
2014-‐09-‐12	

1	

ECE 454
Computer Systems Programming

Measuring and profiling

Ding Yuan
ECE Dept., University of Toronto

http://www.eecg.toronto.edu/~yuan

“It is a capital mistake to theorize
before one has data. Insensibly one
begins to twist facts to suit theories
instead of theories to suit facts.” -
Sherlock Holmes

2014-‐09-‐12	

2	

Measuring Programs
and Computers

Why Measure a Program/Computer?

•  To compare two computers/processors
•  Which one is better/faster? Which one should I buy?

•  To optimize a program
•  Which part of the program should I focus my effort on?

•  To compare program implementations
•  Which one is better/faster? Did my optimization work?

•  To find a bug
•  Why is it running much more slowly than expected?

2014-‐09-‐12	

3	

Basic Measurements

•  IPS: instructions per second
•  MIPS: millions of IPS
•  BIPS: billions of IPS

•  FLOPS: floating point operations per second
•  megaFLOPS: 106 FLOPS
•  gigaFLOPS: 109 FLOPS
•  teraFLOPS: 1012 FLOPS
•  petaFLOPS: 1015 FLOPS
•  Eg: playstation3 capable of 20 GFLOPS

•  IPC: instructions per processor-cycle

•  CPI: cycles per instruction
•  CPI = 1 / IPC

How not to compare processors

•  Clock frequency (MHz)?

•  IPC for the two processors could be radically different

•  Megahertz Myth
•  Started from 1984

Apple II	

CPU: MOS Technology 6503@1MHz	

LD: 2 cycles (2 microseconds)	

IBM PC	

CPU: Intel 8088@4.77MHz	

LD: 25 cycles (5.24 microseconds)	

2014-‐09-‐12	

4	

How not to compare processors

•  Clock frequency (MHz)?

•  IPC for the two processors could be radically different

•  CPI/IPC?

•  dependent on instruction sets used

•  dependent on efficiency of code generated by compiler

•  FLOPS?

•  only if FLOPS are important for the expected applications

•  also dependent on instruction set used

How to measure a processor

•  Use wall-clock time (seconds)

time = IC x CPI x ClockPeriod

•  IC = instruction count (total instructions executed)

•  CPI = cycles per instruction

•  ClockPeriod = 1 / ClockFrequency = (1 / MHz)

2014-‐09-‐12	

5	

Amdahl’s Law:
Optimizing part of a program

speedup = OldTime / NewTime

•  Eg., my program used to take 10 minutes
•  now it only takes 5 minutes after optimization
•  speedup = 10min/5min = 2.0 i.e., 2x faster

•  If only optimizing part of a program (on following
slide):
•  let f be the fraction of execution time that the

optimization applies to (1.0 > f > 0)
•  let s be the improvement factor (speedup of the

optimization)

Amdhal’s Law Visualized

f

1-f

f/s

1-f

Optimization

O
ld

T
im

e

N
ew

T
im

e

Fthe best you can do is eliminate f; 1-f remains

2014-‐09-‐12	

6	

Amdahl’s Law: Equations

•  let f be the fraction of execution time that the
optimization applies to (1.0 > f > 0)

•  let s be the improvement factor

NewTime = OldTime x [(1-f) + f/s]

speedup = OldTime / (OldTime x [(1-f) + f/s])

speedup = 1 / (1 – f + f/s)

Example1: Amdahl’s Law

•  If an optimization makes loops go 3 times faster, and my
program spends 70% of its time in loops, how much
faster will my program go?

speedup = 1 / (1 – f + f/s)

 = 1 / (1 – 0.7 + 0.7/3.0)

 = 1/(0.533333)

 = 1.875

•  My program will go 1.875 times faster.

2014-‐09-‐12	

7	

Example2: Amdahl’s Law

•  If an optimization makes loops go 4 times faster,
and applying the optimization to my program makes
it go twice as fast, what fraction of my program is
loops?

Implications of Amdahl’s Law

Uncommon

Common

Common

Uncommon

Optimization

Foptimize the common case

Fthe common case may change!

2014-‐09-‐12	

8	

Tools for Measuring
and Understanding

Software

Tools for Measuring/Understanding

§  Software Timers
§  C library and OS-level timers

§  Hardware Timers and Performance Counters
§  Built into the processor chip

§  Instrumentation
§ Decorates your program with code that counts & measures

§  gprof

§  gcov FGNU: “Gnu is Not Unix”
 --- Founded by Richard Stallman

2014-‐09-‐12	

9	

Software Timers: Command Line

•  Example: /usr/bin/time
§ Measures the time spent in user code and OS code
§ Measures entire program (can’t measure a specific function)
§ Not super-accurate, but good enough for many uses

•  $ time ls

•  user & sys --- CPU time
•  /usr/bin/time gives you more information

Fused in HW1

Software Timers: Library: Example

Fcan measure within a program
Fused in HW2

#include	 <sys/times.h>	 	 	 //	 C	 library	 functions	 for	 time	
unsigned	 get_seconds()	 {	
	 	 struct	 tms	 t;	
	 	 times(&t);	 	 //	 fills	 the	 struct	
	 	 return	 t.tms_utime;	 //	 user	 program	 time	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 (as	 opposed	 to	 OS	 time)	
}	
…	
unsigned	 start_time,	 end_time,	 elapsed_time;	
start_time	 =	 get_seconds();	
do_work();	 	 	 	 //	 function	 to	 measure	
end_time	 =	 get_seconds();	
elapsed_time	 =	 end_time	 -‐	 start_time;	
	

2014-‐09-‐12	

10	

Hardware: Cycle Timers

Fcan be more accurate than library (if used right)
Fused in HW2

§  Programmer can access on-chip cycle counter
§  Eg., via the x86 instruction: rdtsc (read time stamp

counter)
§  We use this in hw2:clock.c:line94 to time your solutions

§  Example use:
§  start_cycles	 =	 get_tsc();	 	 //	 executes	 rdtsc	
§  do_work();	
§  end_cycles	 =	 get_tsc();	
§  total_cycles	 =	 end_cycles	 –	 start_cycles;	

§  Can be used to compute #cycles to execute code
§ Watch out for multi-threaded program!

Hardware: Performance Counters

•  Special on-chip event counters
§  Can be programmed to count low-level architecture events
§  Eg., cache misses, branch mispredictions, etc.

•  Can be difficult to use
•  Require OS support
•  Counters can overflow
•  Must be sampled carefully

•  Software packages can make them easier to use
§  Eg: Intel’s VTUNE, perf (recent linux)

Fperf used in HW2

2014-‐09-‐12	

11	

Instrumentation
§  Compiler/tool inserts new code & data-structures

§  Can count/measure anything visible to software
§  Eg., instrument every load instruction to also record the load address

in a trace file.
§  Eg., instrument every function to count how many times it is called

§  “Observer effect”:
§  can’t measure system without disturbing it
§  Instrumentation code can slow down execution

§  Example instrumentors (open/freeware):
§  Intel’s PIN: general purpose tool for x86
§  Valgrind: tool for finding bugs and memory leaks
§  gprof: counting/measuring where time is spent via sampling

Instrumentation: Using gprof

•  gprof: how it works
•  Periodically (~ every 10ms) interrupt program

•  Determine what function is currently executing
•  Increment the time counter for that function by interval (e.g., 10ms)

•  Approximates time spent in each function, #calls made
•  Note: interval should be random for rigorous sampling!

•  Usage: compile with “-pg” to enable
gcc –O2 –pg prog.c –o prog
./prog

•  Executes in normal fashion, but also generates file gmon.out
gprof prog

•  Generates profile information based on gmon.out

Fused in HW1
Fdetailed example later in lecture

2014-‐09-‐12	

12	

Instrumentation: Using gcov

•  Gives profile of execution within a function
•  Eg., how many times each line of C code was executed
•  Can decide which loops are most important
•  Can decide which part of if/else is most important

•  Usage: compile with “-g -fprofile-arcs -ftest-coverage” to enable
gcc -g -fprofile-arcs -ftest-coverage file.c –o file.o
./prog

•  Executes in normal fashion
•  Also generates file.gcda and file.gcno for each file.o

gcov –b progc
•  Generates profile output in file.c.gcov

Fused in HW1

Emulation/Instrumentation: valgrind

•  Primarily used to find/track memory leaks
•  Eg., if malloc() an item but forget to free it
•  Many other uses for it these days

•  valgrind is a fairly sophisticated emulator
•  a virtual machine that just-in-time (JIT) compiles
•  adds instrumentation dynamically (without rerunning gcc)
•  emulates 4-5x slower than native execution

•  Usage: (available on ug machines)
valgrind myprogram
== LEAK SUMMARY:
== definitely lost: 0 bytes in 0 blocks
== indirectly lost: 0 bytes in 0 blocks
== possibly lost: 0 bytes in 0 blocks
== still reachable: 330,372 bytes in 11,148 blocks

2014-‐09-‐12	

13	

Demo:
Using gprof

