
TENEX, a Paged
Time Sharing
System for the
PDP-10
Daniel G. Bobrow, Jerry D. Burchfiel,
Daniel L. Murphy, and Raymond S. Tomlinson
Bolt Beranek and Newman Inc.*

TENEX is a new time sharing system implemented
on a DEC PDP-10 augmented by special paging
hardware developed at BBN. This report specifies a
set of goals which are important for any time sharing
system. It describes how the TENEX design and
implementation achieve these goals. These include
specifications for a powerful multiprocess large
memory virtual machine, intimate terminal interaction,
comprehensive uniform file and I /O capabilities, and
clean flexible system structure. Although the
implementation described here required some
compromise to achieve a system operational within
six months of hardware checkout, TENEX has met its
major goals and provided reliable service at several sites
and through the ARPA network.

Key Words and Phrases: TENEX, paging, virtual
machines, time sharing system, scheduling algorithm,
process structure, PDP-10

CR Categories: 2.44, 4.32, 4.39, 4.42

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Presented at the Third Annual Symposium on Operating Sys-
tems Principles, Palo Alto, California, October 18-20, 1971.

1. Introduction

TENEX is a new time sharing operat ing system im-
plemented on the DEC PDP-10. It was developed because
no existing system of the appropr ia te size and .cost
could meet the requirements of the research projects at
BBN. Dur ing the development phase o f TENEX we formu-
lated a set o f goals which we hoped would produce a
workable and well-integrated system, as well as help
us to realize our specific requirements. Our background
included knowledge and use o f a number of other sys-
tems including the DEC PDP-1 systems designed at
BBN[1], the Berkeley system for the sos 940[10], MIT
CTSS[3], the OEC 10/50 system[5], and MULTICS[4]. We
used good design ideas f rom each of these systems,
and tried to avoid what we felt were problems of opera-
t ion and implementat ion which we saw in these sys-
tems. The scale of the system and available resources
imposed certain constraints on the implementat ion,
including (1) tha t minimal change be made to the
PDP-10 processor and none to the basic address com-
putat ion, and (2) that the system had to be in service
for users within six months o f the opera t ion o f the
hardware and at tha t time dominate our previous serv-
ice, the DEC 10/50 and the SDS 940 systems.

Our design goals, presented below, are generally
unders tood. Some, however, are often over looked and
usually not emphasized. We considered all o f these
impor tan t in the design of "rENEX. Our design goals

* Computer Science Division, 50 Moulton Street, Cambridge,
MA 02138. The work reported here was supported in part by the
Advanced Research Projects Agency of the DOD, and in part by
BBN.

135 Communications March 1972
of Volume 15
the ACM Number 3

fall into three broad categories with several specific
objectives under each.

I. State of the art virtual machine.
a. Paged virtual address space equal to or greater
than the addressing capability of the processor with
full provision for protection and sharing.
b. Multiple process capability in virtual machine
with appropriate communicat ion facilities.
c. File system integrated into virtual address space,
built on multilevel symbolic directory structure with
protection, and providing consistent access to all
external I / O devices and data streams.
d. Extended instruction repertoire making available
many common operations as single instructions.

II. Good human engineering throughout system.
a. An executive command language interpreter which
provides direct access to a large variety of small,
commonly used system functions, and access to and
control over all other subsystems and user programs.
Command language forms should be extremely ver-
satile, adapting to the skill and experience of the user.
b. Terminal interface design which facilitates intimate
interaction between program and user, provides ex-
tensive interrupt capability, and full ASCII character set.
c. Virtual machine functions which provide all neces-
sary options, with reasonable default values simplify-
ing common cases, and require no system-created
objects to be placed in the user address space.
d. The system should encourage and facilitate co-
operation among users as well as provide protection
against undesired interaction.

III . The system must be implementable, maintain-
able, and modifiable.
a. Software must be modular with well-defined inter-
faces and with provision for adding or changing mod-
ules clearly considered.
b. Software must be debuggable and reliable, allow-
ing use of available debugging aids and including in-
ternal redundancy checks.
c. System should run efficiently, allow dynamic
manual adjustment of service if desired, and allow
extensive reconfiguration without reassembly.
d. System should contain instrumentation to clearly
indicate performance.

2. Hardware Development for TENEX

Hardware development and modification for TENEX
was limited to that necessary to achieve the goals
specified above. This effort included an address map-
ping (paging) device implemented with then current
DEC modules and some changes to the PDP-10 processor.
A hard limit on the latter resulted from the lack of
physical room available in the processor. Both proc-
essor changes and paging facilities had to be designed
to allow the standard DEC time sharing software and
diagnostics to run.

2.1 The BBN Pager
The BBN pager is an interface between the PDP-10

processor and the memory bus. It provides individual
mapping (relocation) of each page (512 words) of
both user and monitor address spaces using separate
maps for each. The pager uses "associative registers"
and core memory tables to store the mapping informa-
tion. On each memory request from the processor,
the 9 high-order bits of the address and the request-
type level (read, write, execute) are compared in
parallel with the contents of each associative register.
I f a match is found, the register containing the match
also contains 11 high-order address bits to reference
up to 1,048,576 words of physical core.

I f no match is found, reference is made to a 512
word "page table" in physical core memory. The
word selected in this page table is determined by a
dispatch based on the original 9 high-order address
bits. In the simple case of a private page which is in
core, the 11 high-order address bits and protection
bits are found in this word and are automatically
loaded into an associative register by the pager.

There are three other cases:
1. The page is not in core, is protected from the re-
quested type of access, or is nonexistent; in this case a
page fault (trap) will occt)r.
2. The page is shared; in this case the map contains a
"shared" pointer to a system table which contains
the location information for the page.
3. The page belongs to another process; in this case,
the entry contains an "indirect" pointer to an entry in
another page table from which the location informa-
tion is obtained.

The goal of program (code and data) sharing was
given extensive consideration in the design of the
BBN pager. The indirect and shared pointer mechanism
allows pages to be actively shared (be represented in
more than one address space) but still have the current
address (core or secondary storage) stored in only one
place. This allows memory control tables and data
structures to be kept simple and the memory manage-
ment software to move pages without extensive com-
putational overhead. The pager permits individual
pages to be shared for write as well as read references,
so two or more processes may communicate by sharing

136 Communications March 1972
of Volume 15
the ACM Number 3

a common page into which any or all may write.
Rather than enforce a discipline of pure procedures,
with private data in another segment, a unique "copy-
on-write" facility allows users to share large portions
of an address space containing procedures and data,
and to obtain private copies of only those pages which
are changed. This is implemented through an inde-
pendent per-page status bit, available to users, which
will produce a trap on a write reference, and a system
procedure by which a private copy is then created.
For example, this permits shared programs to be
prepared with preconstructed data areas, which will
be kept shared if not modified and will be put in private
s to rage / f changed.

One final, unique feature is that the pager maintains
a record of the activity of the pages in core memory
in a "core status" table. The pager notes when a page
has been referenced, which processes have used that
page, and whether the page has been written into.
This information is used by the memory management
software to be described.

2.2 Processor Modifications
Except for the pager trapping facilities, all of the

TENEX virtual machine facilities (monitor calls) are
reached via a new system call instruction, JSYS, added
to the VDP-10 processor. JsYs provides an independent
transfer mechanism into the monitor which does not
conflict with " u u o " system calls used by DEC software.
It accomplishes a transfer from the user program to the
specified monitor routine in one instruction time via a
block of cells called the JSYS transfer vector. The JSVS
address provides the index to the proper transfer vector
entry. The state of the processor, including the return
address, is stored in a location specified by the transfer
vector, usually in a separate data area, so that a JSYS
call is suitable for reentrant code. The JSYS transfer
vector occupies exactly one page in the monitor space
and could be mapped independently for each process,
but this is not done in the current system.

There exists a context, either user or monitor, for
each instruction execution. The JSYS system call may
be executed in either context, with the "callee" operat-
ing in monitor context. One hardware modification
to the PDP-10 adds a bit to the state word of the proces-
sor to record the context of the "caller." Two ways of
accessing the caller memory context were added to the
PDP-10. One is an execute instruction which allows
current or previous context to be specified for each
memory reference of the object instruction. The second
access instruction group moves data between the
AC'S (general registers) of the current context and
memory of the previous context. AC'S from the pre-
vious context are accessed using a pager " AC base reg-
ister" which specifies the location of the stored AC'S.

3. The TENEX Virtual Machine

A user process running under TENEX operates on a
virtual machine similar to a PDP-10 arithmetic processor
with 256K of virtual memory. The paging hardware
traps processor references to any data not in core, and a
core manager performs the necessary I / O to make the
referenced page available. Such traps are invisible to
the user process.

The virtual processor does not make available to
the user the direct I /O instructions of the PDP-10.
But through instructions which call monitor routines,
the virtual machine provides facilities that are con-
siderably more powerful and sophisticated than typical
hardware configurations used directly.

3.1 Virtual Memory Structure
The TENEX virtual memory may be viewed as a

linear address space of 256K words, and programs may
use it in this fashion. However, the existence of the
paging hardware means that the monitor must deal
with memory in pages of 512 words, and some of the
power which the mapping hardware provides is acces-
sible to a user program.

The contents of the virtual memory are specified by
the virtual memory map of 512 slots which the user may
read or write via monitor calls. The contents of each slot
specify the page in that position in the virtual address
space, and the type of access allowable (read and/or
write and/or execute) for that page. In the simplest
case, a map slot may contain (a pointer to) a private
page, i.e. a page shared with no other processes in
the system. A private page is automatically created
whenever a process makes a reference to a page for
which the map slot is empty. A slot may also con-
tain an indirect pointer to a page in this or some other
process. A memory reference to a location in such a
page will be executed just as though the instruction
had directly addressed the page pointed to. Any change
made to the page by either process will be seen by
both processes. If the owner of the page changes the
contents of his memory map, then the process with
the indirect pointer will see the change. A virtual
memory slot may also contain a pointer to a page
from a file in the file system, as discussed later.

3.2 Job Structure
A job is a set of one or more hierarchically related

processes, and it has the following attributes.
I. The name of user who initiated the job.
2. An account number to charge costs associated with
use of system resources.
3. Some open files.
4. A hierarchy of running and/or suspended processes.

A job may also have one or more terminal or
other devices assigned and attached.

3.2.1 Process Hierarchy. TENEX permits each job
to have multiple simultaneously runnable processes.

137 Communications March 1972
of Volume 15
the ACM Number 3

The relationships among them are defined by a struc-
ture which looks like an inverted tree defined by the
capability for direct control and killing. A process
always has exactly one immediately superior process
and may have one or more inferior processes. Two
processes are said to be parallel if they have the same
immediate superior. In TENEX, a process may create
processes inferior, but not parallel or superior in the
structure. A process can communicate with other
members of the structure by (a) sharing memory,
(b) direct control (superior to inferior only), or (c)
pseudo (software simulated) interrupts as described
in Section 3.3.

Although not completely general, a tree structure
process heirarchy implicitly provides the protection
and reference facilities that are wanted in most appli-
cations. These include referencing inferior processes
as a class for freezing, killing, and resuming; fielding
of interrupts and special conditions by a superior
process; and protection of the superior process from
inferiors.

Currently in TENEX, multiple processes are used:
1. To enable the EXEC to run user programs, handling
faults, and servicing user requested interrupts.
2. To allow programs to block for an arbitrary set of
events; one process waits for each event and signals
the main process when it occurs.
3. To implement an invisible debugging program,
completely protected from malfunction of the program
under test.

3.3 Pseudo Interrupt System
TENEX provides a facility for a process to receive

asynchronous signals f rom other processes or from
terminals or as the result of its own execution. The
various processes in a job may explicitly direct inter-
rupts to each other for purposes of communication.
A process may enable an interrupt which will occur
whenever the user hits a particular key on the control-
ling terminal. Finally, a process may use the pseudo
interrupt system to detect any of a set of unusual con-
ditions, including illegal references to memory, proc-
essor overflow conditions, end-of-file, and data errors.

3.4 Other Monitor Functions
Other functions which form a part of the virtual

machine include:
1. Functions which provide information to the pro-
gram about the state of the system or job (time of day,
runtime used, name of user, etc.).
2. Functions which save and restore the computat ional
environment of a process to allow restarting of a sus-
pended program.
3. Functions which provide frequently needed forms of
I / O conversions, such as fixed or floating point number
input and output, and date and time to string conver-
sions.

3.5 Backward Compatibility (DEC 10/50 Monitors)
Since TENEX was being implemented on a machine

for which a large useful program library existed, mostly
for use under the DEC 10/50 time sharing monitor,
we felt it was highly desirable to be able to run such
programs under the new monitor system. We felt it
sl~ould be possible to run binary images of old pro-
grams, i.e. without reassembling.

Toward this end, all of the TENEX monitor calls
were implemented with the JSYS instruction, reserving all
old monitor calls for their previous use. Secondly,
routines were designed which implemented all of the
existing 10/50 monitor calls in terms of the available
TENEX monitor calls. This set of routines implements
all of the functions available in the 10/50 moni tor
except those specifically intended for the maintenance
of the system. Assembled together as a compatabil i ty
package, they occupy slightly less than 2.5K of core.
The package is kept as a core image file and is never
seen by programs which use only TENEX moni tor calls.
However, the functions are automatically made avail-
able to 10/50 type programs by the monitor. When a
program makes its first 10/50 type monitor call, the
TENEX monitor maps the compatabil i ty package into a
remote portion of the process address space, an area
not usually available on a 10/50 system. Subsequent
10/50 type moni tor calls cause a transfer to the com-
patability package which then interprets the call.

The compatibili ty routines are placed in the user
space for several reasons: (a) regular use can be made
of the pseudo interrupt system; (b) the compatabil i ty
package (which requires constant maintenance) can
be maintained as a separate module, totally independent
from the monitor; and (c) the monitor is protected
from malfunction by the compatibility routines.

4. User Interaction with TENEX

4.1 Terminal Interaction Capabilities
The terminal service module of TENEX was designed

to provide any type of interactive behavior a program
might find useful. Many programs, especially the com-
mand language interpreter described below, benefit
by having many short interactions with the user, often
one or a few characters. Full-duplex terminals are
preferred for use with TENEX for these reasons and for
the reason that the user can in fact anticipate the
machine's responses and begin typing input before
output is completed. Algorithms for echoing typein
ensure that the typescript is an accurate record of the
dialog. Half-duplex terminals may be used but at some
cost in convenience.

4.2. Executive Command Language
Users at terminals communicate and work with

TENEX primarily through a command language inter-
preter called the TENEX Executive, or EXEC. The EXEC

138 Communications March 1972
of Volume 15
the ACM Number 3

is an interactive, well human-engineered program
which can accept commands from a user's teletype
or from a file. It is implemented as a reentrant, shared
program which runs in user mode, usually as the top
level process ~n the structure.

The EXEC provides the user with a multitude of facil-
ities which are activated by simple, easy-to-learn com-
mands. These facilities provide access to the system
(e.g. LOCIN); utility operations on files and file direc-
tories; initiation of private programs and subsystems;
limited debugging aids; initiation of batch (detached
operations); printout of user information and system
statistics; and system maintenance.

The EXEC was designed with two primary objec-
t i v e s - e a s e of learning and ease of use. To ease the
learning process, all commands are English words
which are descriptive of the facility being activated (e.g.
copy to copy information from one file to another,
STATISTICS to obtain a listing of current system statis-
tics). Each command begins with a keyword. Depend-
ing on the command, the initial keyword may be
followed by arguments, such as file names, numbers,
and additional keywords, and /or "noise words" to
make the command more readable. The noise words
are enclosed in parentheses to distinguish them from
the arguments.

In order to help novice users, two special assistance
features were incorporated. First, when the EXEC
requires input from the user during a command inter-
action (for instance, to collect arguments of that
command), a cue is typed to indicate to the user what is
expected. For example, an interaction which renames
a file might be

@ R E N $ A M E (EXISTING FILE) ALPHAS.MAC
(TO BE) BETA

The user's input is bold face. The S indicates a typed ESC
(ASCII escape, code 338) which invokes the EXEC'S
verbose cueing responses in parentheses. In this ex-
ample the user typed only three letters REN followed by
ESC which invoked command completion by the EXEC,
a feature which makes the language particularly easy
to use. An ESC after any initial substring of a command
or argument (such as a file name) invokes completion.
I f the substring is insufficient for unique identification
of the intended input, the EXEC rings the teletype's
bell and awaits additional characters. I f the initial
substring cannot be recognized the EXEC types "?"
to ask the user to retype that input. I f the novice
user still doesn't understand what is expected in his
response, he may invoke the second special assistance
feature by typing the character "?". This causes the
EXEC first to type out a list of all options available to
the user at that point and then request a response.

To summarize, three general styles of input may be
used, distinguished by syntactic structure, and including
special input terminators. Hence the styles do not
require different input modes, and thus may be inter-
mixed freely within a session or even within a statement,
adapting to the state of knowledge and verbosity of
the user. The input styles allow:
1. Complete input. A complete command may be
typed in, with all keywords and noise words given in
their entirety and without use of any nonprinting
characters.
2. Abbreviations. The user may shorten a command in
two ways: he can omit noise words completely and he
can shorten keywords. Any keyword may be abbrevi-
ated with any initial substring (terminated with space)
long enough to distinguish it f rom the other keywords
acceptable in that context.
3. Completion. The user types the same characters as
in abbreviated input, except he terminates each field
(keyword or argument) with the ESC key. This pro-
duces a print-out of the complete co mman d - - each
ESC causes the rest of the field (if an abbreviated key-
word or file name) and any following noise words
(with enclosing parentheses) to be printed.

The EXEC also provides editing characters to permit
the user to correct typing errors in his input. These
editing characters permit the user to delete the last
character of his typed input, the last word, or all of it.
He can also ask for his edited input to be retyped for
clarity.

4.3 Interrupt and Escape Characters
ASCII Control-C is the EXECS attention character.

When typed by the user, it causes any running program
to be stopped and control to be given to the EXEC via
the pseudo interrupt system. The user may then con-
tinue his program or take any other action.

Another terminal interrupt character, Control-T,
is serviced by the EXEC. It interrupts a user's EXEC
process to type out the total cPu and console time
used and the status of the process being run under the
EXEC; this lower user process co ntinues.

5. The Tenex File System

The TENEX file system provides a general mechanism
for obtaining information from and sending data to
external devices attached to the TENEX system [12].
Write-only and read-only devices are included in the
file system so that all TENEX I / O may be handled uni-
formly. The first major function of the TENEX file
system is to provide symbolic file name management.
This includes two separate but related activities. The
first involves translation of a symbolic name into an
internal "file descriptor block" pointer associated
with that name; the second involves checking informa-
tion concerned with (1) the file status, e.g. whether it

139 Communications March 1972
of Volume 15
the ACM Number 3

exists, access rights, etc.; and (2) the process requesting
access to the file. This second activity, known as File
Access Protection, determines if this process should
be allowed to know about the existence of this file, and
if so, what access it is allowed.

A symbolic name for TENEX files consists of up to
five fields and thus conceptually represents a tree of
maximum depth five. Not all nodes of this tree go
down to maximum depth. This scheme was chosen
rather than a full tree to simplify the problem of com-
patibility with existing DEC PDP-10 software and name
lookup and recognition. We are currently considering
the feasibility of implementing a full tree directory
structure similar to MULTICS [l 1]. At each level there
would be a set of information, which is related to
access rights, and media dependence of the data
access for this node. Each node would represent a
collection of related information, with the terminal
nodes being files.

The fundamental unit of storage in a TENEX file is a
byte, which may be from 1 to 36 bits in length. A
stream of bytes constitutes a file, which is the basic
named element in the file system. Programs may refer-
ence files byte by byte in a sequential manner or, if the
device permits, at random. String (multiple byte)
transfers can also be made. No structure other than
bytes and files is imposed on the user, and byte and
string input and output are the basic operations. Of
course, additional structure and other operations may
be implemented by the user programs.

5.1 File Names
A TENEX file is named by a file descriptor composed

of five fields some of which are omitted for certain
devices. The five fields are device name, directory
name, file name, extension, and version number.

The file name field is intended to designate a class of
files which are related in some way. This convention is
not enforced, but most users of TENEX follow the con-
vention since it facilitates management of a user's
files. The extension field is intended to designate vari-
ously processed forms of the same information. A
file's extension is frequently specified by a program.
For example, PROG.MAC, PROG.REL, and PROG.SAV
would be used to indicate the MACRO assembly code
source, relocatable file, and binary image of a single
program.

The version number of a file enumerates successive
versions of a file. Normally each time a file is written a
new version is automatically created by making its
version number be one greater than the highest existing
version. This protects a user from loss if he acciden-
tally writes on the wrong file. Excess versions may be
deleted by the user, or automatically by the system,
when they have been put on a backup storage medium.

Any of the fields of a file description may be abbre-
viated except for device and version. The appearance
of an ESC in the file descriptor causes the portion of the

field before the ESC to be looked up, and the system
will supply the omitted characters and /or fields. Abbre-
viation without this output is not provided in order to
insure that the typescript reflects exactly what was
done. The system provides default values for each
field except the file name.

A default value is used for a field if the user omits
any input for that field, e.g. the device and directory.
This simplifies references to files in most common cases.

5.2 File Access Protection
Because TENEX must service a diverse user com-

munity, it is essential that access to files be protected
in a general way. Generally, access to a file depends on
two things: the kind of access desired and the relation
of the program making the access to the owner of the
file. Presently, a simple protection scheme is imple-
mented in which the only possible relationships a
program may bear to the file's owner are:
1. The directory attached to the job under which the
program is running is the same as the owning directory.
2. The directory attached to the job under which the
program is running is in the same group as the owning
directory.
3. Neither 1 nor 2.

Five kinds of access are distinguished for a file:
directory listing, read, write, execute, and append.
The above three relationships and five protection
types are related by 15 bits (a 3 × 5 binary matrix)
in which a one indicates that a particular access is
permitted for a particular relationship. I f directory
listing access is not permitted, the process requesting
access is given an error return which is indistinguishable
from the error for nonexistent file. This is important
if the information that a file exists should not be gener-
ally available, as is the case for secure systems. Other
access restrictions cause errors only when an a t tempt
is made to open a file, as described below.

For purposes of determining group access, a 36 bit
word is administratively associated with each directory
and each user. I f the bitwise "and" of the user group
word of the accessor and of the directory group word
of the accessee is nonzero, the group access permission
is used.

Provision has been made for a more general file
protection system in which more general access rela-
tionships may be expressed in a special file protection
language. For example, access may be allowed only
to an explicitly named set of users.

5.3 File Operations
Using a file in TENEX is basically a four step process:

first a correspondence is established between a file
name and a Job File Number (JVS), which is a small
index into a job table for files; next the file is opened,
establishing the mode and access permission and setting
up monitor tables to permit the data of the file to be
accessed; third, data is transferred to or from the file;

140 Communications March 1972
of Volume 15
the ACM Number 3

and finally, the file is closed, fixing up the directory
information and releasing the space occupied in system
tables for the file.

For purposes of file sharing, all instances of opening
a particular file should reference the same data. Data
written in a file will be immediately seen by readers
of the file. To protect against confusion resulting from
multiple uncooperating simultaneous writers and
readers of a file, a file can be opened with what we call
thawed or unthawed access. With thawed access, a
file may have any number of thawed writers and /or
thawed readers, but no provision is made to guarantee
that information is in a consistent (frozen) state.
With unthawed access, a file may have any number of
unthawed readers, or exactly one unthawed writer;
this prevents any potentially conflicting operations.
Simultaneous accessors of a file must be all thawed or
all unthawed.

6. The Monitor

6.1 Scheduler
The TENEX scheduler is designed to meet a set of

potentially conflicting requirements. The first is to
provide an equitable distribution of cPu service, which
we define as at least 1/N of real time where there are N
jobs on the system. Secondly, because TENEX is de-
signed to be a good interactive system, the scheduler
must identify and give p rompt service to jobs making
interactive requests. Thirdly, because use of the cPu
is intimately tied to the allocation of core memory,
it must make efficient use of core memory to maximize
cPu usage. Finally, the scheduler should have provision
for administratively controlling the allocation of re-
sources so as to obtain other than equal distribution if
desired.

6.1.1 Balance Set Scheduling. For the scheduler, we
want a coherent policy which obeys Denning's "work-
ing set principle" [6]. A priority rating, as described
below, is given to each runnable process in the system,
and an estimate is made of the working set size of each
process. The jobs with highest priority whose total
working sets will fit in core are called the balance set
and may be run concurrently. When any process in the
set page faults one of the others in the balance set is
given cPu service. Denning [7, 8] has shown that such
balance set scheduling minimizes thrashing and tends
to maximize system efficiency. Periodic monitoring of
the entire set of runnable processes for changes in
priorities and in working set sizes allows adjustment
of balance set membership.

6.1.2 Setting Process Priorities. To implement the
basic scheduling function, a scheduling algorithm was
chosen which groups processes together on a number of
separate queues each with an associated runtime quan-
tum, similar to algorithms described by Corbato [3]
and BBN [1]. Lower queues in general have lower prior-

ities but longer runtimes. A common problem with
many schedulers of this type is that processes are
placed on the highest priority queue after any interac-
tion. Under conditions of heavy load or with poorly
behaved interactive processes, it may happen that the
interactive processes succeed in using all of the avail-
able time and so lock out the compute-bound processes
which have fallen to the lower queues.

In TENEX, priority is based on a long term average
ratio of cPu use to real time, and a process's priority
after an interaction is determined by its priority before
the interaction and the length of the interaction.
Specifically, a process's priority is decreased while
running at a constant rate, C, and increased while
blocked at a rate of C/N, where N is the number of
runnable processes in the system. This ensures that
equitable service is given both to compute-bound and
interactive jobs.

To improve response characteristics, an interactive
"escape clause" is included in the scheduling algorithm.
After a block wait of greater than minimum time, a
process is given a short quantum at maximum priority.
Priority and queue position after this burst are deter-
mined by the long term average. The effect of this
provision is to ensure quick service to very short inter-
actions, even when requested immediately after a
long computat ion.

6.1.3 Resource Guarantees and Limitations. In
some cases cPu resource guarantees independent of
load are desired, e.g. a demonstrat ion which requires
significant cPu time during a period of medium or
heavy load, or a user who is willing to pay extra for
premium service which does not degrade as the load
on the machine increases. A facility is implemented in
TENEX to handle these situations.

A person with appropriate administrative access
can assign to any job on the system a fraction, F, of
guaranteed cPu service. For any job so designated, the
scheduler will a t tempt to ensure that

C / T > F,

where C is the cpu seconds used by the process, and
T is the real time since the process last unblocked.
For example, if the parameter is set to 30 percent,
the scheduler will provide at least 18 seconds of cpu
service to the specified job during each minute of real
time.

This parameter acts as a ceiling as well as a floor
for cPu service. That is, if there are other runnable
processes on the system which are not declared special,
then the scheduler will ensure that the special process
receives no more than the stated fraction of cpu service.
We have found that a process with this sort of re-
source guarantee displays very consistent interactive
behavior despite widely varying loads on the time
sharing machine.

141 Communications March 1972
of Volume 15
the ACM Number 3

6.2 Core Management
The information provided in the core status table

by the paging hardware is essential to the proper man-
agement of core memory in TENEX to avoid thrashing
and other forms of inefficient operation. Paging is
done on demand. No ordinary pages are preloaded
before a process is run, and in general, a process will
not have all the pages of its virtual memory in core at
once.

When a process references a page which is not in
core, a pager trap occurs and a core management rou-
tine is invoked. The run time since the last page fault is
used for a running average of page fault times, i.e.
interfault intervals in process time. A process is con-
sidered to have enough of its working set if its average
page fault time equals PAY, a system parameter cur-
rently set to 67ms (or 2 drum revolutions). I f the proc-
ess is faulting more often than PAY, it is considered
below its working set size, and a swap to bring in the
requested page initiated. Control returns to the schedu-
ler so that it can run another process until the swap is
complete. I f the process is faulting less often than PAV,
a core management routine is invoked to reduce the size
of the process, i.e. remove some of its pages from core
if space is needed. We have found this algorithm is stable
and works well; Denning and Schwartz [9] show
formally that this is a good idea.

To reduce the size of a process working set, a
least recently used algorithm is used. The age of each
page of a process is determined by a 9 bit logical age
field stored by the pager in the core status table when a
reference to that page causes a pager reload. Since
collecting pages is costly, all sufficiently old pages are
removed on a working set reduction. A quick reference
however can catch a page before it leaves physical core.

6.3 System Measurements
In order to observe and improve the performance of

TENEX in regular service, various measuring functions
were built into monitor routines. Some measures serve
to indicate the efficiency of scheduling, the core /cPu
balance, and the nature of the various processes run-
ning on the system. The scheduler maintains a set of
integrals over time which give (as a fraction of real
time) :
I D L E , time when no processes are requesting cPu

service.
WAIT, time when all runnable processes are waiting

for completion of page fault.
C O R E , overhead time spent in core management.
TRAP, time spent handling pager traps.

Two relationships among these are:
S = I D L E ~ - W A I T -~- C O R E = total time in scheduler.
R E A L T I M E - - S - T R A P = time spent running user proc-
esses.

Also maintained by the scheduler is an integral
over time of the number of processes in the balance
set, the number of transfers between core and second-

ary storage, and the number of terminal interactions.
One measure is of interest on a recurring basis to

all users of the system. The scheduler maintains three
exponential averages

A(T+t) = A(T) , exp (--t /c) + N*(1--exp(--t /c)) ,

with time constants c equal to 1, 5, 15 minutes and N
equal to the number of runnable processes on the
system. This indicates the true current load on the
system better than the number of jobs logged in.
Users often choose on the basis of these load figures
what they do on the system at a particular time. Three
figures are better than just the last one, because from
these the user can predict the trend as well as note
local variation.

6.4 Debugging Aids
Certain debugging procedures and aids used in the

development of the system contributed greatly to the
speed of development and integrity of the system. Our
principal debugging aid is a program called D O T , ~

available in several forms in the system. DDT is a pro-
gram which allows memory locations to be examined
and modified, and breakpoints (return of control to
DDT) to be placed in a running program. All interac-
tions with DDT are symbolic, using the symbols de-
fined in the source program and obtained f rom the
assembler.

The form of DDT first used and still necessary for
debugging basic level code is a stand-alone version
which resides in core memory along with monitor.
It is used for debugging the scheduler, portions of the
core manager, and other basic routines. The second
form of DDT was added as soon as the basic moni tor
could support demand paging and create a virtual
memory. This DDT exists in the monitor map and may
be used as an ordinary, program at a system terminal.
It is capable of examining and changing the running
monitor and all of the associated tables and other
contents of the monitor virtual memory. Use of this
form of DDT actually allows several persons to work
on debugging portions of the monitor simultaneously.
A third form of DDT is used with user programs and is
cognizant of the access status (execute or write pro-
tection, etc.) of pages of the user program.

Debugging the system was further facilitated by
the use of a considerable number of internal redun-
dancy and consistency checks which call one of two
recovery routines upon detecting any malfunction.
I f the system is attended by system personnel, these
routines enter a DDT breakpoint and the state of the
monitor can be examined to determine what has gone
wrong. This has enabled us to find and correct the
obscure or infrequent faults in the software. I f the
system is unattended, then, depending on which routine
was called and the severity of the fault, one of three
things happens: (1) operation is continued with no
interruption; (2) one process is crashed; or (3) the

142 Communications March 1972
of Volume 15
the ACM Number 3

system is automat ical ly reloaded and restarted. This
usually provides cont inued opera t ion in the event o f
unexpected hardware or software malfunction. Both
routines cause the source of the inconsistency and a
message describing the problem to be logged for fur-
ther act ion by system personnel.

7. Conclusion

One of the mos t valuable results o f our work was
the knowledge we gained of how to organize a hard-
ware /sof tware project of this size. Virtually all o f the
work on TENEX from initial inception to a useable sys-
tem was done over a two year period. There were a
total o f six people principally involved in the design
and implementat ion. An 18 month part-t ime study,
hardware design and implementat ion culminated in a
series of documents which describe in considerable
detail each of the impor tan t modules of the system.
These documents were carefully and closely followed
during the actual coding of the system. The first stage
of coding was completed in 6 months ; at this point the
system was operat ing and capable of sustaining use by
nonsystem users for work on their individual projects.
The key design document , the JSVS Manua l (extended
machine code), was kept upda ted by a person who
devoted full t ime to insuring its consistency and co-
herence; and in retrospect, it is our judgmen t that this
contr ibuted significantly to the overall integrity of the
system.

We felt it was extremely impor tan t to optimize the
size o f the tasks and the number o f people working
on the project. We felt tha t too many people working
on a particular task or too great an overlap o f people
on separate tasks would result in serious inefficiency.
Therefore, tasks given to each person were as large as
could reasonably be handled by that person, and insofar
as possible, tasks were independent or related in ways
that were well defined and documented. We believe that
this procedure was a major factor in the demons t ra ted
integrity of the system as well as in the speed with which
it was implemented.

References

1. BBN Medical Information Technology Department. The
hospital computer project time sharing executive system, BBN Rep.
No. 1673, Apr. 1968.
2. Bobrow, D.G., Burchfiel, J.D., Murphy, D.L., and Tomlinson,
R.S. TENEX, a paged time sharing system for the PDP-10. BBN
Rep. No. 2180, Aug. 1971.
3. Corbat6, F.J., et al. An experimental time-sharing system.
Proc. AFIPS 1962 SJCC, Vol. 21 Spartan Books, New York, pp.
335-344.
4. Corbat6, F.J., et al. An introduction and overview of the
Multics system. Proc. AFIPS 1965 FJCC, Vol. 27 Pt. 1, Spartan
Books, New York, pp. 185-196.
5. Digital Equipment Corp. PDP-10 Reference Handbook. Dec.
1971.
6. Denning, P. The working set model for program behavior.
Comm. ACM 1l, 5 (May 1968), 323-333.
7. Denning, P. Thrashing, it's causes and prevention. Proc. AFIPS
1968 FJCC, Vol. 33 Pt. l, AFIPS Press, Montvale, N.J., pp. 915-
922.
8. Denning, P. Equipment configuration in balanced computer
systems. 1EEE Trans. Comput. C-18, 11 (Nov. 1969), 1008-1012.
9. Denning, P., and Schwartz, S.C. Properties of the working set
model. Comm. ACM 15, 3 (Mar. 1972), 189-196.
10. Lampson, B., et al. A user machine in a time sharing system.
Proc. IEEE54, 12, (Dec. 1966), 1766-1774.
11. Spiel M.J., and Organick, E. The Multics interprocess
communication facility. Proc. Sec. Symp. Oper. Sys. Princ., Oct.
1969, ACM, New York, pp. 83-91.
12. Wilkes, M. Time Sharing Computer Systems. American
Elsevier, New York, 1968.

Acknowledgments . In addit ion to the work done by
the authors, significant contr ibut ions to the design
and implementat ion of TENEX were made by T.R.
Strdllo, who led the technical staff, and J.R. Barnaby,
who implemented the EXEC subsystem. Others who
cont r ibuted are T. Myer, E. Fiala, D. Wallace, and
J. Elkind.

143 Communications March 1972
of Volume 15
the ACM Number 3

