
The D is t r ibuted V Kernel
and its P e r f o r m a n c e for Diskless Works ta t ions

D a v i d R. C h e r i t o n and W i l l y Z w a e n e p o e l

Compu te r S y s t e m s L a b o r a t o r y
Depa r tmen ts of Compu te r Sc ience and E lec t r i ca l Eng ineer ing

S t a n f o r d U n i v e r s i t y

A b s t r a c t

The distributed V kernel is a message-oriented kernel that

provides uniform local and network interprocess communication.

It is primarily being used in an environment of diskless

workstations connected by a high-speed local network to a set of

file servers. We describe a performance evaluation of the kernel,
with particular emphasis on the cost of network file access. Our

results show that over a local network:

1. Diskless workstations can access remote files with minimal

performance penalty.

2. The V message facility can be used to access remote files at

comparable cost to any well-tuned specialized file access
protocol.

We conclude that it is feasible to build a distributed system with

all network communication using the V message facility even

when most of the network nodes have no secondary storage.

1. I n t r o d u c t i o n
The distributed V kernel is a message-oriented kernel that

provides uniform local and network interproccss communication.

The kernel interface is modeled after the Thoth [3, 5] and

Verex [4, 5] kernels with some modifications to facilitate efficient

local network operation. It is in active use at Stanford and at

other research and commercial establishments. The system is

implemented on a collection of MC68000-based SUN

workstations [2] interconnected by a 3 Mb Ethernet [9] or 10 Mb

~is work w~ sponsorcd in p~ ~ ~e De~n~ Adv~cecl Research Proj~ Ag~cy
u n d ~ n ~ MDA~3-~-C~I~ ~dN0O039-83-K"O43t.
Permission to copy without fee a]] or part of
th is material is granted provided that the
copies are not made or d is t r ibuted for d i rect
commercial advantage, the ACH copyright
notice and the t i t l e of the publ icat ion and
i t s date appear, and notice is given that
copying is by permission of the Association
for Computing Machinery. To copy otherwise,
or to republ ish, requires a fee and/or
spec i f ic permission.

129

1983 A C M 0-89791-115-6/83/010/0129 $00.75

Ethernet [7] . Network interprocess communication is

predominantly used for remote file access since most SUN

workstations at Stanford are configured without a local disk.

This paper reports our experience with the implementation and

use of the V kernel. Of particular interest are the controversial
aspects of our approach, namely:

1. The use of diskless workstations with all secondary storage

provided by backend file servers.

2. The use of a general purpose network interprocess

communication facility (as opposed to special-purpose file

access protocols) and, in particular, the use of a Thoth-like

interprocess communication mechanism.

The more conventional approach is to configure workstations

with a small local disk, using network-based file servers for

archival storage. Diskless workstations, however, have a number

of advantages, including:

1. Lower hardware cost per workstation.

2. Simpler maintenance and economies of scale with shared

file servers.

3. Little or no memory or processing overhead on the
workstation for file system and disk handling.

4. Fewer problems with replication, consistency and

distribution of files.

The major disadvantage is the overhead of performing all file

access over the network. One might therefore expect that we u s e

a carefully tuned specialized file-access protocol integrated into

the transport protocol layer, as done in LOCUS [11]: Instead, o u r

file access is, built on top of a general-purpose interprocess

communication (IPC) facility that serves as the transport layer.

While this approach has the advantage of supporting a variety of
different types of network communication, its generality has the

potential of introducing a significant performance penalty over

the "problem-oriented" approach used in LOCUS.

Furthermore, because sequential file access is so common, it is

conventional to use streaming protocols to minimize the effect of

network latency on performance. Instead, we adopted a
synchronous "request-response" model of message-passing and

data transfer which, while simple and efficient to implement as

well as relatively easy to use, does not support application-level

use of streaming.

These potential problems prompted a performance evaluation of

our methods, with particular emphasis on the efficiency of file

access.]'his emphasis on file access distinguishes our work from

similar studies [10, 13]. The results of our study strongly support

the idea of building a distributed system using diskless

workstations connected by a high-speed local network to one or

more file servers. Furthermore, we show that remote file access

using the V kernel IPC facility is only slightly more expensive

than a lower bound imposed by the basic cost of network

communication. From this we conclude that relatively little

improvement in performance can be achieved using protocols

further specialized to file access.

2. V Kernel Interprocess Communication
The basic model pm~4ded by the V kernel is that of many small

processes communicating by messages. A process is identified by

a 32-bit globally unique process identifier or pit Communication

between processes is provided in the form of short fixed-length

messages, each with an associated reply message, plus a data

transfer operation for moving larger amounts of data between

processes. In particular, all messages are a fixed 32 bytes in
length.

The common communication scenario is as follows: A client

process executes a Send to a server process which then completes

execution of a Receive to receive the message and eventually

executes a Reply to respond with a reply message back to the

client. We refer to this sequence as a message exchange. The

receiver may execute one or more MoveTo or MoveFrom data
transfer operations between the time the message is received and
the time the reply message is sent.

The following sections describe the primitives relevant to this

paper. The interested reader is referred to the V kernel

manual [6] for a complete description of the kernel facilities.

2.1 . Primitives
Send(message, pid)

Send the 32-byte message specified by message to the
process specified by pid The sender blocks until the
receiver has received the message and has sent back a
32-byte reply using Reply. The reply message
overwrites the original message area.

Using the kernel message format conventions, a
process specifies in the message the segment of its
address space that the message recipient may access
and whether the recipient may read or write that
segment. A segment is specified by the last two words
of a message, giving its start address and its length
respectively. Reserved flag bits at the beginning of the
message indicate whether a segment is specified and if
so. its access permissions.

pid = Receive(message)
Block the invoking process, if necessary, to receive a
32-byte message in its message vector. Messages are
queued in first-come-first-served (FCI:S) order until

received.
(pid, count) = ReceiveWithSegment(message, segptr, segsize)

Block the invoking process to receive a message as with
Receive except, if a segment is specified in the message
with read access, up to the first segsize bytes of the
segment may be transferred to the array starting at
segptr, with count specifying the actual number of
bytes received.

Reply(message, pid)
Send a 32-byte reply contained in the message buffer
to the specified process providing it is awaiting a reply
from the replier. The sending process is readied upon
receiving the reply; the replying process does not
block.

ReplyWithSegment(message, pid. destptr, segptr, segsize)
Send a reply message as done by Reply but also
transmit the short segment specified by segptr and
segsize to destptr in the destination process' address
space.

MoveFrom(srcpid, desk sre, count)
Copy count bytes from the segment starting at src in
the address space of srcpid to the segment starting at
dest in the active process's space. The srcpid must be
awaiting reply from the active process and must have
provided read access to the segment of memory in its
address space using the message conventions described
under SentL

MoveTo(destpid, desk src, count)
Copy count bytes from the segment starting at src in
the active process's space to the segment starting at dest
in the address space of the destpid process. The destpid
must be awaiting reply from the active process and
must have provided write access to the segment of
memory in its address space using the message
conventions described under Sen~L

SetPid(Iogicalid. pid, scope)
Associate pid with the specified logicalid in the
specified scope, which is one of local, remote or both.
Example logicalid's are fileserver, nameserver, etc.

pid -- GetPid(logicalid, scope)
Return the process identifier associated with logicalid
in the specified scope if any, else O.

2.2. Discussion
The V kerners interproeess communication is modeled after that

of the Thoth and Verex kernels, which have been used in multi-
user systems and real-time applications for several years. An

extensive discussion of this design and its motivations is
available [5], although mainly in the scope Of a single machine

system. We summarize here the highlights ofthe discussion.

1. Synchronous request-response message communication

makes programming easy because of the similarity to

procedure calls.

2. The distinction between small messages and a separate data

transfer facility ties in well with a frequently observed usage

pattern: A vast amount of interprocess communication is

transfer of small amounts of control information (e.g. device

completion) while occasionally there is bulk data transfer

(e.g. program lo~ding).

3. Finally, synchronous communication and small, fixed-size

messages reduce queuing and buffering problems in the

kernel. In particular, only small, fixed-size message buffers

130

must be allocated in the kernel and large amounts of data

are transferred directly between users' address spaces

without extra copies. Moreover, by virtue of the synchrony

of the communication, the kernel's message buffers can be

statically allocated. As exemplified in Thoth, these factors

make for a small, efficient kernel.

The V message primitives appear ill-suited in several ways for a

network environment, at least on first observation. The short,

fixed-length messages appear to make inefficient use of large

packet sizes typically available on local networks. The

synchronous nature of the message sending would seem to

interfere with the true parallelism possible between separate

workstations. And the economies of message buffering afforded

by these restrictions in a single machine implementation are less

evident in a distributed environment. Finally, the separate data

transfer operations MoveTo and MoveFrom appear only to

increase the number of remote data transfer operations that must

be implemented in the distributed ease.

However, our experience has been that the V message primitives

are easily and efficiently implemented over a local network.

Moreover, we have found that the semantics of the primitives

facilitated an efficient distributed implementation. The only

major departure from Thoth was the explicit specification of

segments in messages and the addition of the primitives

ReceivettqthSegment and ReplyWithSegment. This extension

was done for efficient page-level file access although it has proven

useful under more general circumstances, e.g. in passing character

string names to name servers.

3. Implementat ion Issues
A foremost concern in the implementation of the kernel has been

efficiency. Before describing some of the implementation details

of the individual primitives, we list several aspects of the

implementation that are central to the efficient operation of the
kernel.

1. Remo[e operations are implemented directly in the kernel

instead of through a process-level network server. When

the kernel recogriizes a request directed to a remote process,

it immediately writes an appropriate packet on the network.

The alternative approach whereby the kernel relays a

remote request to a network server who then proceeds to

write the packet out on the network incurs a heavy penalty

in extra copying and process switching. (We measured a

factor of four increase in the remote message exchange

time.)

2. lnterkernel packets use the "raw" Ethernet data link level.

The overhead of layered protocol implementation has been

described many times [10]. An alternative implementation

u~ing internet (IP) headers showed a 20 percent increase in

the basic message exchange time, even without computing

the IP header checksum and with only the simplest routing

in the kernel. While we recognize the tradeoff between

internct functionality and local net performance, we have

chosen not to burden the dominant (local net) operation

with any more overhead than is strictly .necessary.

1The synchronous request-response nature of a reply

associated with each message is exploited to build reliable
message transmission directly on an unreliable datagram

service, i.e. without using an extra layer (and extra packets)

to implement reliable transport. The reply message serves

as an acknowledgement as well as carrying the reply

message data.

4. The mapping from process id to process location is aided by

encoding a host specification in the process identifier. The

kernel can thus determine quickly whether a process is

either local or remote, and in the latter case on which

machine it resides.

5. There are no per-packet acknowledgements for large data

transfers (as in' MoveTo and in MoveFrora). There is only a

single acknowledgement when the transfer is complete.

6. File page-level transfers require the minimal number of

packets (i.e. two~ because of the ability to append short
segments to messages using ReceiveWitltSegment and
Reply WithSegment.

The following sections look at particular aspects of the

implementation in greater detail.

3.1. Process Naming
V uses a global (fiat) naming space for specifying processes, in
contrast to the local port naming used in DEMOS [1] and

Accent [12]. Process identifiers are unique within the context of a

local network. On the SUN workstation, it is natural for the V

kernel to use 32-bit~process identifies. The high-order 16 bits of

the process identifier serve as a logical host identifier subfield
while the low-order 16 bits are used as a locally unique identifier.

In the current 3 Mb Ethernet implementation, the top 8 bits of

the logical host identifier are the physical network address of the

workstation, making the process identifier to network address

mapping trivial. In the 10 Mb implementation, a table maps

logical hosts to network addresses. When there is no table entry

for the specified logical host, the message is broadcast. New

"logical host-to-network address" correspondences can be

discovered from messages received. However, each node must at

least know or discover its own logical host identifier during kernel
initialization.

The use of an explicit host field in the process identifier allows

distributed generation of unique process identifiers between

machines and allows an efficient mapping from process id to

network address. In particular, it is very efficient to determine

whether a process is local or remote. This "Mc.ality" test on

process identifiers serves as the primary invocation mechanism

from the local kernel software into the network IPC portion. In

general, most V kernel operations differ from their Thoth

implementation by a call to a "non-local" handler when one of
the "process identifier parameters fails to validate as a local

131

process. With the exception of GetPid, kernel operations with no

process identifier parameters ar~ implicitly local to the

workstation.

GetPid uses network broadcast to determine the mapping of a

logical process identifier to real process identifier if the mapping

is not known to the local kernel. Any kernel knowing the

mapping can respond to the broadcast request. The addition of

local and remote scopes was required to discriminate between

server processes that serve only a single workstation and those

that serve the network.

3.2. Remote Message ImPlementation
When a process identifier is specified to Send with a logical host

identifier different from that of the local machine, the local pid

validation test fails and Send calls NonLocalSend which handles

transmission of the message over the network.

The NonLocalSend routine writes a interkernel packet on the

network addressed to the host machine of this process or else

broadcasts the packet if the host machine is not known. When

the host containing the recipient process receives the packet, it

creates an alien process descriptor to represent the remote

sending process using a standard kernel process descriptor t and

saves the message in the message buffer field of the alien process

descriptor. When the receiving process replies to the message, the

reply is transmitted back to the sender as well as being saved for a

period of time in the alien descriptor. If the sender does not

receive a reply within the timeout period T, the original message

is retransmitted by the sender's kernel. The receiving kernel

filters out retransmissions of received messages by comparing the

message sequence number and source process with those

represented by the aliens. The kernel responds to a retransmitted

message by discarding the message and either retransmitting the

reply message or else sending back a "reply-pending" packet to

the sending kernel if the reply has not yet been generated. It also

sends back a reply-pending packet if it is forced to discard a new

message because no (alien) process descriptors are available. The

sending kernel concludes the receiving process does not exist (and

thus the Send has failed) if it receives a negative

acknowledgement packet or it retransmits N times without

receiving either a reply message or a reply-pending packet

This description supports the claim made above that reliable

message transmission is built immediately on top of an unreliable

datagram protocol with the minimal number of network packets

in the normal case.

3.3. Remote Data Transfer
MoveTo and MoveFrom provide a means of transferring a large

amount of data between remote processes with a minimal time
increase over the time for transferring the same amount of data in

raw network datagrams. MoveTo transmits the data to be moved

in a sequence of maximally-sized packets to the destination

workstation and awaits a single acknowledgement packet when all

the data has been received. Given the observed low error rates of

local networks, full retransmission on error introduces only a

slight performance degradation. We have, however, implemented

retransmission from the last correctly received data packet in

order to avoid the pitfall of repeated identical failures arising

when back-to-back packets are consistently being dropped by the

receiver. The implementation of MoveFrom is similar except a

MoveFrora request is sent out and acknowledged by the requested

data packets, essentially the reverse of MoveTo.

As in the local case, major economies arise with MoveTo and

MoveFrom because, by their definitions, there is no need for

queuing or buffering of the data in the kernel. The V kernel

moves the data directly from the source address space into the

network interface, and directly from the network interface to the

destination address space 2 .

3.4, Remote Segment Access
The message and data transfer primitives provide efficient
communication of small amounts and large amounts of data, less
than 32 bytes or several tens of network packets. However, page-

level file access requests involve an intermediate amount of data

that is not efficiently handled by the Thoth primitives when

implemented over alocal network.

V file access is implemented using an I/O protocol developed for

Verex [4]. "l~o read a page or block of a file, a client sends a

message to the file server process specifying the file, block

number, byte count and the address of the buffer into which the

data is to be returned. The server reads the data offdisk, transfers

it into the remote buffer using MoveTo, and then replies,
confirming the amount of data read. In the common case of the

data fitting into a single network packet, this requires 4 packet

transmissions (assuming no retransmissions): one for the Send, 2

for the MoveTo and one for the Reply. This is double the number

of packets required by a specialized page-level file access protocol

as used, for instance, in LOCUS [11] or WFS [14]."

To remedy this problem, we made some modifications to the

original Thoth kernel interface. First, we added the primitives

ReceiveWithSegment and ReplyWithSegraent. Second, we

requ!red explicit specification of segments in messages (as

described in Section 2.1), Using this explicit specification, Send

was then modified to transmit, as part of the network packet

containing the message, the first part of a segment to which read

access has been granted, if any. Using the ReceivellqthSegment

operation, the recipient process is able to receive the request

message and the first portion of the segment in a single operation.

By setting the size of the initial portion of the segment sent to be

Iuse of standard kernel process descriptor= for allem reduces the amount of
~pecializ~-'d code for. handling r~mote m ~ e ~ . However. alien processes do not
execute and can reasonably bc thought of as mc~agc bu f f~ ,

2This is possible with a programmed 110 interface, as used by the SUN 5
Ethcrnct interface as well as the 3COM 10 Mb Ethemet interlace. A convcnfic~d
DMA interface may require a packet assembly butter for transmission and reception1.

132

at least as large as a file block, a file write operation is reduced to

a single two packet exchange. In this fashion, read access to small

segments (such as single block disk write operations) is handled

efficiently. The ReplyWithSegment operation eliminates the

extra packets in the case of a file read by combining the reply

message packet with the data to be returned.

Advantages of this approach include:

1. The advantages of the Thoth IPC model with the network

performance ofa WFS-style file access protocol.

2. Compatibility with efficient local operation. For instance,

segments may be accessed directly if in the same address

space or if the recipient process operates a DMA device.

3. Use of ReceiveWithSegment and ReplyWithSegmeat is
optional and transparent to processes simply using Send.

An expected objection to our solution is the apparent asymmetry

and awkwardness of the message primitives. We feel the

asymmetry may be appropriate given the prevalent asymmetry of

communication and sophistication between client and server

processes. Also, it is not unexpected that there be some conflict

between efficiency and elegance. Given that applications

commonly access system services through stub routines that

provide a procedural interface to the message primitives, it is not

inappropriate to make some compromises at the message level for

efficiency.

We now turn to the discussion of the performance evaluation of

the kernel. We first define the term network penalty as a
reasonable lower bound on the cost of network communication.

Subsequently we discuss the efficiency of the kernel," both in
terms of message passing and file access.

4 . N e t w o r k P e n a l t y
Our measurements of the V kernel are primarily concerned with

two comparisons:

1. The cost of remote operations versus the cost of the

corresponding local operations.

2. The cost of file access using V kernel remote operations

versus the cost for other means of network file access.

An important factor in both comparisons is the cost imposed by

network communication. In the first comparison, the cost of a

remote operation should ideally be the cost of the local operation

plus the cost of moving data across the network (data that is in

shared kernel memory in the local case). For instance, a local

message Send passes pointers to shared memory buffers and

descriptors in the kernel while a remote message Send must move

the same data across the network. In the second comparison, the

basic cost of moving file data across the network is a lower bound

on the cost for any network file access method.

To quantify the cost of network communication, we define a

measure we call the network penalty. The network penalty is

defined to be the time to transfer n bytes from one workstation to
another in a network datagram on an idle network and assuming

no errors. 1he network penalty is a function of the processor, the

network, the network interface and the number of bytes

transferred. It is the minimal time penalty for interposing the

network between two software modules that could otherwise

transmit the data by passing pointers. The network penalty is

obtained by measuring the time to transmit n bytes from the main

memory of one workstation to the main memory of another and

vice versa and dividing the total Lime for the experiment by 2.

The experiment is repeated a large number of times for statistical

accuracy. The transfers are implemented at the data link layer

and at the interrupt level so that no protocol or process switching

overhead appears in the results. The assumptions of error-free

transmission and low network utilization are good

approximations of most local network environments.

Network penalty provides a more realistic minimum achievable

time for data transfer than that suggested by the physical network

speed because it includes the processor and network interface

times. For instance, a 10 Mb Ethernet can move 1000 bits from
one workstation to another in 100 microseconds. However, the

time to assemble the packet in the interface at the sending end
and the time to transfer the packet out of the interface at the

receiving end are comparable to the time for transmission. Thus,

the time for the transfer from the point of view of the

communicating software modules is at least two or three times as

long as that implied by the physical transfer rate.

Measurements of network penalty were made using the

experimental 3 Mb Ethernet. In all measurements, the network

was essentially idle due to the unsociable times at which

measurements were made. Table 4-1 lists our measurements of

the 3 Mb network penalty for the SUN workstation using the 8

and 10 MHz processors with times given in milliseconds. The

network time column gives the time for the data to be transmitted
based on the physical bit rate of the medium, namely 2.94

megabits per second.

N e t w o r k P e n a l t y

Bytes) Network Time Network Penalty

8 MHz 10 MHz

64 .174 0.80 0.65

128 .348 1.20 0.96

256 .696 2.00 1.62

512 1.392 3.65 3.00

1024 2.784 6.95 5.83

Table 4-I: 3 Mb Ethernet SUN Network Penalty (times in msec.)

The network penalty for the 8 MHz processor is roughly given by

P(n) = .0064 * n + .390 milliseconds where n is the number of

bytes transferred. For the 10 MHz processor, it is .0054 * n +

.251 milliseconds.

3We only consid~ packet sizes that fit in a eingIe network dalagnm.

133

The difference between the network time, computed at the

network data rate, and the measured network penalty time is

accounted for primarily by the processor time to generate and

transmit the packet and then receive the packet at the other end.

For instance, with a 1024 byte packet and an 8 M l h processor,

the copy time from memory to the Ethernet interface and vice

versa is roughly 1.90 milliseconds in each direction. Thus, of the

total 6.95 milliseconds, 3.80 is copy time, 2.78 is network

transmission time and .3 is (presumably) network and interface

latency. If we consider a 10 Mb F.thernet with similar interfaces,
the transmission time is less than 1 millisecond while the copy

times remain the same, making the processor time 75 percent of

the cost in the network penalty. The importance of the processor

speed is also illustrated by the difference in network penalty for

the two processors measured in Table 4-1.

With our interfaces, the processor is required to copy the packet

into the interface for transmission and out of the interface on

reception (with the interface providing considerable on-board

buffeting). From the copy times given above, one might argue

that a DMA interface would significantly improve performance. ~,
I{owever, we would predict that a DMA interface would not

result in better kernel performance for two reasons. First, the

kernel interprets a newly arrived packet as it copies the packet

from the network interface, allowing it to .place much of the

packet data immediately in its final location. With a DMA
interface, this copy would be required after the packet had been

DMA'ed into main memory. Similarly, on transmission the

kernel dynamically constructs a network packet from disparate

locations as it copies the data into the network interface. Most

DMA interfaces require the packet to be assembled in one
contiguous area of memory, implying the need for a comparable

copy operation. Finally, there is not currently available (to our
knowledge) a network DMA interface for the Ethemet that

moves data faster than a 10 MHz Motorola 68000 processor as

used in the SUN workstation. In general, the main benefit of a

smart network interface appears to be in offloading the main
processor rather than speeding up operations that make use of

network communication.

5. K e r n e l P e r f o r m a n c e
Our first set of kernel measurements focuses on the speed of local

and network interprocess communication. The kernel IPC

performance is presented in terms of the times for message

exchanges and the data transfer operations. We first describe how

these measurements were made.

5.1. Measu rement Methods
Measurements of individual kernel operations were performed by

executing the operation N times (typically 1000 times), recording

the total time required, subtracting loop overhead and other

artifact, and then dividing the total time by N. Measurement of

total time relied on the software-maintained V kernel time which

is accurate plus or minus 10 milliseconds.

Measurement of processor utilization was done using a low-

priority "busywork" process on each workstation that repeatedly

updates a counter in an infinite loop. All other processor

utilization reduces the processor allocation to this process. Thus,

the processor time used per operation on a workstation is the
elapsed time minus the processor time allocated to the

"busywork" process divided by N, the number of operations

executed.

Using 1000 trials per operation and time accurate plus or minus

10 milliseconds, our measurements should be accurate to about

.02 milliseconds except for the effect of variation in network load.

5.2. Kernel Measurements
Table 5-1 gives the results of our measurements of message

exchanges and data transfer with the kernel running on

workstations using an 8 MHz processor and connected by a 3 Mb

EthemeL Note that GetTime is a trivial kernel operation.
included to give the basic minimal overhead of a kernel

operation. The columns labeled Local and Remote give the

elapsed times for these operations executed locally and remotely.

The Difference column.lists the time difference between the local

and remote operations. The Penalty column gives the network •
penalty for the amount of data transmitted as part of the remote

operation. The Client and Server columns list the processor time

used for the operations on the two machines involved in the

remote execution of the operation. Table 5-2 gives the same
measurements using a 10 MHz processor. The times for both

processors are given to indicate the effect the processor speed has

on local and remote operation performance. As expected, the

times for local operations, being dependent only on the pracessor-

speed, are 25 percent faster on the 25 percent faster processor.
However, the almbst 15 percent improvement for remote

operations indicates the processor is the most significant
performance factor in our configuration and is not rendered

insignificant by the network delay (at least on a lightly loaded

network).

A significant level of concurrent execution takes place between

workstations even though the message~passing is fully

synchronized. For instance, transmitting the packet, blocking the

sender and switching to another process on the sending

workstation proceeds in parallel with the reception of the packet
and the readying of the receiving process on the receiving

workstation. Concurrent execution is indicated by the fact that

the total of the server and client processor times is greater than

the elapsed time for a remote message exchange. (See the Client

and Server columns in the above tables,)

5.3. Interpreting the Measurements
Some care is required in interpreting the implications of these
measurements for distributed applications. Superficially, the fact

that the remote Send-Receive-Reply sequ.ence takes more than :3

times as long as for the local case suggests that distributed

applications should be designed to minimize inter-machine

communication. I , general, one might consider it impractical to

134

Kernel Operation

Kernel Performance

Elapsed Time Network
Penalty

|.x~cal Remote Difference Client

Processor Time

,Server
GetTime 0.07 0.07

Send-Receive-Reply 1.00 3.18 2.18 1.60 1.79 2. 30
MoveFrom: 1024 bytes 1.26 9.03 7.77 8'.15 3.76 5.69

MoveTo: 1024 bytes 1.26 9.05 7.79 8.15 3.59 5.87

Table 5-1: Kernel'Performance: 3 Mb Ethernet and 8 MHz Processor (times in milliseconds)

Kernel Operation Elapsed Time Network
Penalty

Local Remote Difference w

Processor Time

Client Server
GetTime 0.06 0.06

Send-Receive-Reply 0.77 2.54 1.77 1.30 1.44 1.79

MoveFrom: 1024 bytes 0.95 , 8.00 7.05 6.77 3.32 4.78

MoveTo: 1024 bytes 0.95 8.00 7.05 6.77 3.17 4.95

Table 5-2: Kernel Performance: 3 Mb Ethernet and 10 MHz Processor (times in milliseconds)

view interprocess communication as transparent across machines

when the speed ratio is so large. However, an alternative

interpretation is to recognize that the remote operation adds a

delay of less than 2 milliseconds, and that in many cases this time

is insignificant relative to the time necessary to process a request

in the server. Furthermore, the sending or client workstation

processor is busy with the remote Send for only 1.44 milliseconds

out of the total 2.54 millisecond time (using the 10 MHz

processor). Thus, one can offload the processor on one machine

by, for instance, moving a server process to another machine if its
request processing generally requires more than 0.67 milliseconds

of processor time, i.e. the difference between the local Send-
Receive-Reply time and the local processor time for the remote
operation.

5.4. Multi-PtocessTraffic
The discussion so far has focused on a single pair of processes

communicating over the network. In reality, processes on several

workstations would be using the network concurrently to

communicate with other processes. Some investigation i s

required to determine how much message traffic the network can

support and also the degradation in response as a result of other
network traffic,

A pair of workstations communicating via Send-Recelve-Reply at
maximum speed generate a load on the network of about 400,000

bits per second, about 13 percent of a 3 Mb Etheruet and 4

percent of a 10 Mb Ethemet. Measurements on the 10 Mb

Ethernet indicate that for the packet size in question no

significant network delays are to be expected for loads upto 25

percent. Thus, one would expect minimal degradation with say

two separate pairs of workstations communicating on the same

network in this fashion. Unfortunately, our measurements of this

scenario turned up a hardware bug in our 3 Mb Ethemet

interface, a bug which causes many collisions to go undetected

and show up as corrupted packets. Thus, the response time for

the 8 MHz processor workstation in this case is 3.4 milliseconds.

The increase in time from 3.18 milliseconds is accounted for

almost entirely from the timeouts and retransmissions arising
(roughly one per 2000 packets) from the hardware hug. With

corrected network interfaces, we estimate that the network can

support any reasonable level of message communication without

significant performance degradation.

A more critical resource is processor time. This is especially true

for machines such as servers that tend to be the focus of a

significant amount of message traffic. For instance, just based on

server processor time, a workstation is limited to at most about
558 message exchanges per second, independent of the number of

clients. The number is substantially lower for file access

operations, particularly when a realistic figure for file server

processing is included. File access measurements are examined in

the next section.

6. File Access Using the V Kernel
Although it is attractive to consider the kernel as simply providing

message communication, a predominant use of the message

communication is to provide file access, especially in our

environment of diskless personal workstations. File access takes
place in several different forms, including: random file page

access, sequential file reading and program loading. In this

section, we assume the file server is essentially dedicated to

135

serving the client process we are measuring and otherwise idle. A

later section considers multi-client load on the file server.

We first describe the performance of random page-level file

access .

6.1. Page-level File Access

Table 6-i list the times for reading or writing a 512 byte block

between two processes both local and remote using the 10 MHz

processor. The times do not include time to fetch the data from

disk but do indicate expected performance when data is buffered

in memory. A page read involves the sequence of kernel

operations: Send--Receive-ReplyWithSegment, A page write is

Send--Receive ~qthSegment-Repl¥.

difference between the client processor time for remote page

access a,ad for local page access, namely 1.3 milliseconds. A

processor cost of more than 1.3 milliseconds per request can be

expected from the estimation made earlier using LOCUS figures.

These measurements indicate the performance when file reading

and writing use explicit segment specification in the message and

ReceiveWithSegment and ReplyWithSegment. ltowever, a file

write can also be performed in a more basic Thoth-like way using

the Send-Receive-MoveFrom-Reply sequence. For a 512 byte

write, this costs 8.1 milliseconds; file reading is similar using
MoveTo. "lhus, the segment mechanism saves 3.5 milliseconds on

every page read and write operation, justifying this extension to

the message primitives.

R a n d o m P a g e - L e v e l Access

Elapsed Tune Network
Penalty

Processor Tkne

Operation

page read

page write

Local Remote Difference Client

1.31 5.56 4.25 3.89 2.50

1.31 5.60 4.29 3.89 2.58

Table 6-1: Page-Level File Access: 512 byte pages (times in milliseconds)

Server

3.28
3.32

The columns are to be interpreted according to the explanation

given for similarly labeled columns of Tables 5-1 and 5-2. Note

that the time to read or write a page using these primitives is

approximately 1.5 milliseconds more than the network penalty for

these operations.

There are several considerations that compensate for the cost of

remote operations being higher than local operations. (Some are

special eases of those described for simple message exchanges.)

First, the extra 4.2 millisecond time for remote operations is
relatively small compared to the time cost of the file system

operation itself. In particular, disk access time can be estimated at
20 milliseconds (assuming minimal seeking) and file system

processor time at 2.5 milliseconds. 4 This gives a local file read

time of 23.8 milliseconds and a remote time of 28.1 milliseconds,

making the cost of the remote operation 18 percent more than the

local operation.

This comparison assumes that a local file system workstation is

the same speed as a dedicated file server. In reality, a shared file
server is often faster because of the faster disks and more memory

for disk caching that come with economy of scale. If the average
disk access time for a file server is 4.3 milliseconds less than the

average kx?al disk access time (or better), there is no time penalty

(and possibly some advantage) for remote file operations.

Second, remote file access offloads the workstation processor if

the file system processing overhead per request is greater the

4This is based oct measurements of LOCUS [Ill that give 6.2 and ,13 milli~-con~ u
processor time oost.s for 512-byte file read and write operations resl~vely on a PDP-
11/45, which i= roughly half the =peer of the 10 MIIz Motorola 68000 processor u~ l in
the SUN v~t=tatJo..

6.2. Sequential File Access
Sequential file access is the predominant pattern for file activity
in most systems. Efficient file systems exploit this behavior to

reduce the effect of disk latency by prefetching file pages (read-

ahead) and asynchronously storing modified pages (write-

behind). File access and file transfer protocols typically

implement streaming to reduce the effect of network latency on

sequential file access.

Using the V kernel message communication between a

workstation and a file se~er, the file server can implement read-

ahead and write-behind to reduce the effect of disk latency.

However, there is no streaming in the network IPC to deal with

network latency.

Two factors suggest that streaming can be done without in a local

network environment. First, local networks have a low latency as

a consequence of their high speed and low delay. Second,

although V kernel IPC is logically synchronous, significant
concurrency arises in the network implementation, further

reducing the effects of network latencies. The presenoe of

streaming adds a significant cost to the protocol in terms of buffer

space, copying time and complexity of code. Moreover, buffering

effectively puts a disk cache on the workstation, thus raising

problems of cache consistency between the different workstations

and the tile server.

To get a realistic measure of sequential file access performance,

we modified the test program used for measuring page read times

by the addition of a delay in the server process corresponding to

the disk latency. Because we assume the file server is doing read-

ahead operations, the delay is interposed between the reply to one

136

request and the receipt of the next requesL We contend that this

program closely approximates the performance of a workstation

sequentially reading a file as rapidly as possible from an otherwise

idle file server. The results are shown in Table 6-2

Sequential Page-Level Access

Disk latency Elapsed Time per Page Read

10 12.02
15 17.13

20 22.22

Table 6-2: Seq. File Access: 512 byte pages (times in msec.)

These results indicate that, for reasonable values of disk latency,

the elapsed time for sequential file access is within 10 to 15

percent from the minimum achievable (the disk latency). It
follows that a streaming protocol cannot improve on the

performance measured for V kernel file access by more than 15

percent.

Moreover, consider the two cases for the application, namely:

Reading faster than the disk latency and reading slower than the

disk latency. Suppose an application is reading file pages over the

network using a streaming protocol. If it is reading faster than the

disk can deliver, it will operate much like the V kernel model in

attempting to read a page not yet available, possibly requesting

this page from the file server, blocking waiting for the page,

having the page returned into the local page buffers, copying the

page into its application buffer and then continuing. Thus,

performance of a streaming file access implementation can be
expected to be similar to our results. For instance, comparing our

results with the LOCUS figures for remote sequential file access
with a disk latency of 15 milliseconds, the average elapsed time

per page is essentially equal to the LOCUS figure of 17.18
milliseconds.

If an application is reading pages sequentially slower than the

disk latency time, with say 20 milliseconds between every read

request, the page should be available locally on each read with a

streaming protocol. In this ease, the elapsed time for the read

should be 1.3 milliseconds compared to 5.6 milliseconds remotely.

However, because read operations occur at most every 20

milliseconds, the speedup by replacing non-streamed file access
with streamed file access is limited to 20 percent or less.

Moreover, a streaming protocol would introduce extra processing

overhead for copying and buffering readahead pages in this

circumstance. Assuming the application was reading slowly

because it was compute-bound between read operations, the

streaming protocol processing overhead would further slow down
the application From this analysis, it is clear that streaming has

limited potential for speedup over non-streamed file access when

pages are accessed from disk with the latencies we have discussed.

In most systems, sequential file access is used extensively for

program loading, llowever, program loading can be performed

more efficiently with the V kernel using MoveTo. It is therefore

not reliant on the performance figures of this section and is

discussed below.

6.3. Program Loading
Program loading differs as a file access activity from page-level

access in that the entire file containing the program (or most of it)
is to be transferred as quickly as possible into a waiting program

execution space. For instance, a simple command interpreter we

have written to run with the V kernel loads programs in two read

operations: the first read accesses the program header

information; the second read copies the program code and data

into the newly created program space. The time for the first read

is just the single block remote read time given earlier. The second

read, generally consisting of several tens of disk pages, uses

MoveTo to transfer the data. Because MoveTo requires that the

data be stored contiguously in memory, it is often convenient to

implement a large, read as multiple MoveTo operations. For

instance, our current VAX file server breaks large read and write
operations into MoveTo and MoveFrom operations of at most 4

kilobytes at a time. Table 6-3 gives the time for a 64 kilobyte
Read. (The elapsed time for file writing is basically the same as

for reading and has been omitted for the sake of brevity. Note

also that network penalty is not defined for multi-packet

transfers,) The transfer unit is the amount of data transferred per

MoveTo operation in satisfying the read request.

The times given for program loading using a 16 or 64 kilobyte

transfer unit corresponds to a data rate of about 192 kilobytes per

second, which is within 12 percent of the data rate we can achieve

on a SUN workstation by simply writing packets to the network

interface as rapidly as possible. Moreover, if the file server
retained copies of frequently used programs in memory, much as

Transfer unit Local

1 Kb 71.7

4 Kb 62.5
16 Kb 60.2

64 Kb 59.7

Program Loading

Elapsed Tune Network Processor T/me
Penalty

Remote Difference

518.3 446.5 434.5
368.4 305.8 *

344.6 284.3 *

335.4 275.1 *

Table 6-3:64 kilobyte Read (times in milliseconds)

Client Server

207.1 297.9

176.1 225.2

170.0 216.9
168.1 212.7

137

many current timesharing systems do, such program loading

could achieve the same performance given in the table.

independent of disk speed. Thus, we argue that MoveTo and

MoveFrom with large transfer units provide an efficient program

loading mechanism that is as fast as can be achieved with the
given hardware.

7. File Server Issues
File server performance is a critical issue for diskless

workstations. Unfortunately, we do not yet have experience with

a V kernel-based file server. Thus, this section describes what we
believe are the key issues and estimates performance without

providing conclusive data, In general, we view the processor as

the key resource to consider in file server performance because, as

argued earlier, the network bandwidth is plentiful and disk

scheduling and buffering issues are identical to those encountered

in conventional multi-user systems.

The number of workstations a file server can support can be

estimated from processor requirements. If we estimate page read

or write processing overhead as roughly 3.5 milliseconds for file

system processing (from LOCUS) plus 3.3 milliseconds for kernel

operation (from Table 6-1]), a page request costs about 7

milliseconds of processor time. Program loading appears to cost

about 300 milliseconds for an average 64 kilobyte program.

Estimating that 90 percent of the file requests are page requests,

the average request costs 36 milliseconds. Thus, a file server
based on the SUN workstation processor could support about 28

file requests a second From this we estimate that one file server

can serve about 10 workstations satisfactorily, but 30 or more

active workstations would lead to excessive delays. However, a

diskless workstatiotr system can easily be extended to handle
more workstations by adding more file server machines since the

network would not seem to be a bottleneck for less than 100

workstations.

For some programs, it is advantageous in terms of file server

processor requirements to execute the program on the file server,

rather than to load the program into a workstation and

subsequently field remote page requests from it. Large programs,

executing for a short time and doing a lot of file access while

executing are in this class, especially if they require only limited

interaction with the user.

On this basis, a file server should have a general program

execution facility and the ability to selectively execute certain

programs. The need for this execution facility is a further

argument for using a general interprocess communication

mechanism in place of a specialized page-level file access

protocol. With the V kernel, all inter-program communication

and interaction takes place through the IPC facility, including:

file access, argument passing, debugger control and termination

notification. Thus, execution of a program in the file server

rather than the client's workstation does not change the program's

execution environment nor the dient's interaction with the

program, i.e. it is transparent except for performance.

8. M e a s u r e m e n t s w i t h t h e 10 MbEthernet
Our limited access to a 10 Mb Ethernet has precluded basing our
measurements on this standard local network. However, some

preliminary figures using the 10 Mb Ethernet indicate the effect

of using a faster network and slightly faster network interfaces.

First, the remote message exchange time is 2.71 milliseconds

using an 8 MHz processor, roughly the time for the 10 MHz

processor on the 3 Mb network and .5 milliseconds better than

the 8 MHz processor on the 3 Mb network. Second, the page
read time is 5.72 milliseconds. Finally, the program loading time

is much improved, achieving 255 milliseconds for a 64 kilobyte

load using 16 Kb transfer units. We have not identified to what

degree the improvement is due to the faster network speed versus

the differences in the network interface.

9. Related Wo rk
There are a number of previous and concurrent efforts in

providing communication mechanisms for distributed systems.

For brevity, we compare our work with only a representative

sample that characterizes the search for, and evaluation of,

suitable models and implementations.

Spector's remote reference study [13] considered the feasibility of

implementing remote load and store operations over a local

network. Nelson's work on remote procedure ealis[10]

investigates network communication for procedure-based systems

analogous to what the V kernel provides for message-based

systems. Rashid and Robertson's Accent kernel [12] implements

a message system with a number of features such as non-blocking
message sending that are not provided by the V kernel. Finally,

LOCUS [11] integrates network communication into a UNIX-like

system in the form of transparent remote file access.

Our work has followed the pattern of Spector's and Nelson's work

in using a requesvresponse form of communication (in place of

streaming) and stripping away protocol layers for adequate

performance. However, we share Spector's concern about the
utility of an unprotected globally shared memory in a distributed

system, which is essentially the functionality provided by his

primitives. The V kernel provides a strong degree of separation

between processes and supports protected provision of services in

a multi-user, multi-workstation environment by limiting

interprocess communication to the kernel IPC primitives.

Our approach differs from Nelson's primarily in our use of a

separate interconnection mechanism from procedure calls,

namely messages, and some of the ensuing differences in

semantics. Fundamentally, the V kernel provides a base on which

to build a remote procedure call mechanism by the addition of

suitable compiler and run-time support. Under more detailed

examination, many slight differences appear that reflect long-

established differences in the construction o f procedure-based

138

versus message-based systems, although it is not clear these
differences result in any significant difference in overall
performance.

The V kernel performance is roughly comparable to that of the
software implementations developed by Spector and Nelson,
allowing for the non-trivial differences in operation semantics and
host processors. We would hypothesize that V kernel
performance could be improved by a factor of 30 using
microcode, similar to the improvement observed by Spector and
Nelson for their primitives. Unfortunately, neither Spector nor
Nelson provides results that afford a comparison with our file
access results. In general, their work has concentrated on the
speed of the basic mechanism and has not been extended to
measure performance in a particular application setting.

In comparison to Accent, the V kernel provides a primitive form
of message communication, and benefits accordingly in terms of
speed, small code size and ability to run well on an inexpensive
machine S without disk or microcode support. For instance,
Accent messages require an underlying transport protocol for
reliable delivery because there is no client-level reply message
associated with every Send as in the V kernel. We do not at this
time have performance figures for Accent.

LOCUS does not attempt to provide applications with general
network interprocess communication but exploits carefully honed
problem-oriented protocols for efficient remote file access. It is
difficult to compare the two systems from measurements available
given the differences in network speeds, processor speeds and
measurement techniques. However, from the. specific
comparisons with LOCUS presented earlier, we would expect
overall file access performance for the V kernel to be comparable
to LOCUS running on the same machines and network.

However. the memory requirements for the V kernel are about
half that of LOCUS compiled for the PDP-11 and probably more
like one fourth when LOCUS is compiled for a 32-bit processor
like the 68000. Thus. for graphics workstations or process control
applications, for instance, the V kernel would be more attractive
because of its smaller size, real-time orientation and its provision
of general interprocess communication. However, the V kernel
does not provide all the functionality of the LOCUS kernel which
includes that of the UNIX kernel and more. When required with
V, these additional facilities must be provided by server processes
executing either on client workstations or network server
machines.

10. Conclusions
We conclude that it is feasible to build a distributed system using
disidess workstations connected by a high-speed local network to
one or more file servers using the V kernel IPC. In particular, the
performance study shows that V kernel IPC provides satisfactory

$A dlskles SUN workstation Is much Icu than the cost ofa PERQ.

performance despite its generality, lk'cause the performance is so.
close to the lower bound given by the network penalty, there is
relatively little room for improvement on the V IPC for the given
hardware regardless of protocol and implementation used.

The efficiency of file access using the V IPC suggests that it can
not only replace page-level file access protocols but also file
transfer and remote terminal protocols, thereby reducing the
number of protocols needed. We claim that V kernel IPC is
adequate as a transport level for all our local network
communication providing each machine runs the V kernel or at
least handles the interkernei protocol. We do, however, see a
place for these specific protocols in internetworidng situations.

In addition to quantifying the elapsed time for various operations,
our study points out the importance of considering processor
requirements in the design of distributed systems. More
experience and measurement of file server load and workstation
file access behavior is required to decide whether file server
processing is a significant problem in using disldess workstations.

The V kernel has been in use with the diskless SUN workstations,
providing local and remote interprocess communication, since
September 1982. It is currently 38 kilobytes including code, data
and stack. The major use of the network interproce~
communication is for accessing remote files. Our file servers are

currently 6 VAX/UNIX systems running a kernel simulator and
file server program which provides access to UNIX system
services over the Ethernet using interkernd packets. A simple
command interpreter program allows programs to be loaded and
run on the workstations using these UNIX servers. Our
experience with this software to date supports the conclusions of
the performance study that we can indeed build our next
generation of computing facilities [8] using disldess workstations
and the V kernel.

Acknowledgements
We are indebted to all the members of the V research group at
Stanford, which at this point includes two faculty members a n d
roughly ten graduate students. In particular, we wish to thank
Keith Lantz for his patient comments on a seemingly endless

sequence of drafts and Tim Mann for his many contributions to
the design and the implementation of the kernel. We would also
like to thank the referees whose comments and suggestions
helped to enhance the clarity of the paper.

References

1. F. Baskett, J.H. Howard and].T. Montague. Task
Communication in DEMOS. Proceedings of the 6th Symposium
on Operating System Principles, ACM. November. 1977, pp. 23-
31. Published as Operating Systems Review 11(5).

2. A. Beehtolsheim, F. Baskett, V. Pratt. The SUN Workstation
Architecture. Tcch. Rept. 229, Computer Systems laboratory.
Stanford University, March. 1982.

139

3. D.R. C'heriton, MA. Malcolm, LS. Melen and G.R. Sager.
"Thoth, a Portable Real-time Operating System." Comnt ACM
22, 2 (February 1979), 105-115.

4. D.R. Cheriton. Distributed 1/O using an Object-based
Protocol. Tech. Rept 81-1, Computer Science, University of
British Columbia, 1981.

5. D.R. Chefiton. The Thoth System: Multi-process Structuring
and Portability. American Elsevier, 1982.

6. D.R. Cheriton, T.P. Mann and W. Zwaenepoel. V-System:
Kernel Manual. Computer Systems Laboratory, Stanford
University

7. Digital Equipment Corporation, Intel Corporation and Xerox
Corporation. The F.lhernet: A Local Area Network - Data Link
Layer and Physical Layer Specifications, Version 1.0.

8. K.A. Lantz, D.R. Cheriton and W.I. Nowicki. Third
Generation Graphics for Distributed Systems. Tech. Rept
STAN-CS-82-958, Department of Computer Science, Stanford
University, February, 1983. To appear in ACM Transactions on
Graphics

9. R.M. Metcalfe and D.R. Boggs. "Ethernet: Distributed Packet
Switching for Local Computer Networks." Comm. ACM 19, 7
(July 1976), 395-404. Also CSL-75-7, Xerox Palo Alto Research
Center, reprinted in CSL-80-2.

I0. B.J. Nelson. Remote Procedure Call. Ph.D. Th., Carnegie-
Mellon U., 1981. published as CMU technical report CMU-CS-
81-119

II. G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline,
G.Rudisin, G. ThieL LOCUS: A Network Transparent, High
Reliability Distributed System. Proceedings of the 8th
Symposium on Operating Systems Principles, ACM,
December, 1981, pp. 169-177.

12. R. Rashid and G. Robertson. Accent: A Communication
Oriented Network Operating System Kernel. Proceedings of the
8th Symposium on Operating Systems Principles, ACM,
December, 1981, pp. 64-75.

13. A. Speaor. "Performing Remote Operations Efficiently on a
Local Computer Network." Comm. ACM 25, 4 (April 1982), 246-
260.

14. D. Swinehart, G. McDaniel and D. Boggs. VCFS: A Simple
Shared File System for a Distributed Environment Proceedings
of the 7th Symposium on Operating Systems Principles, ACM,
December, 1979, pp. 9-17.

140

