2014-09-12

ECE 454

Computer Systems Programming
Measuring and profiling

Ding Yuan
ECE Dept., University of Toronto
http://www.eecg.toronto.edu/~yuan

“It is a capital mistake to theorize
before one has data. Insensibly one
begins to twist facts to suit theories

instead of theories to suit facts.” -
Sherlock Holmes




Measuring Programs
and Computers

Why Measure a Program/Computer?

* To compare two computers/processors
* Which one is better/faster? Which one should I buy?

» To optimize a program
* Which part of the program should I focus my effort on?

* To compare program implementations
* Which one is better/faster? Did my optimization work?

* To find a bug
* Why is it running much more slowly than expected?

2014-09-12



Basic Measurements

« IPS: instructions per second
¢ MIPS: millions of IPS
« BIPS: billions of IPS

* FLOPS: floating point operations per second
* megaFLOPS: 106 FLOPS

gigaFLOPS: 10° FLOPS

teraFLOPS: 102 FLOPS

petaFLOPS: 10 FLOPS

Eg: playstation3 capable of 20 GFLOPS

* IPC: instructions per processor-cycle

» CPI: cycles per instruction
« CPI=1/1PC

How not to compare processors

* Clock frequency (MHz)?
* IPC for the two processors could be radically different
* Megahertz Myth
+ Started from 1984

Apple I IBM PC
CPU: MOS Technology 6503@ | MHz CPU: Intel 8088@4.77MHz
LD: 2 cycles (2 microseconds) LD: 25 cycles (5.24 microseconds)

2014-09-12



2014-09-12

How not to compare processors

Clock frequency (MHz)?
* IPC for the two processors could be radically different

CPI/TPC?
* dependent on instruction sets used
* dependent on efficiency of code generated by compiler

FLOPS?
» only if FLOPS are important for the expected applications
+ also dependent on instruction set used

How to measure a Pprocessor

Use wall-clock time (seconds)

time = IC x CPI x ClockPeriod
IC = instruction count (total instructions executed)
CPI = cycles per instruction

ClockPeriod = 1 / ClockFrequency = (1 / MHz)




2014-09-12

Amdahl’s Law:
Optimizing part of a program

speedup = OldTime / NewTime

Eg., my program used to take 10 minutes
* now it only takes 5 minutes after optimization
* speedup = 10min/5min = 2.0 1i.e., 2x faster

If only optimizing part of a program (on following

slide):

* let f be the fraction of execution time that the
optimization applies to (1.0 > f > 0)

* let s be the improvement factor (speedup of the
optimization)

Amdhal’s Law Visualized
(

Optimization r £/s

OldTime
A

1-f 1f

NewTime
A

\ \
“"the best you can do is eliminate f; 1-f remains




Amdahl’s Law: Equations

e let f be the fraction of execution time that the
optimization applies to (1.0 > f > 0)

« let s be the improvement factor
NewTime = OldTime x [(1-f) + f/s]
speedup = OldTime / (OldTime x [(1-f) + f/s])
speedup=1/(1-f +f/s)

Examplel: Amdahl’s Law

» If an optimization makes loops go 3 times faster, and my
program spends 70% of its time in loops, how much
faster will my program go?

speedup =1/ (1 —-f + {/s)
=1/(1-0.7+0.7/3.0)
=1/(0.533333)

=1.875
* My program will go 1.875 times faster. %S

2014-09-12



Example2: Amdahl’s Law

» If an optimization makes loops go 4 times faster,
and applying the optimization to my program makes
it go twice as fast, what fraction of my program is
loops?

>

Implications of Amdahl’s Law

Uncommon Optimization

Common
I Uncommon
Common

&~ optimize the common case

“¥"the common case may change!

2014-09-12



Tools for Measuring
and Understanding
Software

Tools for Measuring/Understanding

= Software Timers
= C library and OS-level timers

= Hardware Timers and Performance Counters
= Built into the processor chip

* Instrumentation
= Decorates your program with code that counts & measures
= gprof

" gcov = GNU: “Gnu is Not Unix” @Q@

--- Founded by Richard Stallman

2014-09-12



Software Timers: Command Line

Example: /usr/bin/time

» Measures the time spent in user code and OS code

» Measures entire program (can’t measure a specific function)
= Not super-accurate, but good enough for many uses

Stmels = sed in HW1

@m13.860s

real Om3.515s
Om10.669s

0mo.720s
* user & sys --- CPU time
* /usr/bin/time gives you more information

user oml10.837s
Sys 0m@.672s

Software Timers: Library: Example

#include <sys/times.h> // C library functions for time
unsigned get_seconds() {
struct tms t;
times(&t); // fills the struct
return t.tms_utime; // user program time
// (as opposed to 0OS time)
}

unsigned start_time, end_time, elapsed_time;
start_time = get_seconds();

do_work(); // function to measure
end_time = get_seconds();

elapsed_time = end_time - start_time;

¥~ can measure within a program
¢ used in HW2

2014-09-12



2014-09-12

Hardware: Cycle Timers

» Programmer can access on-chip cycle counter

= Eg., via the x86 instruction: rdtsc (read time stamp
counter)

= We use this in hw2:clock.c:1ine94 to time your solutions

= Example use:
» start_cycles = get_tsc(); // executes rdtsc
» do_work();
» end_cycles = get_tsc();
= total_cycles = end_cycles - start_cycles;

= Can be used to compute #cycles to execute code
= Watch out for multi-threaded program!
¥~ can be more accurate than library (if used right)
" used in HW2

Hardware: Performance Counters

 Special on-chip event counters
» Can be programmed to count low-level architecture events
» Eg., cache misses, branch mispredictions, etc.

» (Can be difficult to use
* Require OS support
* Counters can overflow
* Must be sampled carefully

* Software packages can make them easier to use
» Eg: Intel’s VTUNE, perf (recent linux)

" perf used in HW2

10



Instrumentation

Compiler/tool inserts new code & data-structures
= Can count/measure anything visible to software

= Eg., instrument every load instruction to also record the load address
in a trace file.

= Eg., instrument every function to count how many times it is called

“Observer effect”:
= can’t measure system without disturbing it
= Instrumentation code can slow down execution

Example instrumentors (open/freeware):

= Intel’s PIN: general purpose tool for x86

= Valgrind: tool for finding bugs and memory leaks

= gprof: counting/measuring where time is spent via sampling

Instrumentation: Using gprof

gprof: how it works
* Periodically (~ every 10ms) interrupt program
* Determine what function is currently executing
* Increment the time counter for that function by interval (e.g., 10ms)
» Approximates time spent in each function, #calls made
» Note: interval should be random for rigorous sampling!

Usage: compile with “-pg” to enable
gcc —-02 -pg prog.c —o prog
./prog
» Executes in normal fashion, but also generates file gmon . out
gprof prog
* Generates profile information based on gmon . out

& used in HW1
5" detailed example later in lecture

2014-09-12

11



Instrumentation: Using gcov

Gives profile of execution within a function

* Eg., how many times each line of C code was executed
* Can decide which loops are most important

* Can decide which part of if/else is most important

Usage: compile with “-g -fprofile-arcs -ftest-coverage” to enable
gcc —-g -fprofile-arcs -ftest-coverage file.c -o file.o
./prog
« Executes in normal fashion
e Also generates file.gcda and file.gcno foreach file.o
gcov —-b progc
* Generates profile outputin file.c.gcov

& used in HW1

Emulation/Instrumentation: valgrind

Primarily used to find/track memory leaks
* Eg., if malloc() an item but forget to free it
* Many other uses for it these days

valgrind is a fairly sophisticated emulator

* a virtual machine that just-in-time (JIT) compiles

* adds instrumentation dynamically (without rerunning gcc)
» emulates 4-5x slower than native execution

Usage: (available on ug machines)

valgrind myprogram

== LEAK SUMMARY:

== definitely lost: 0 bytes in 0 blocks

== indirectly lost: 0 bytes in 0 blocks

== possibly lost: 0 bytes in 0 blocks

== still reachable: 330,372 bytes in 11,148 blocks

2014-09-12

12



2014-09-12

Demo:
Using gprof

13



