, the destructor for the object will be called if one is
available. The destructor is responsible for returning the object to the initialised
state.

9.4 Sizes Cache

Linux keeps two sets of caches for small memory allocations for which the physical
page allocator is unsuitable. One cache is for use with DMA and the other suitable
for normal use. The human readable names for these caches are size-N cache and
size-N(DMA) cache which are viewable from /proc/slabinfo. Information for each
sized cache is stored in a cache_sizes_t struct defined in mm/slab.c

331 typedef struct cache_sizes {
332 size_t cs_size;
333 kmem_cache_t *cs_cachep;
334 kmem_cache_t *cs_dmacachep;
335 } cache_sizes_t;

The fields in this struct are described as follows:
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cs_size The size of the memory block;

cs_cachep The cache of blocks for normal memory use;

cs_dmacachep The cache of blocks for use with DMA.

As there are a limited number of these caches that exist, a static array called
cache_sizes is initialised at compile time beginning with 32 bytes on a 4KiB ma-
chine and 64 for greater page sizes.

337 static cache_sizes_t cache_sizes[] = {
338 #if PAGE_SIZE == 4096
339 { 32, NULL, NULL},
340 #endif
341 { 64, NULL, NULL},
342 { 128, NULL, NULL},
343 { 256, NULL, NULL},
344 { 512, NULL, NULL},
345 { 1024, NULL, NULL},
346 { 2048, NULL, NULL},
347 { 4096, NULL, NULL},
348 { 8192, NULL, NULL},
349 { 16384, NULL, NULL},
350 { 32768, NULL, NULL},
351 { 65536, NULL, NULL},
352 {131072, NULL, NULL},
353 { 0, NULL, NULL}

As is obvious, this is a static array that is zero terminated consisting of buffers
of succeeding powers of 2 from 25 to 217 . An array now exists that describes each
sized cache which must be initialised with caches at system startup.

9.4.1 kmalloc

With the existence of the sizes cache, the slab allocator is able to offer a new allocator
function, kmalloc() for use when small memory buffers are required. When a
request is received, the appropriate sizes cache is selected and an object assigned
from it. The call graph on Figure 9.14 is therefore very simple as all the hard work
is in cache allocation.

9.4.2 kfree

Just as there is a kmalloc() function to allocate small memory objects for use, there
is a kfree() for freeing it. As with kmalloc(), the real work takes place during
object freeing (See Section 9.3.3) so the call graph in Figure 9.15 is very simple.
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kmalloc

__kmem_cache_alloc

Figure 9.14: Call Graph: kmalloc()

kfree

__kmem_cache_free

Figure 9.15: Call Graph: kfree()

9.5 Per-CPU Object Cache

One of the tasks the slab allocator is dedicated to is improved hardware cache
utilization. An aim of high performance computing [CS98] in general is to use
data on the same CPU for as long as possible. Linux achieves this by trying to
keep objects in the same CPU cache with a Per-CPU object cache, simply called a
cpucache for each CPU in the system.

When allocating or freeing objects, they are placed in the cpucache. When there
are no objects free, a batch of objects is placed into the pool. When the pool gets
too large, half of them are removed and placed in the global cache. This way the
hardware cache will be used for as long as possible on the same CPU.

The second major benefit of this method is that spinlocks do not have to be held
when accessing the CPU pool as we are guaranteed another CPU won’t access the
local data. This is important because without the caches, the spinlock would have
to be acquired for every allocation and free which is unnecessarily expensive.

9.5.1 Describing the Per-CPU Object Cache

Each cache descriptor has a pointer to an array of cpucaches, described in the cache
descriptor as

231 cpucache_t *cpudata[NR_CPUS];

This structure is very simple
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173 typedef struct cpucache_s {
174 unsigned int avail;
175 unsigned int limit;
176 } cpucache_t;

The fields are as follows:

avail This is the number of free objects available on this cpucache;

limit This is the total number of free objects that can exist.

A helper macro cc_data() is provided to give the cpucache for a given cache
and processor. It is defined as

180 #define cc_data(cachep) \
181 ((cachep)->cpudata[smp_processor_id()])

This will take a given cache descriptor (cachep) and return a pointer from the
cpucache array (cpudata). The index needed is the ID of the current processor,
smp_processor_id().

Pointers to objects on the cpucache are placed immediately after the cpucache_t
struct. This is very similar to how objects are stored after a slab descriptor.

9.5.2 Adding/Removing Objects from the Per-CPU Cache

To prevent fragmentation, objects are always added or removed from the end of the
array. To add an object (obj) to the CPU cache (cc), the following block of code is
used

cc_entry(cc)[cc->avail++] = obj;

To remove an object

obj = cc_entry(cc)[--cc->avail];

cc_entry() is a helper macro which gives a pointer to the first object in the
cpucache. It is defined as

178 #define cc_entry(cpucache) \
179 ((void **)(((cpucache_t*)(cpucache))+1))

This takes a pointer to a cpucache, increments the value by the size of the
cpucache_t descriptor giving the first object in the cache.
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9.5.3 Enabling Per-CPU Caches

When a cache is created, its CPU cache has to be enabled and memory allocated for
it using kmalloc(). The function enable_cpucache() is responsible for deciding
what size to make the cache and calling kmem_tune_cpucache() to allocate memory
for it.

Obviously a CPU cache cannot exist until after the various sizes caches have
been enabled so a global variable g_cpucache_up is used to prevent CPU caches
being enabled prematurely. The function enable_all_cpucaches() cycles through
all caches in the cache chain and enables their cpucache.

Once the CPU cache has been setup, it can be accessed without locking as a
CPU will never access the wrong cpucache so it is guaranteed safe access to it.

9.5.4 Updating Per-CPU Information

When the per-cpu caches have been created or changed, each CPU is signalled via
an IPI. It is not sufficient to change all the values in the cache descriptor as that
would lead to cache coherency issues and spinlocks would have to used to protect
the CPU caches. Instead a ccupdate_t struct is populated with all the information
each CPU needs and each CPU swaps the new data with the old information in the
cache descriptor. The struct for storing the new cpucache information is defined as
follows

868 typedef struct ccupdate_struct_s
869 {
870 kmem_cache_t *cachep;
871 cpucache_t *new[NR_CPUS];
872 } ccupdate_struct_t;

cachep is the cache being updated and new is the array of the cpucache
descriptors for each CPU on the system. The function smp_function_all_cpus()
is used to get each CPU to call the do_ccupdate_local() function which swaps the
information from ccupdate_struct_t with the information in the cache descriptor.

Once the information has been swapped, the old data can be deleted.

9.5.5 Draining a Per-CPU Cache

When a cache is being shrunk, its first step is to drain the cpucaches of any objects
they might have. This is so that the slab allocator will have a clearer view of what
slabs can be freed or not. This is important because if just one object in a slab is
placed in a per-cpu cache, that whole slab cannot be freed. If the system is tight on
memory, saving a few milliseconds on allocations has a low priority.
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9.6 Slab Allocator Initialisation

Here we will describe how the slab allocator initialises itself. When the slab alloc-
ator creates a new cache, it allocates the kmem_cache_t from the cache_cache or
kmem_cache cache. This is an obvious chicken and egg problem so the cache_cache
has to be statically initialised as

357 static kmem_cache_t cache_cache = {
358 slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),
359 slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),
360 slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),
361 objsize: sizeof(kmem_cache_t),
362 flags: SLAB_NO_REAP,
363 spinlock: SPIN_LOCK_UNLOCKED,
364 colour_off: L1_CACHE_BYTES,
365 name: "kmem_cache",
366 };

This code statically initialised the kmem_cache_t struct as follows:

358-360 Initialise the three lists as empty lists;

361 The size of each object is the size of a cache descriptor;

362 The creation and deleting of caches is extremely rare so do not consider it for
reaping ever;

363 Initialise the spinlock unlocked;

364 Align the objects to the L1 cache;

365 Record the human readable name.

That statically defines all the fields that can be calculated at compile time. To
initialise the rest of the struct, kmem_cache_init() is called from start_kernel().

9.7 Interfacing with the Buddy Allocator

The slab allocator does not come with pages attached, it must ask the physical page
allocator for its pages. For this two interfaces are provided, kmem_getpages() and
kmem_freepages(). They are basically wrappers around the buddy allocators API
so that slab flags will be taken into account for allocations.
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kmem_cache_create(const char *name, size_t size,
size_t offset, unsigned long flags,

void (*ctor)(void*, kmem_cache_t *, unsigned long),
void (*dtor)(void*, kmem_cache_t *, unsigned long))

Creates a new cache and adds it to the cache chain

kmem_cache_reap(int gfp_mask)
Scans at most REAP_SCANLEN caches and selects one for reaping all

per-cpu objects and free slabs from. Called when memory is tight

kmem_cache_shrink(kmem_cache_t *cachep)
This function will delete all per-cpu objects associated with a cache

and delete all slabs in the slabs_free list. It returns the number of
pages freed.

kmem_cache_alloc(kmem_cache_t *cachep, int flags)
Allocate a single object from the cache and return it to the caller

kmem_cache_free(kmem_cache_t *cachep, void *objp)
Free an object and return it to the cache

kmalloc(size_t size, int flags)
Allocate a block of memory from one of the sizes cache

kfree(const void *objp)
Free a block of memory allocated with kmalloc

kmem_cache_destroy(kmem_cache_t * cachep)
Destroys all objects in all slabs and frees up all associated memory

before removing the cache from the chain

Table 9.5: Slab Allocator API for caches
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High Memory Management

The kernel may only directly address memory for which it has set up a page table
entry. In the most common case, the user/kernel address space split of 3GiB/1GiB
implies that at best only 896MiB of memory may be directly accessed at any given
time on a 32bit machine1 as explained in Section 5.1.

There are many high end 32 bit machines that have more than 1GiB of memory
and the inconveniently located memory cannot be simply ignored. The solution
Linux uses is to temporarily map pages from high memory into the lower page
tables. This will be discussed in Section 10.2.

High memory and IO has a related problem which must be addressed as not all
devices are able to address high memory or all the memory available to the CPU
in the case of PAE. Indeed some are limited to addresses the size of a signed 32 bit
integer or 2GiB. Asking the device to write to memory will fail at best and possibly
disrupt the kernel at worst. The solution to this problem is to use a bounce buffer
and this will be discussed in Section 10.4.

This chapter begins with a brief description of how the Persistent Kernel Map
(PKMap) address space is managed before talking about how pages are mapped and
unmapped from high memory. The subsequent section will deal with the case where
the mapping must be atomic before discussing bounce buffers in depth. Finally we
will talk about how emergency pools are used for when memory is very tight.

10.1 Managing the PKMap Address Space

Space is reserved at the top of the kernel page tables from PKMAP_BASE to
FIXADDR_START for a PKMap. The size of the space reserved varies slightly. On the
x86, PKMAP_BASE is at 0xFE000000 and the address of FIXADDR_START is a compile
time constant that varies with configure options but is typically only a few pages.
This means that there is slightly below 32MiB of page table space for mapping pages
from high memory into usable space.

1On 64 bit hardware, this is not really an issue as there is more than enough virtual address
space. It is highly unlikely there will be machines running 2.4 kernels with more than terabytes of
RAM.
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For mapping pages, a single page set of PTEs is stored at the beginning of the
PKMap area to allow 1024 high pages to be mapped into low memory for short
periods with the function kmap() and unmapped with kunmap(). The pool seems
very small but the page is only mapped by kmap() for a very short time. Comments
in the code indicate that there was a plan to allocate contiguous page table entries
to expand this area but it has remained just that, comments in the code so a large
portion of the PKMap is unused.

The page table entry for use with kmap() is called pkmap_page_table which is
located at PKMAP_BASE and set up during system initialisation2. The pages for the
PGD and PMD entries are allocated by the boot memory allocator to ensure they
exist.

The current state of the page table entries is managed by a simple array called
called pkmap_count which has LAST_PKMAP entries in it. On an x86 system without
PAE, this is 1024 and with PAE, it is 512. More accurately, albeit not expressed in
code, the LAST_PKMAP variable is equivalent to PTRS_PER_PTE.

Each element is not exactly a reference count but it is very close. If the entry
is 0, the page is free and has not been used since the last TLB flush. If it is 1, the
slot is unused but a page is still mapped there waiting for a TLB flush. Flushes are
delayed until every slot has been used at least once as a global flush is required for
all CPUs when the global page tables are modified and is extremely expensive. Any
higher value is a reference count of n-1 users of the page.

10.2 Mapping High Memory Pages

kmap

__out_of_line_bug kmap_high

map_new_virtual

flush_all_zero_pkmaps add_wait_queue remove_wait_queue

Figure 10.1: Call Graph: kmap()

The kmap pool is quite small so it is important that users of kmap() call

2On the x86, this takes place at the end of the pagetable_init() function.
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kunmap() as quickly as possible because the pressure on this small window grows
incrementally worse as the size of high memory grows in comparison to low memory.
The API for mapping pages from high memory is described in Table 10.1.

kmap(struct page *page)
Takes a struct page from high memory and maps it into low memory.

The address returned is the virtual address of the mapping

kunmap(struct page *page)
Unmaps a struct page from low memory and frees up the page table

entry mapping it

kmap_atomic(struct page *page, enum km_type type)
There are slots maintained in the map for atomic use by interrupts

(see Section 10.3). Their use is heavily discouraged and callers of this
function may not sleep or schedule. This function will map a page from
high memory atomically for a specific purpose

kunmap_atomic(void *kvaddr, enum km_type type)
Unmap a page that was mapped atomically

Table 10.1: High Memory Mapping/Unmapping API

The kmap() function itself is fairly simple. It first checks to make sure an inter-
rupt is not calling this function(as it may sleep) and calls out_of_line_bug() if true.
An interrupt handler calling BUG() would panic the system so out_of_line_bug()
prints out bug information and exits cleanly.

It then checks if the page is already in low memory and simply returns the address
if it is. This way, users that need kmap() may use it unconditionally knowing that
if it is already a low memory page, the function is still safe. If it is a high page to
be mapped, kmap_high() is called to begin the real work.

The kmap_high() function begins with checking the page→virtual field which
is set if the page is already mapped. If it is NULL, map_new_virtual() provides a
mapping for the page.

Creating a new virtual mapping with map_new_virtual() is a simple case of
linearly scanning pkmap_count. The scan starts at last_pkmap_nr instead of
0 to prevent searching over the same areas repeatedly between kmap()s. When
last_pkmap_nr wraps around to 0, flush_all_zero_pkmaps() is called to set all
entries from 1 to 0 before flushing the TLB.

If, after another scan, an entry is still not found, the process sleeps on the
pkmap_map_wait wait queue until it is woken up after the next kunmap().

Once a mapping has been created, the corresponding entry in the pkmap_count
array is incremented and the virtual address in low memory returned.
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10.2.1 Unmapping Pages

The kunmap() function, like its complement, performs two checks. The first is an
identical check to kmap() for usage from interrupt context. The second is that the
page is below highmem_start_page. If it is, the page already exists in low memory
and needs no further handling. Once established that it is a page to be unmapped,
kunmap_high() is called to perform the unmapping.

kunmap

__out_of_line_bug kunmap_high

Figure 10.2: Call Graph: kunmap()

The kunmap_high() is simple in principle. It decrements the corresponding ele-
ment for this page in pkmap_count. If it reaches 1 (remember this means no more
users but a TLB flush is required), any process waiting on the pkmap_map_wait is
woken up as a slot is now available. The page is not unmapped from the page tables
then as that would require a TLB flush. It is delayed until flush_all_zero_pkmaps()
is called.

10.3 Mapping High Memory Pages Atomically

The use of kmap_atomic() is heavily discouraged but slots are reserved for each
CPU for when they are necessary, such as when bounce buffers, are used by devices
from interrupt. There are a varying number of different requirements an architecture
has for atomic high memory mapping which are enumerated by km_type. The total
number of uses is KM_TYPE_NR3.

KM_TYPE_NR entries per processor are reserved at boot time for atomic mapping
at the location FIX_KMAP_BEGIN and ending at FIX_KMAP_END. Obviously a user of
an atomic kmap may not sleep or exit before calling kunmap_atomic() as the next
process on the processor may try to use the same entry and fail.

The function kmap_atomic() has the very simple task of mapping the requested
page to the slot set aside in the page tables for the requested type of operation
and processor. The function kunmap_atomic() is interesting as it will only clear
the PTE with pte_clear() if debugging is enabled. It is considered unnecessary
to bother unmapping atomic pages as the next call to kmap_atomic() will simply
replace it making TLB flushes unnecessary.

3There are a total of six different uses for atomic kmaps on the x86.
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10.4 Bounce Buffers

Bounce buffers are required for devices that cannot access the full range of memory
available to the CPU. An obvious example of this is when a device does not address
with as many bits as the CPU, such as 32 bit devices on 64 bit architectures or
recent Intel processors with PAE enabled.

The basic concept is very simple. A bounce buffer resides in memory low enough
for a device to copy from and write data to. It is then copied to the desired user
page in high memory. This additional copy is undesirable, but unavoidable. Pages
are allocated in low memory which are used as buffer pages for DMA to and from
the device. This is then copied by the kernel to the buffer page in high memory
when IO completes so the bounce buffer acts as a type of bridge. There is significant
overhead to this operation as at the very least it involves copying a full page but it
is insignificant in comparison to swapping out pages in low memory.

10.4.1 Disk Buffering

Blocks, typically around 1KiB are packed into pages and managed by a struct
buffer_head allocated by the slab allocator. A user of buffer heads has the op-
tion of having a callback function registered in the buffer_head as b_end_io()
called when IO completes. It is this mechanism that bounce buffers uses to have
data copied out of the bounce buffers. The callback registered is the function
bounce_end_io_write().

Any other feature of buffer heads or how they are used by the block layer is
beyond the scope of this document and more the concern of the IO layer.

10.4.2 Creating Bounce Buffers

create_bounce

alloc_bounce_bh alloc_bounce_page set_bh_page copy_from_high_bh

kmem_cache_alloc wakeup_bdflushyield

Figure 10.3: Call Graph: create_bounce()

The creation of a bounce buffer is a simple affair which is started by the
create_bounce() function. The principle is very simple, create a new buffer using
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a provided buffer head as a template. The function takes two parameters which are
a read/write parameter (rw) and the template buffer head to use (bh_orig).

A page is allocated for the buffer itself with the function alloc_bounce_page()
which is a wrapper around alloc_page() with one important addition. If the
allocation is unsuccessful, there is an emergency pool of pages and buffer heads
available for bounce buffers. This is discussed further in Section 10.5.

The buffer head is, predictably enough, allocated with alloc_bounce_bh()
which, similar in principle to alloc_bounce_page(), calls the slab allocator for
a buffer_head and uses the emergency pool if one cannot be allocated. Addition-
ally, bdflush is woken up to start flushing dirty buffers out to disk so that buffers
are more likely to be freed soon.

Once the page and buffer_head have been allocated, information is copied
from the template buffer_head into the new one. Since part of this opera-
tion may use kmap_atomic(), bounce buffers are only created with the IRQ safe
io_request_lock held. The IO completion callbacks are changed to be either
bounce_end_io_write() or bounce_end_io_read() depending on whether this is
a read or write buffer so the data will be copied to and from high memory.

The most important aspect of the allocations to note is that the GFP flags specify
that no IO operations involving high memory may be used4. This is important as
bounce buffers are used for IO operations with high memory. If the allocator tries
to perform high memory IO, it will recurse and eventually crash.

10.4.3 Copying via bounce buffers

bounce_end_io_read

copy_to_high_bh_irq bounce_end_io

__free_pages kmem_cache_free

bounce_end_io_write

Figure 10.4: Call Graph: bounce_end_io_read/write()

Data is copied via the bounce buffer differently depending on whether it is a
read or write buffer. If the buffer is for writes to the device, the buffer is populated
with the data from high memory during bounce buffer creation with the function

4This is specified with SLAB_NOHIGHIO to the slab allocator and GFP_NOHIGHIO to the buddy
allocator.
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copy_from_high_bh(). The callback function bounce_end_io_write() will com-
plete the IO later when the device is ready for the data.

If the buffer is for reading from the device, no data transfer may take place
until the device is ready. When it is, the interrupt handler for the device calls the
callback function bounce_end_io_read() which copies the data to high memory
with copy_to_high_bh_irq().

In either case the buffer head and page may be reclaimed by bounce_end_io()
once the IO has completed and the IO completion function for the template
buffer_head() is called. If the emergency pools are not full, the resources are
added to the pools otherwise they are freed back to the respective allocators.

10.5 Emergency Pools

Two emergency pools of buffer_heads and pages are maintained for the express
use by bounce buffers. If memory is too tight for allocations, failing to complete IO
requests is going to compound the situation as buffers from high memory cannot be
freed until low memory is available. This leads to processes halting, thus preventing
the possibility of them freeing up their own memory.

The pools are initialised by init_emergency_pool() to contain POOL_SIZE5

entries each. The pages are linked via the page→list field on a list headed by
emergency_pages. Figure 10.5 illustrates how pages are stored on emergency pools
and acquired when necessary.

buffer_heads are very similar as they linked via the buffer_head→inode_buffers
on a list headed by emergency_bhs. The number of entries left on the pages and buf-
fer lists are recorded by two counters nr_emergency_pages and nr_emergency_bhs
respectively and the two lists are protected by the emergency_lock spinlock.

.

5Currently defined as 32.
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Figure 10.5: Acquiring Pages from Emergency Pools



Chapter 11

Page Frame Reclamation

A running system will eventually use all page frames for purposes like disk buffers,
dentries, inode entries and process pages and so Linux needs to select old pages which
can be freed and invalidated for new uses before physical memory is exhausted. This
chapter will focus exclusively on how Linux implements its page replacement policy
and how different types of pages are invalidated.

The methods Linux uses to select pages is rather empirical in nature and the
theory behind the approach is based on multiple different ideas. It has been shown
to work well in practice and adjustments are made based on user feedback and
benchmarks.

With the exception of the slab allocator, all pages in use by the system are
stored on the page cache and linked together via the page→lru so they can be
easily scanned for replacement. The slab pages are not stored within the page cache
as it is considerably more difficult to age a page based on the objects used by the
slab.

Process mapped pages are not easily swappable as there is no way to map struct
pages to PTEs except to search every page table which is far too expensive. If the
page cache has a large number of process pages in it, process page tables will be
walked and pages swapped out by swap_out() until enough pages have been freed
but this will still have trouble with shared pages. If a page is shared, a swap entry is
allocated, the PTE filled with the necessary information to find the page again and
the reference count decremented. Only when the count reaches zero will the page
be actually swapped out. These types of shared pages are considered to be in the
swap cache.

This chapter begins with the pageout daemon kswapd and what its task is. From
there we introduce the page replacement policy that Linux implements before an
in-depth discussion on the Page Cache which is the core structure which determines
how pages are removed from memory. Finally we cover how pages mapped by
processes, which have to be treated specially, are swapped out.
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11.1 Pageout Daemon (kswapd)

At system start, a kernel thread called kswapd is started from kswapd_init()
which continuously executes the function kswapd() in mm/vmscan.c which usually
sleeps. This daemon is responsible for reclaiming pages when memory is running
low. Historically, kswapd used to wake up every 10 seconds but now it is only
woken by the physical page allocator when the pages_low number of free pages in
a zone is reached (see Section 3.2.1).

kswapd

kswapd_can_sleep kswapd_balance

kswapd_can_sleep_pgdat kswapd_balance_pgdat

try_to_free_pages_zone check_classzone_need_balance

shrink_caches out_of_memory

kmem_cache_reap refill_inactive shrink_cache shrink_dcache_memory shrink_icache_memory

Figure 11.1: Call Graph: kswapd()

It is this daemon that performs most of the tasks needed to maintain the
page cache correctly, shrink slab caches and swap out processes if necessary. Un-
like swapout daemons such as Solaris [MM01] which is woken up with increas-
ing frequency as there is memory pressure, kswapd keeps freeing pages until
the pages_high watermark is reached. Under extreme memory pressure, pro-
cesses will do the work of kswapd synchronously by calling balance_classzone()
which calls try_to_free_pages_zone(). The physical page allocator will also call
try_to_free_pages_zone() when the zone it is allocating from is under heavy
pressure.

When kswapd is woken up, it performs the following:

• Calls kswapd_can_sleep() which cycles through all zones checking the
need_balance field in the struct zone_t. If any of them are set, it can
not sleep;
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• If it cannot sleep, it is removed from the kswapd_wait wait queue;

• kswapd_balance() is called which cycles through all zones. It will free pages
in a zone with try_to_free_pages_zone() if need_balance is set and will
keep freeing until the pages_high watermark is reached;

• The task queue for tq_disk is run so that pages queued will be written out;

• Add kswapd back to the kswapd_wait queue and go back to the first step.

11.2 Page Cache

The page cache is a list of pages that are backed by regular files, block devices or
swap. There are basically four types of pages that exist in the cache:

• Pages that were faulted in as a result of reading a memory mapped file;

• Blocks read from a block device or filesystem are packed into special pages
called buffer pages. The number of blocks that may fit depends on the size of
the block and the page size of the architecture;

• Anonymous pages first enter the page cache with no backing storage but are
allocated slots in the backing storage when the kernel needs to swap them out,
discussed furhter in Chapter 12;

• Pages belonging to shared memory regions which are treated in a similar fash-
ion to anonymous pages. The only difference is that shared pages are added
to the swap cache and space reserved in backing storage immediately after the
first write to the page.

Pages exist in this cache for two reasons. The first is to eliminate unnecessary
disk reads. Pages read from disk are stored in a page hash table hashed on the
struct address_space and the offset. This table is always searched before the
disk is accessed. The second reason is that the page cache forms the queue as a
basis for the page replacement algorithm to select which page to discard or pageout.

The cache collectively consists of two lists defined in mm/page_alloc.c called
active_list and inactive_list which broadly speaking store the “hot” and “cold”
pages respectively. The lists are protected by the pagemap_lru_lock. An API is
provided that is responsible for manipulating the page cache which is listed in Table
11.1.

11.2.1 Page Cache Hash Table

As stated, there is a requirement that pages in the page cache be quickly located.
To facilitate this, pages are inserted into a table page_hash_table and the fields
page→next_hash and page→pprev_hash are used to handle collisions.

The table is declared as follows in mm/filemap.c
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45 atomic_t page_cache_size = ATOMIC_INIT(0);
46 unsigned int page_hash_bits;
47 struct page **page_hash_table;

The table is allocated during system initialisation by page_cache_init() which
takes the number of physical pages in the system as a parameter. The desired size
of the table (htable_size) is enough to hold pointers to every struct page in the
system and is calculated by

htable_size = num_physpages ∗ sizeof(struct page ∗)

To allocate a table, the system begins with an order allocation large enough to
contain the entire table. It calculates this value by starting at 0 and incrementing it
until 2order > htable_size. This may be roughly expressed as the integer component
of the following simple equation.

order = log2((htable_size ∗ 2)− 1))

An attempt is made to allocate this order of pages with __get_free_pages().
If the allocation fails, lower orders will be tried and if no allocation is satisfied, the
system panics.

The value of page_hash_bits is based on the size of the table for use with the
hashing function _page_hashfn(). The value is calculated by successive divides by
two but in real terms, this is equivalent to:

page_hash_bits = log2
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This makes the table a power-of-two hash table which negates the need to use a
modulus which is a common choice for hashing functions.

11.2.2 Inode Queue

The inode queue is part of the struct address_space introduced in Section 5.4.1.
The struct contains three lists: clean_pages is a list of clean pages associated
with the inode; dirty_pages which have been written to since the list sync to
disk; and locked_pages which are those currently locked. These three lists in
combination are considered to be the inode queue for a given mapping and the
page→list field is used to link pages on it. Pages are added to the inode queue
with add_page_to_inode_queue() which places pages on the clean_pages lists
and removed with remove_page_from_inode_queue().

11.3 Manipulating the Page Cache

This section begins with how pages are added to the page cache. It will then cover
how pages are moved from the active_list to the inactive_list. Lastly we will
cover how pages are reclaimed from the page cache.
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11.3.1 Adding Pages to the Page Cache

Pages which are read from a file or block device are added to the page cache by
calling __add_to_page_cache() during generic_file_read().

All filesystems use the high level function generic_file_read() so that oper-
ations will take place through the page cache. It calls do_generic_file_read()
which first checks if the page exists in the page cache. If it does not, the information
is read from disk and added to the cache with __add_to_page_cache().

generic_file_read

do_generic_file_read generic_file_direct_IO

get_max_readahead

mark_page_accessedgeneric_file_readahead

__find_page_nolock

__add_to_page_cache lru_cache_add

activate_page

activate_page_nolock

page_cache_read

add_to_page_cache_unique

add_page_to_inode_queue add_page_to_hash_queue

Figure 11.2: Call Graph: generic_file_read()

Anonymous pages are added to the page cache the first time they are about to be
swapped out and will be discussed further in Section 12.4. The only real difference
between anonymous pages and file backed pages as far as the page cache is concerned
is that anonymous pages will use swapper_space as the struct address_space.

Shared memory pages are added during one of two cases. The first is during
shmem_getpage_locked() which is called when a page has to be either fetched
from swap or allocated as it is the first reference. The second is when the swapout
code calls shmem_unuse(). This occurs when a swap area is being deactivated and a
page, backed by swap space, is found that does not appear to belong to any process.
The inodes related to shared memory are exhaustively searched until the correct
page is found. In both cases, the page is added with add_to_page_cache().

11.3.2 Refilling inactive_list

When caches are being shrunk, pages are moved from the active_list to the
inactive_list by the function refill_inactive(). It takes as a parameter the
number of pages to move, which is calculated in shrink_caches() as a ratio de-
pending on nr_pages, the number of pages in active_list and the number of pages
in inactive_list. The number of pages to move is calculated as

pages = nr_pages ∗ nr_active_pages

2 ∗ (nr_inactive_pages + 1)
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add_to_page_cache

__add_to_page_cache lru_cache_add

add_page_to_inode_queue add_page_to_hash_queue

Figure 11.3: Call Graph: add_to_page_cache()

This keeps the active_list about two thirds the size of the inactive_list
and the number of pages to move is determined as a ratio based on how many pages
we desire to swap out (nr_pages).

Pages are taken from the end of the active_list. If the PG_referenced flag is
set, it is cleared and the page is put back at top of the active_list as it has
been recently used and is still “hot”. If the flag is cleared, it is moved to the
inactive_list and the PG_referenced flag set so that it will be quickly promoted
to the active_list if necessary.

11.3.3 Reclaiming Pages from the Page Cache

The function shrink_cache() is the part of the replacement algorithm which takes
pages from the inactive_list and decides how they should be swapped out. The
two starting parameters which determine how much work will be performed are
nr_pages and priority. nr_pages starts out as SWAP_CLUSTER_MAX and priority
starts as DEF_PRIORITY.

Two parameters, max_scan and max_mapped determine how much work the
function will do and are affected by the priority. Each time the function
shrink_caches() is called without enough pages being freed, the priority will be
decreased until the highest priority 1 is reached.

max_scan is the maximum number of pages will be scanned by this function and
is simply calculated as

max_scan =
nr_inactive_pages

priority

where nr_inactive_pages is the number of pages in the inactive_list. This
means that at lowest priority 6, at most one sixth of the pages in the inactive_list
will be scanned and at highest priority, all of them will be.

The second parameter is max_mapped which determines how many process pages
are allowed to exist in the page cache before whole processes will be swapped out.
This is calculated as the minimum of either one tenth of max_scan or
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max_mapped = nr_pages ∗ 2(10−priority)

In other words, at lowest priority, the maximum number of mapped pages al-
lowed is either one tenth of max_scan or 16 times the number of pages to swap out
(nr_pages) whichever is the lower number. At high priority, it is either one tenth
of max_scan or 512 times the number of pages to swap out.

From there, the function is basically a very large for-loop which scans at most
max_scan pages to free up nr_pages pages from the end of the inactive_list or
until the inactive_list is empty. After each page, it checks to see whether it
should reschedule itself so that the swapper does not monopolise the CPU.

For each type of page found on the list, it makes a different decision on what to
do. The page types and actions are as follows:

Page is mapped by a process. The max_mapped count is decremented. If it
reaches 0, the page tables of processes will be linearly searched and swapped out by
the function swap_out()

Page is locked and the PG_launder bit is set. A reference to the page is taken
with page_cache_get() so that the page will not disappear and wait_on_page()
is called which sleeps until the IO is complete. Once it is completed, the reference
count is decremented with page_cache_release(). When the count reaches zero,
it is freed.

Page is dirty, is unmapped by all processes, has no buffers and belongs to a
device or file mapping. The PG_dirty bit is cleared and the PG_launder bit is
set. A reference to the page is taken with page_cache_get() so the page will not
disappear prematurely and then the writepage() function provided by the mapping
is called to clean the page. The last case will pick up this page during the next pass
and wait for the IO to complete if necessary.

Page has buffers associated with data on disk. A reference is taken to the page
and an attempt is made to free the pages with try_to_release_page(). If it
succeeds and is an anonymous page, the page can be freed. If it is backed by a file
or device, the reference is simply dropped and the page will be freed later. However
it is unclear how a page could have both associated buffers and a file mapping.

Page is anonymous belonging to a process and has no associated buffers. The
LRU is unlocked and the page is unlocked. The max_mapped count is decremented.
If it reaches zero, then swap_out() is called to start swapping out entire processes
as there are too many process mapped pages in the page cache. An anonymous
page may have associated buffers if it is backed by a swap file. In this case, the page
is treated as a buffer page and normal block IO syncs the page with the backing
storage.

Page has no references to it. If the page is in the swap cache, it is deleted from
it as it is now stored in the swap area. If it is part of a file, it is removed from the
inode queue. The page is then deleted from the page cache and freed.
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11.4 Shrinking all caches

The function responsible for shrinking the various caches is shrink_caches() which
takes a few simple steps to free up some memory. The maximum number of pages
that will be written to disk in any given pass is nr_pages which is initialised by
try_to_free_pages_zone() to be SWAP_CLUSTER_MAX1. The limitation is there so
that if kswapd schedules a large number of pages to be swapped to disk, it will
sleep occasionally to allow the IO to take place. As pages are freed, nr_pages is
decremented to keep count.

The amount of work that will be performed also depends on the priority ini-
tialised by try_to_free_pages_zone() to be DEF_PRIORITY2. For each pass that
does not free up enough pages, the priority is decremented for the highest priority
been 1.

The function first calls kmem_cache_reap() (see Section 9.1.7) which selects a
slab cache to shrink. If nr_pages number of pages are freed, the work is complete
and the function returns otherwise it will try to free nr_pages from other caches.

If other caches are to be affected, refill_inactive() will move pages from the
active_list to the inactive_list before shrinking the page cache by reclaiming
pages at the end of the inactive_list with shrink_cache().

Finally, it shrinks three special caches, the dcache (shrink_dcache_memory()),
the icache (shrink_icache_memory()) and the dqcache (shrink_dqcache_memory()).
These objects are quite small in themselves but a cascading effect allows a lot more
pages to be freed in the form of buffer and disk caches.

11.5 Swapping Out Process Pages

When max_mapped pages have been found in the page cache, swap_out() is called
to start swapping out process pages. Starting from the mm_struct pointed to by
swap_mm and the address mm→swap_address, the page tables are searched forward
until nr_pages have been freed.

All process mapped pages are examined regardless of where they are in the lists
or when they were last referenced but pages which are part of the active_list or
have been recently referenced will be skipped over. The examination of hot pages
is a bit costly but insignificant in comparison to linearly searching all processes for
the PTEs that reference a particular struct page.

Once it has been decided to swap out pages from a process, an attempt will
be made to swap out at least SWAP_CLUSTER number of pages and the full list of
mm_structs will only be examined once to avoid constant looping when no pages
are available. Writing out the pages in bulk increases the chance that pages close
together in the process address space will be written out to adjacent slots on disk.

swap_mm is initialised to point to init_mm and the swap_address is initialised to
0 the first time it is used. A task has been fully searched when the swap_address

1Currently statically defined as 32 in mm/vmscan.c.
2DEF_PRIORITY is currently statically defined as 6 in mm/vmscan.c.
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shrink_caches

kmem_cache_reap refill_inactive shrink_cache shrink_dcache_memory shrink_icache_memory

try_to_release_page swap_out __remove_inode_page __delete_from_swap_cache swap_free __free_pages

try_to_free_buffers swap_out_mm mmput

find_vma swap_out_vma

swap_out_pgd

swap_out_pmd

try_to_swap_out

Figure 11.4: Call Graph: shrink_caches()

is equal to TASK_SIZE. Once a task has been selected to swap pages from, the ref-
erence count to the mm_struct is incremented so that it will not be freed early and
swap_out_mm() is called with the selected mm_struct as a parameter. This func-
tion walks each VMA the process holds and calls swap_out_vma() for it. This
is to avoid having to walk the entire page table which will be largely sparse.
swap_out_pgd() and swap_out_pmd() walk the page tables for given VMA until
finally try_to_swap_out() is called on the actual page and PTE.

try_to_swap_out() first checks to make sure the page is not part of the
active_list, been recently referenced or part of a zone that we are not interested
in. Once it has been established this is a page to be swapped out, it is removed from
the page tables of the process and further work is performed. It is at this point the
PTE is checked to see if it is dirty. If it is, the struct page flags will be updated to
reflect that so that it will get laundered. Pages with buffers are not handled further
as they can not be swapped out to backing storage so the PTE for the process is
simply established again and the page will be flushed later.

The process of allocating space in the backing storage and swapping pages out
is discussed further in Chapter 12.
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swap_out_mm mmput
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swap_out_pgd

swap_out_pmd

try_to_swap_out

Figure 11.5: Call Graph: swap_out()

11.6 Page Replacement Policy

During discussions the page replacement policy is frequently said to be a Least
Recently Used (LRU)-based algorithm but this is not strictly speaking true as the
lists are not strictly maintained in LRU order. The objective is for the active_list
to contain the working set [Den70] of all processes and the inactive_list. As all
reclaimable pages are contained in just two lists and all pages may be selected to
reclaimed rather than just the faulting process, the replacement policy is a global
one.

The lists resemble a simplified LRU 2Q [JS94] where two lists called Am and
A1 are maintained. With LRU 2Q, pages when first allocated are placed on a
FIFO queue called A1. If they are referenced while on that queue, they are placed
in a normal LRU managed list called Am. This is roughly analogous to using
lru_cache_add() to place pages on a queue called inactive_list (A1) and using
mark_page_accessed() to get moved to the active_list (Am). The algorithm
describes how the size of the two lists have to be tuned but Linux takes a sim-
pler approach by using refill_inactive() to move pages from the bottom of
active_list to inactive_list to keep active_list about two thirds the size of
the total page cache. Figure 11.6 illustrates how the two lists are structured.

The lists described for 2Q presumes Am is an LRU list but the list in Linux
closer resembles a Clock algorithm [Car84] where the hand-spread is the size of the
active list. When pages reach the bottom of the list, the referenced flag is checked,
if it is set, it is moved back to the top of the list and the next page checked. If it is
cleared, it is moved to the inactive_list.
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Figure 11.6: Page Cache LRU List

The Move-To-Front heuristic means that the lists behave in an LRU-like manner
but there are too many differences between the Linux replacement policy and LRU
to consider it a stack algorithm [MM87]. Even if we ignore the problem of analysing
multi-programmed systems [CD80] and the fact the memory size for each process is
not fixed , the policy does not satisfy the inclusion property as the location of pages
in the lists depend heavily upon the size of the lists as opposed to the time of last
reference. Neither is the list priority ordered as that would require list updates with
every reference. As a final nail in the stack algorithm coffin, the lists are almost
ignored when paging out from processes as pageout decisions are related to their
location in the virtual address space of the process rather than the location within
the page lists.

In summary, the algorithm does exhibit LRU-like behavior and it has been shown
by benchmarks to perform well in practice. There are only two cases where the al-
gorithm is likely to behave really badly. The first is if the candidates for reclamation
are principally anonymous pages. In this case, Linux will keep examining a large
number of pages before linearly scanning process page tables searching for pages to
reclaim but this situation is fortunately rare.

The second situation is where there is a single process with many file backed
resident pages in the inactive_list that are being written to frequently. Processes
and kswapd may go into a loop of constantly “laundering” these pages and placing
them at the top of the inactive_list without freeing anything. In this case, few
pages are moved from the active_list to inactive_list as the ratio between the
two lists sizes remains not change significantly.
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add_to_page_cache(struct page * page, struct address_space *
mapping, unsigned long offset)

Adds a page to the page cache with lru_cache_add() in addition to
adding it to the inode queue and page hash tables. Important for pages
backed by files on disk.

remove_inode_page(struct page *page)
This function removes a page from both the inode queue with

remove_page_from_inode_queue() and from the hash queues with
remove_page_from_hash_queue(). This effectively removes the page
from the page cache.

lru_cache_add(struct page * page)
Add a cold page to the inactive_list. Will be followed by

mark_page_accessed() if known to be a hot page, such as when a page
is faulted in.

lru_cache_del(struct page *page)
Removes a page from the page cache by calling either

del_page_from_active_list() or del_page_from_inactive_list(),
whichever is appropriate.

mark_page_accessed(struct page *page)
Mark that the page has been accessed. If it was not recently referenced

(in the inactive_list and PG_referenced flag not set), the referenced
flag is set. If it is referenced a second time, activate_page() is called,
which marks the page hot, and the referenced flag is cleared

page_cache_get(struct page *page)
Increases the reference count to a page already in the page cache

page_cache_release(struct page *page)
An alias for __free_page(). The reference count is decremented and

if it drops to 0, the page will be freed

activate_page(struct page * page)
Removes a page from the inactive_list and places it on

active_list. It is very rarely called directly as the caller has to know
the page is on the inactive list. mark_page_accessed() should be used
instead

Table 11.1: Page Cache API



Chapter 12

Swap Management

Just as Linux uses free memory for purposes such as buffering data from disk, there
eventually is a need to free up private or anonymous pages used by a process. These
pages, unlike those backed by a file on disk, cannot be simply discarded to be read
in later. Instead they have to be carefully copied to backing storage, sometimes
called the swap area. This chapter details how Linux uses and manages its backing
storage.

Strictly speaking, Linux does not swap as such as “swapping” refers to coping an
entire process address space to disk and “paging” to copying out portions or pages.
Linux actually implements paging as modern hardware supports it, but traditionally
has called it swapping in discussions and documentation. To be consistent with the
Linux usage of the word, we too will refer to it as swapping.

There are two principle reasons that the existence of swap space is desirable.
First, it expands the amount of memory a process may use. Virtual memory and
swap space allows a large process to run even if the process is only partially resident.
As “old” pages may be swapped out, the amount of memory addressed may easily
exceed RAM as demand paging will ensure the pages are reloaded if necessary.

The casual reader1 may think that with a sufficient amount of memory, swap is
unnecessary but this brings us to the second reason. A significant number of the
pages referenced by a process early in its life may only be used for initialisation and
then never used again. It is better to swap out those pages and create more disk
buffers than leave them resident and unused.

It is important to note that swap is not without its drawbacks and the most
important one is the most obvious one; Disk is slow, very very slow. If processes are
frequently addressing a large amount of memory, no amount of swap or expensive
high-performance disks will make it run within a reasonable time, only more RAM
will help. This is why it is very important that the correct page be swapped out
as discussed in Chapter 11, but also that related pages be stored close together in
the swap space so they are likely to be swapped in at the same time while reading
ahead. We will start with how Linux describes a swap area.

This chapter begins with describing the structures Linux maintains about each

1Not to mention the affluent reader.
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active swap area in the system and how the swap area information is organised on
disk. We then cover how Linux remembers how to find pages in the swap after they
have been paged out and how swap slots are allocated. After that the Swap Cache
is discussed which is important for shared pages. At that point, there is enough
information to begin understanding how swap areas are activated and deactivated,
how pages are paged in and paged out and finally how the swap area is read and
written to.

12.1 Describing the Swap Area

Each active swap area, be it a file or partition, has a struct swap_info_struct
describing the area. All the structures in the running system are stored in a statically
declared array called swap_info which holds MAX_SWAPFILES, which is statically
defined as 32, entries. This means that at most 32 swap areas can exist on a running
system. The swap_info_struct is declared as follows in <linux/swap.h>

64 struct swap_info_struct {
65 unsigned int flags;
66 kdev_t swap_device;
67 spinlock_t sdev_lock;
68 struct dentry * swap_file;
69 struct vfsmount *swap_vfsmnt;
70 unsigned short * swap_map;
71 unsigned int lowest_bit;
72 unsigned int highest_bit;
73 unsigned int cluster_next;
74 unsigned int cluster_nr;
75 int prio;
76 int pages;
77 unsigned long max;
78 int next;
79 };

Here is a small description of each of the fields in this quite sizable struct.

flags This is a bit field with two possible values. SWP_USED is set if the swap area
is currently active. SWP_WRITEOK is defined as 3, the two lowest significant
bits, including the SWP_USED bit. The flags is set to SWP_WRITEOK when Linux
is ready to write to the area as it must be active to be written to;

swap_device The device corresponding to the partition used for this swap area
is stored here. If the swap area is a file, this is NULL;

sdev_lock As with many structures in Linux, this one has to be protected too.
sdev_lock is a spinlock protecting the struct, principally the swap_map. It is
locked and unlocked with swap_device_lock() and swap_device_unlock();
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swap_file This is the dentry for the actual special file that is mounted as a swap
area. This could be the dentry for a file in the /dev/ directory for example
in the case a partition is mounted. This field is needed to identify the correct
swap_info_struct when deactiating a swap area;

vfs_mount This is the vfs_mount object corresponding to where the device or
file for this swap area is stored;

swap_map This is a large array with one entry for every swap entry, or page sized
slot in the area. An entry is a reference count of the number of users of this
page slot. If it is equal to SWAP_MAP_MAX, the slot is allocated permanently. If
equal to SWAP_MAP_BAD, the slot will never be used;

lowest_bit This is the lowest possible free slot available in the swap area and
is used to start from when linearly scanning to reduce the search space. It is
known that there are definitely no free slots below this mark;

highest_bit This is the highest possible free slot available in this swap area.
Similar to lowest_bit, there are definitely no free slots above this mark;

cluster_next This is the offset of the next cluster of blocks to use. The swap area
tries to have pages allocated in cluster blocks to increase the chance related
pages will be stored together;

cluster_nr This the number of pages left to allocate in this cluster;

prio Each swap area has a priority which is stored in this field. Areas are arranged
in order of priority and determine how likely the area is to be used. By default
the priorities are arranged in order of activation but the system administrator
may also specify it using the -p flag when using swapon;

pages As some slots on the swap file may be unusable, this field stores the number
of usable pages in the swap area. This differs from max in that slots marked
SWAP_MAP_BAD are not counted;

max This is the total number of slots in this swap area;

next This is the index in the swap_info array of the next swap area in the system.

The areas though stored in an array, are also kept in a pseudo list called
swap_list which is a very simple type declared as follows in <linux/swap.h>:

154 struct swap_list_t {
155 int head; /* head of priority-ordered swapfile list */
156 int next; /* swapfile to be used next */
157 };
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The head is the swap area of the highest priority swap area in use and the next
is the next swap area that should be used. This is so areas may be arranged in order
of priority when searching for a suitable area but still looked up quickly in the array
when necessary.

Each swap area is divided up into a number of page sized slots on disk which
means that each slot is 4096 bytes on the x86 for example. The first slot is always
reserved as it contains information about the swap area that should not be overwrit-
ten. The first 1 KiB of the swap area is used to store a disk label for the partition
that can be picked up by userspace tools. The remaining space is used for inform-
ation about the swap area which is filled when the swap area is created with the
system program mkswap. The information is used to fill in a union swap_header
which is declared as follows in <linux/swap.h>:

25 union swap_header {
26 struct
27 {
28 char reserved[PAGE_SIZE - 10];
29 char magic[10];
30 } magic;
31 struct
32 {
33 char bootbits[1024];
34 unsigned int version;
35 unsigned int last_page;
36 unsigned int nr_badpages;
37 unsigned int padding[125];
38 unsigned int badpages[1];
39 } info;
40 };

A description of each of the fields follows

magic The magic part of the union is used just for identifying the “magic” string.
The string exists to make sure there is no chance a partition that is not a
swap area will be used and to decide what version of swap area is is. If
the string is “SWAP-SPACE”, it is version 1 of the swap file format. If it is
“SWAPSPACE2”, it is version 2. The large reserved array is just so that the
magic string will be read from the end of the page;

bootbits This is the reserved area containing information about the partition
such as the disk label;

version This is the version of the swap area layout;

last_page This is the last usable page in the area;
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nr_badpages The known number of bad pages that exist in the swap area are
stored in this field;

padding A disk section is usually about 512 bytes in size. The three fields
version, last_page and nr_badpages make up 12 bytes and the padding
fills up the remaining 500 bytes to cover one sector;

badpages The remainder of the page is used to store the indices of up to
MAX_SWAP_BADPAGES number of bad page slots. These slots are filled in by
the mkswap system program if the -c switch is specified to check the area.

MAX_SWAP_BADPAGES is a compile time constant which varies if the struct changes
but it is 637 entries in its current form as given by the simple equation;

MAX_SWAP_BADPAGES =
PAGE_SIZE− 1024− 512− 10

sizeof(long)

Where 1024 is the size of the bootblock, 512 is the size of the padding and 10 is
the size of the magic string identifing the format of the swap file.

12.2 Mapping Page Table Entries to Swap Entries

When a page is swapped out, Linux uses the corresponding PTE to store enough
information to locate the page on disk again. Obviously a PTE is not large enough in
itself to store precisely where on disk the page is located, but it is more than enough
to store an index into the swap_info array and an offset within the swap_map and
this is precisely what Linux does.

Each PTE, regardless of architecture, is large enough to store a swp_entry_t
which is declared as follows in <linux/shmem_fs.h>

16 typedef struct {
17 unsigned long val;
18 } swp_entry_t;

Two macros are provided for the translation of PTEs to swap entries and vice
versa. They are pte_to_swp_entry() and swp_entry_to_pte() respectively.

In the swp_entry_t, two bits are always kept free which are used by Linux to de-
termine if a PTE is present or swapped out. Bit 0 is reserved for the _PAGE_PRESENT
flag and Bit 7 is reserved for _PAGE_PROTNONE. The requirement for both bits is ex-
plained in Section 4.2.

Bits 1-6 are for the type which is the index within the swap_info array and are
returned by the SWP_TYPE() macro.

Bits 8-31 are used are to store the offset within the swap_map from the
swp_entry_t. On the x86, this means 24 bits are available, “limiting” the size
of the swap area to 64GiB. The macro SWP_OFFSET() is used to extract the offset.
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Figure 12.1: Storing Swap Entry Information in swp_entry_t

To encode a type and offset into a swp_entry_t, the macro SWP_ENTRY() is avail-
able which simply performs the relevant bit shifting operations. The relationship
between all these macros is illustrated in Figure 12.1.

It should be noted that the six bits for “type” should allow up to 64 swap areas
to exist in a 32 bit architecture instead of the MAX_SWAPFILES restriction of 32. The
restriction is probably due to the consumption of the vmalloc address space. If a
swap area is the maximum possible size then 32MiB is required for the swap_map
(224 ∗sizeof(short)); remember that each page uses one short for the reference count.
For just MAX_SWAPFILES maximum number of swap areas to exist, 1GiB of virtual
malloc space is required which is simply impossible because of the user/kernel linear
address space split.

This would imply supporting 64 swap areas is not worth the additional com-
plexity but there is cases where a large number of swap areas would be desirable
even if the overall swap available does not increase. Some modern machines2 have
many separate disks which between them can create a large number of separate
block devices. In this case, it is desirable to create a large number of small swap
areas which are evenly distributed across all disks. This would allow a high degree
of parallelism in the page swapping behavior which is important for swap intensive
applications.

12.3 Allocating a swap slot

All page sized slots are tracked by the array swap_info_struct→swap_map which
is of type unsigned short. Each entry is a reference count of the number of users

2A Sun E450 could have in the region of 20 disks in it for example.
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of the slot which happens in the case of a shared page and is 0 when free. If the
entry is SWAP_MAP_MAX, the page is permanently reserved for that slot. It is unlikely,
if not impossible, for this condition to occur but it exists to ensure the reference
count does not overflow. If the entry is SWAP_MAP_BAD, the slot is unusable.

get_swap_page

scan_swap_map

Figure 12.2: Call Graph: get_swap_page()

The task of finding and allocating a swap entry is divided into two major tasks.
The first performed by the high level function get_swap_page(). Starting with
swap_list→next, it searches swap areas for a suitable slot. Once a slot has been
found, it records what the next swap area to be used will be and returns the allocated
entry.

The task of searching the map is the responsibility of scan_swap_map(). In
principle, it is very simple as it linearly scan the array for a free slot and return.
Predictably, the implementation is a bit more thorough.

Linux attempts to organise pages into clusters on disk of size SWAPFILE_CLUSTER.
It allocates SWAPFILE_CLUSTER number of pages sequentially in swap keeping count
of the number of sequentially allocated pages in swap_info_struct→cluster_nr
and records the current offset in swap_info_struct→cluster_next. Once a se-
quential block has been allocated, it searches for a block of free entries of size
SWAPFILE_CLUSTER. If a block large enough can be found, it will be used as another
cluster sized sequence.

If no free clusters large enough can be found in the swap area, a simple first-free
search starting from swap_info_struct→lowest_bit is performed. The aim is to
have pages swapped out at the same time close together on the premise that pages
swapped out together are related. This premise, which seems strange at first glance,
is quite solid when it is considered that the page replacement algorithm will use swap
space most when linearly scanning the process address space swapping out pages.
Without scanning for large free blocks and using them, it is likely that the scanning
would degenerate to first-free searches and never improve. With it, processes exiting
are likely to free up large blocks of slots.
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12.4 Swap Cache

Pages that are shared between many processes can not be easily swapped out be-
cause, as mentioned, there is no quick way to map a struct page to every PTE that
references it. This leads to the race condition where a page is present for one PTE
and swapped out for another gets updated without being synced to disk thereby
losing the update.

To address this problem, shared pages that have a reserved slot in backing storage
are considered to be part of the swap cache. The swap cache is purely conceptual
as there is no simple way to quickly traverse all the pages on it and there is no
dedicated list but pages that exist on the page cache that have a slot reserved in
backing storage are members of it. This means that anonymous pages, by default,
are not part of the swap cache until an attempt is made to swap them out. It also
means that by default, pages that belong to a shared memory region are added to
the swap cache when they are first written to.

A page is identified as being part of the swap cache once the page→mapping
field has been set to swapper_space which is the address_space struct managing
the swap area. This condition is tested with the PageSwapCache() macro. Linux
uses the exact same logic for keeping pages between swap and memory in sync as
it uses for keeping pages belonging to files and memory coherent. The principal
difference is that instead of using an struct address_space tied to a filesystem,
swapper_space is associated which has registered functions for writing to swap
space. The second difference is that instead of using pageindex to mark an offset
within a file, it is used to store the swp_entry_t structure.

When a page is being added to the swap cache, a slot is allocated with
get_swap_page(), added to the page cache with add_to_swap_cache() and then
marked dirty. When the page is next laundered, it will actually be written to backing
storage on disk as the normal page cache would operate. This process is illustrated
in Figure 12.3 and the call graph is shown in Figure 12.4.

Subsequent swapping of the page from shared PTEs results in a call to
swap_duplicate() which simply increments the reference to the slot in the
swap_map. If the PTE is marked dirty by the hardware as a result of a write,
the bit is cleared and the struct page is marked dirty with set_page_dirty() so
that the on-disk copy will be synced before the page is dropped. This ensures that
until all references to the page have been dropped, a check will be made to ensure
the data on disk matches the data in the page frame.

When the reference count to the page finally reaches 0, the page is eligible to
be dropped from the page cache and the swap map count will have the count of
the number of PTEs the on-disk slot belongs to so that the slot will not be freed
prematurely. It is laundered and finally dropped with the same LRU aging and logic
described in Chapter 11.

If, on the other hand, a page fault occurs for a page that is “swapped out”, the
logic in do_swap_page() will check to see if the page exists in the swap cache by
calling lookup_swap_cache(). If it does, the PTE is updated to point to the page
frame, the page reference count incremented and the swap slot decremented with



12.5. Activating a Swap Area 158

Figure 12.3: Adding a Page to the Swap Cache

swap_free().

12.5 Activating a Swap Area

As it has now been covered what swap areas are, how they are represented and
how pages are tracked, it is time to see how they all tie together to activate an
area. Activating an area is conceptually quite simple; Open the file, load the header
information from disk, populate a swap_info_struct and add it to the swap list.

The function responsible for the activation of a swap area is sys_swapon() and it
takes two parameters, the path to the special file for the swap area and a set of flags.
While swap is been activated, the Big Kernel Lock (BKL) is held which prevents
any application entering kernel space while this operation is been performed. The
function is quite large but can be broken down into the following simple steps;

• Find a free swap_info_struct in the swap_info array an initialise it with
default values

• Call user_path_walk() which traverses the directory tree for the supplied
specialfile and populates a namidata structure with the available data on
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add_to_swap_cache

swap_duplicate add_to_page_cache_unique swap_free

__find_page_nolock __add_to_page_cache lru_cache_add

add_page_to_inode_queue add_page_to_hash_queue

swap_info_get swap_entry_free swap_info_put

Figure 12.4: Call Graph: add_to_swap_cache()

the file, such as the dentry and the filesystem information for where it is
stored (vfsmount)

• Populate swap_info_struct fields pertaining to the dimensions of the swap
area and how to find it. If the swap area is a partition, the block size will
be configured to the PAGE_SIZE before calculating the size. If it is a file, the
information is obtained directly from the inode

• Ensure the area is not already activated. If not, allocate a page from memory
and read the first page sized slot from the swap area. This page contains
information such as the number of good slots and how to populate the
swap_info_struct→swap_map with the bad entries

• Allocate memory with vmalloc() for swap_info_struct→swap_map and ini-
tialise each entry with 0 for good slots and SWAP_MAP_BAD otherwise. Ideally
the header information will be a version 2 file format as version 1 was limited
to swap areas of just under 128MiB for architectures with 4KiB page sizes like
the x863

• After ensuring the information indicated in the header matches the actual
swap area, fill in the remaining information in the swap_info_struct such
as the maximum number of pages and the available good pages. Update the
global statistics for nr_swap_pages and total_swap_pages

• The swap area is now fully active and initialised and so it is inserted into the
swap list in the correct position based on priority of the newly activated area

At the end of the function, the BKL is released and the system now has a new
swap area available for paging to.

3See the Code Commentary for the comprehensive reason for this.
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get_swap_page()
This function allocates a slot in a swap_map by searching active swap

areas. This is covered in greater detail in Section 12.3 but included here
as it is principally used in conjunction with the swap cache

add_to_swap_cache(struct page *page, swp_entry_t entry)
This function adds a page to the swap cache. It first checks if

it already exists by calling swap_duplicate() and if not, is adds
it to the swap cache via the normal page cache interface function
add_to_page_cache_unique()

lookup_swap_cache(swp_entry_t entry)
This searches the swap cache and returns the struct page corres-

ponding to the supplied entry. It works by searching the normal page
cache based on swapper_space and the swap_map offset

swap_duplicate(swp_entry_t entry)
This function verifies a swap entry is valid and if so, increments its

swap map count

swap_free(swp_entry_t entry)
The complement function to swap_duplicate(). It decrements the

relevant counter in the swap_map. When the count reaches zero, the slot
is effectively free

Table 12.1: Swap Cache API

12.6 Deactivating a Swap Area

In comparison to activating a swap area, deactivation is incredibly expensive. The
principal problem is that the area cannot be simply removed, every page that is
swapped out must be swapped back in again. Just as there is no quick way of
mapping a struct page to every PTE that references it, there is no quick way to
map a swap entry to a PTE either. This requires that all process page tables be
traversed to find PTEs which reference the swap area to be deactivated and swap
them in. This of course means that swap deactivation will fail if the physical memory
is not available.

The function responsible for deactivating an area is, predictably enough, called
sys_swapoff(). This function is mainly concerned with updating the swap_info_struct.
The major task of paging in each paged-out page is the responsibility of try_to_unuse()
which is extremely expensive. For each slot used in the swap_map, the page tables
for processes have to be traversed searching for it. In the worst case, all page tables
belonging to all mm_structs may have to be traversed. Therefore, the tasks taken
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for deactivating an area are broadly speaking;

• Call user_path_walk() to acquire the information about the special file to be
deactivated and then take the BKL

• Remove the swap_info_struct from the swap list and update the global stat-
istics on the number of swap pages available (nr_swap_pages) and the total
number of swap entries (total_swap_pages. Once this is acquired, the BKL
can be released again

• Call try_to_unuse() which will page in all pages from the swap area to be de-
activated. This function loops through the swap map using find_next_to_unuse()
to locate the next used swap slot. For each used slot it finds, it performs the
following;

– Call read_swap_cache_async() to allocate a page for the slot saved on
disk. Ideally it exists in the swap cache already but the page allocator
will be called if it is not

– Wait on the page to be fully paged in and lock it. Once locked, call
unuse_process() for every process that has a PTE referencing the page.
This function traverses the page table searching for the relevant PTE
and then updates it to point to the struct page. If the page is a shared
memory page with no remaining reference, shmem_unuse() is called in-
stead

– Free all slots that were permanently mapped. It is believed that slots will
never become permanently reserved so the risk is taken.

– Delete the page from the swap cache to prevent try_to_swap_out()
referencing a page in the event it still somehow has a reference in swap
map

• If there was not enough available memory to page in all the entries, the swap
area is reinserted back into the running system as it cannot be simply dropped.
If it succeeded, the swap_info_struct is placed into an uninitialised state and
the swap_map memory freed with vfree()

12.7 Swapping In Pages

The principal function used when reading in pages is read_swap_cache_async()
which is called during page faulting for instance. This function is called as it first
searches the swap cache with find_get_page() and returns it if it does. If it
does not already exist, a new page is allocated with alloc_page(), it is added
to the swap cache with add_to_swap_cache() and finally the IO is started with
rw_swap_page() with flags to start the read operation which is covered in detail
later.
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12.8 Swapping Out Pages

Pages are written out to disk when the pages in the swap cache are laundered. To
launder a page, the address_space→a_ops is consulted to find the appropriate
write-out function. In the case of swap, the address_space is swapper_space and
the swap operations are contained in swap_aops. The registered write-out function
is swap_writepage().

swap_writepage

remove_exclusive_swap_page

unlock_page

rw_swap_page

swap_info_get

__delete_from_swap_cache

swap_info_put

discard_bh_page swap_free __free_pages

swap_entry_free page_waitqueue

rw_swap_page_base

get_swaphandle_infobmap brw_page

Figure 12.5: Call Graph: sys_writepage()

swap_writepage() makes a decision based on what is returned by the func-
tion remove_exclusive_swap_page(). remove_exclusive_swap_page() checks if
there is any other processes referencing the requested page page in the swap cache
by examining the page count with the pagecache_lock held. If no other process
does, the page is removed from the swap cache and freed.

If the page was removed from the swap cache, 1 is returned to swap_writepage()
which will unlock the page waking any process that was waiting on it. If the page
still exists in the swap cache, 0 is returned and rw_swap_page() is called to write
the contents of the page out to backing storage.

12.9 Reading/Writing the Swap Area

The top-level function for reading and writing to the swap area is rw_swap_page().
This function ensures that all operations are performed through the swap cache to
prevent lost updates. rw_swap_page_base() is the core function which performs
the real work.

It begins by checking if the operation is a read. If it is, it clears the uptodate flag
with ClearPageUptodate(). This flag will be set again if the page is successfully
read from disk. It then calls get_swaphandle_info() to acquire the device for the
swap partition of the inode for the file. These are needed before block IO operations
may be performed.

If the swap area is a file, bmap() is used to fill a local array with a list of all
blocks in the filesystem which contain the page being operated on. Remember that
filesystems may have their own method of storing files and disk and it is not as
simple as the swap partition where information may be written directly to disk.



12.9. Reading/Writing the Swap Area 163

Once that is complete, a normal block IO operation takes place with brw_page().
The function of block IO is beyond the scope of this document.



Chapter 13

Out Of Memory Management

When the machine is low on memory, old page frames will be reclaimed (see
Chapter 11) but during the process is may find it was unable to free enough pages
to satisfy a request even when scanning at highest priority. If it does fail to free
page frames, out_of_memory() is called to see if the system is out of memory and
needs to kill a process.

out_of_memory

oom_kill

select_bad_process oom_kill_task yield

badness

int_sqrt

force_sig

force_sig_info

sys_sched_yield

move_last_runqueue

Figure 13.1: Call Graph: out_of_memory()

Unfortunately, it is possible that the system is not out memory and simply needs
to wait for IO to complete or for pages to be swapped to backing storage so before
deciding to kill a process, it goes through the following checklist.

• Is there enough swap space left (nr_swap_pages > 0) ? If yes, not OOM

• Has it been more than 5 seconds since the last failure? If yes, not OOM
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• Have we failed within the last second? If no, not OOM

• If there hasn’t been 10 failures at least in the last 5 seconds, we’re not OOM

• Has a process been killed within the last 5 seconds? If yes, not OOM

It is only if the above tests are passed that oom_kill() is called to select a
process to kill.

13.1 Selecting a Process

The function select_bad_process() is responsible for choosing a process to kill.
It decides by stepping through each running task and calculating how suitable it is
for killing with the function badness(). The badness is calculated as follows, note
that the square roots are integer approximations calculated with int_sqrt();

badness_for_task =
total_vm_for_task

√

(cpu_time_in_seconds) ∗ 4

√

(cpu_time_in_minutes)

This has been chosen to select a process that is using a large amount of memory
but is not that long lived. Processes which have been running a long time are
unlikely to be the cause of memory shortage so this calculation is likely to select a
process that uses a lot of memory but has not been running long. If the process
is a root process or has CAP_SYS_ADMIN capabilities, the points are divided by four
as it is assumed that root privilege processes are well behaved. Similarly, if it has
CAP_SYS_RAWIO capabilities (access to raw devices) privileges, the points are further
divided by 4 as it is undesirable to kill a process that has direct access to hardware.

13.2 Killing the Selected Process

Once a task is selected, the list is walked again and each process that shares the
same mm_struct as the selected process (i.e. they are threads) is sent a signal. If
the process has CAP_SYS_RAWIO capabilities, a SIGTERM is sent to give the process a
chance of exiting cleanly, otherwise a SIGKILL is sent.



Chapter 14

Conclusion

The field of memory management is large, complex, time consuming to research and
difficult to apply to practical implementations. This is partially related to the dif-
ficulty of modeling how systems behave in real multi-programmed systems [CD80]
which has resulted in theoretical examination of virtual memory algorithms often
depending on simulations of specific workloads. Simulations are necessary as mod-
eling how scheduling, paging behavior and multiple processes interact presents a
considerable challenge. Page replacement policies, a field that has been the focus
of considerable amounts of research, is a good example as it is only ever shown to
work well for specified workloads. The problem of adjusting algorithms and policies
to different workloads is addressed by having administrators tune systems as much
as by research and algorithms.

Linux is also large, complex and fully understood by a relatively small core group
of people. Its development is the result of contributions of thousands of program-
mers with a varying range of specialties, backgrounds and spare time. The first
implementations are developed based on the all-important foundation that theory
provides. Contributors built upon this framework with changes based on real world
observations but unfortunately the best available documentation [BC00] of the final
implementation tries to summarise the entire kernel without giving specific focus to
any area.

It has been often asserted on the Linux Memory Management mailing list that
the VM is poorly documented and difficult to pick up as “the implementation is a
nightmare to follow”1 and the lack of documentation on practical VMs is not just
confined to Linux. Matt Dillon, one of the principal developers of the FreeBSD
VM2 and considered a “VM Guru” stated in an interview3 that documentation can
be “hard to come by”. One of the principal difficulties with deciphering the imple-
mentation is the fact the developer must have a background in memory management
theory to see why implementation decisions were made as a pure understanding of
the code is insufficient for any purpose other than micro-optimisations.

1http://mail.nl.linux.org/linux-mm/2002-05/msg00035.html
2His past involvement with the Linux VM is evident from http://mail.nl.linux.org/linux-

mm/2000-05/msg00419.html
3http://kerneltrap.com/node.php?id=8
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This thesis attempts to bridge the gap between memory management theory
and the practical implementation in Linux and tie both fields together into a single
body of work. I believe this thesis is the most comprehensive documentation of the
Linux VM to date and is a rare attempt to bind memory management theory and
practice together. Rather than providing a general view of the kernel, it has been
presented from the perspective of the VM in a manner that is relatively independent
of hardware architecture considerations.

A future direction for this research includes the documentation of the, as yet
unreleased, version 2.6 VM and the development of VM Regress as a regression,
benchmarking and analysis tool for which a framework is still being developed.
With this document as a starting point, it is envisioned that the version 2.6 VM can
be documented as a series of addenda documents describing the differences between
version 2.4.20 and version 2.6 without the necessity of presenting the entire VM as
this document has done. On a personal note, I hope that this document encourages
other researches to produce similar documents for other subsystems in the kernel.
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