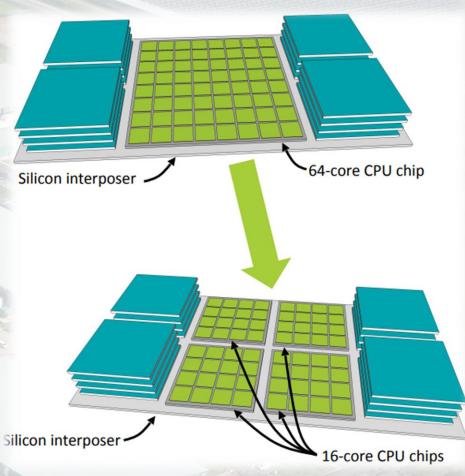
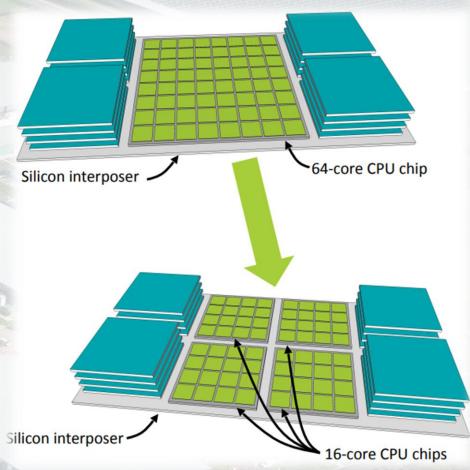
What Can Chiplets Bring to Multi-Tenant Clouds?

Jiechen Zhao

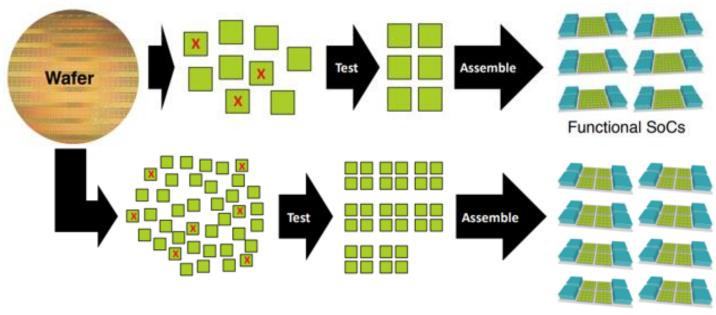
Natalie Enright Jerger


Mingyu Gao



> Purposes Enabling cost-efficient services > performance/TCO ≻100s millions USD Decarbonizing datacenters > J/bit or J/operation > Up to ~100MW Chiplet-based design philosophy >Outline of this talk

Purposes
 Enabling cost-efficient services
 Decarbonizing datacenters
 Chiplet-based design philosophy
 Smaller die sizes
 Chip disaggregation
 Outline of this talk

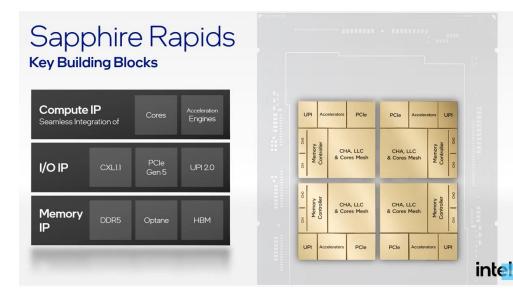

> Purposes Enabling cost-efficient services Decarbonizing datacenters Chiplet-based design philosophy ➤Smaller die sizes Chip disaggregation ➢Outline of this talk Chiplets for cloud hardware Chiplets for multi-tenant clouds > Memory, interconnect in server designs Isolation/security management in system designs

Why Chiplets for the Cloud?

Silicon out of steam

- > 15% per year [David Brooks]
- 7nm development prohibitively cost
- Smaller dies -> lower manufacturing cost

More Functional SoCs

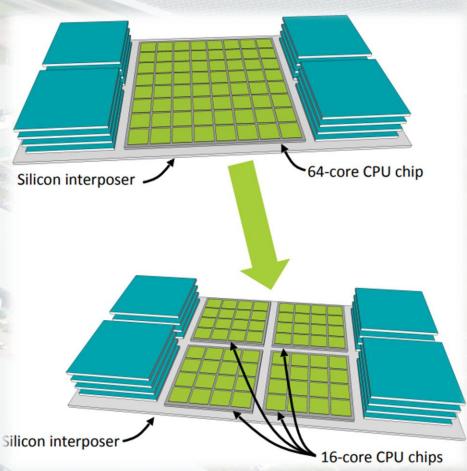

Why Chiplets for the Cloud?

Silicon out of steam

Smaller dies -> lower manufacturing cost

Challenges in heterogeneous SoCs

Chip disaggregation -> lower design cost

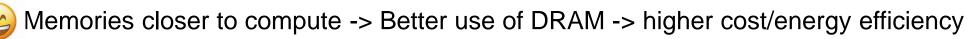


Chiplets allow design reuse and decoupled developments for various IPs!

Purposes >Enabling cost-efficient services Decarbonizing datacenters Chiplet-based design philosophy >Smaller die sizes >Chip disaggregation >Outline of this talk Chiplets for cloud hardware

- Chiplets for multi-tenant clouds
 - Memory, interconnect in server designs
 - Isolation/security management in system designs

Conclusion: Why Chiplets for the Cloud?


Silicon out of steam

Smaller dies -> lower manufacturing cost

Challenges in heterogeneous SoCs

Chip disaggregation -> lower design cost

High-speed and flexible interconnects -> Lower communication cost

Importance of Memory Integration

Experiment settings for tail latency V.S. throughput

- ≻256 tenants
- Independent Poisson request distribution
- >Our configuration: Assume memory bandwidth is infinite

Memory access paths

- Green path: On-board DRAM as a cache -> perf.
- Purple path: Host DRAM access -> perf.

Tenants contend for

On-board memory (B/W, capacityPCIe bandwidth

Need: Integrated memories closer to where data is consumed

S

Baseline configuration

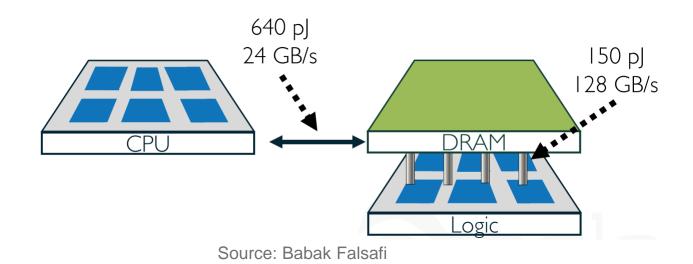
Soc

SmartNIC

RMA regs

PCle

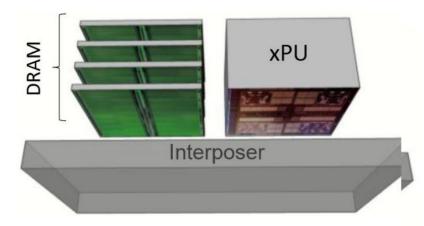
Host CPU

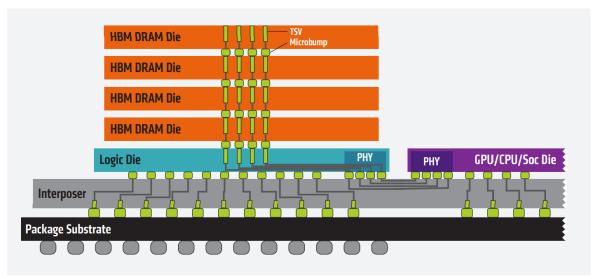

DMA

Engine

NIC

Memories "Closer" to Heterogeneous Compute

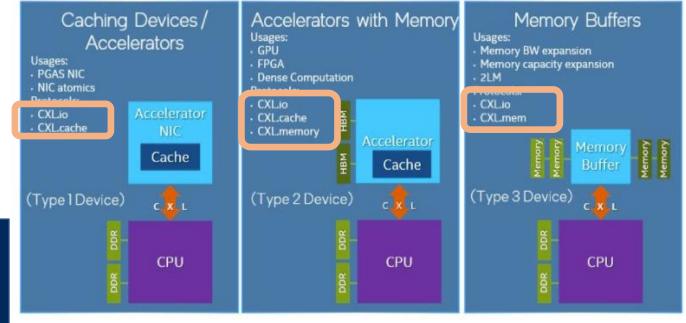

Data access much more expensive than arithmetic operation


Memories "Closer" to Heterogeneous Compute

Data access much more expensive than arithmetic operation

"Closer" means ≻Shorter but wider signals

INTERPOSER STACKING (2.5D)



Memories "Closer" to Heterogeneous Compute

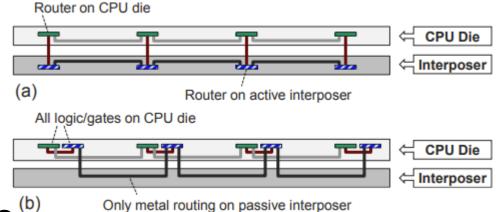
Data access much more expensive than arithmetic operation

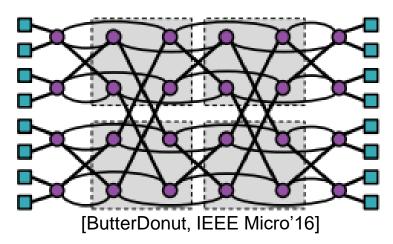
"Closer" means
> Shorter but wider signals
> Coherent data sharing
> Memory hierarchy integration

Integrate compute devices in the memory hierarchy is a key

Source: CXL

Flexible and High-Speed Interconnect


Communication patterns in the server is getting more complex


Localize short communication on-chiplet
 Customize inter-chiplet interconnects

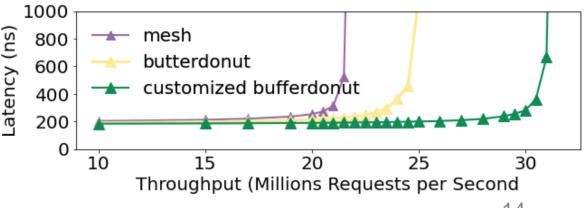
Interposer offers additional routing logics^(b)

≻Metal layers, passive/active

[ButterDonut, IEEE Micro'16]: Customize interconnects for high memory bandwidth

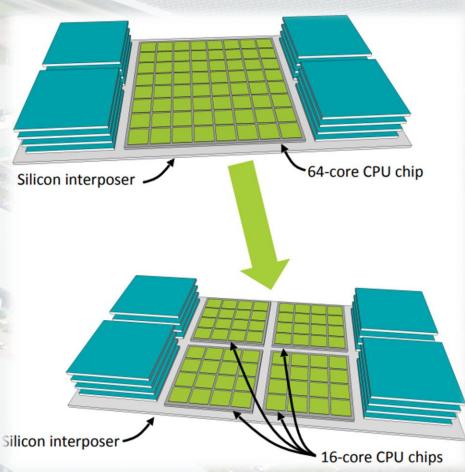
Flexible and High-Speed Interconnect

Experiment settings for latency V.S. interconnect throughput


16 compute dies, each with 16 cores, 1 I/O die connecting Ethernet fabrics
 Each chiplet has an interposer router, 16 interposer routers as a ButterDonut
 256 tenants

Independent Poisson request distribution

Bottleneck of ButterDonut for in-memory workloads


>Ingress/egress traffic between the I/O die and compute dies

Aa separate fat-tree interconnect (g) ->1.5x improvement

Purposes >Enabling cost-efficient services Decarbonizing datacenters Chiplet-based design philosophy >Smaller die sizes >Chip disaggregation >Outline of this talk Chiplets for cloud hardware Chiplets for multi-tenant clouds Memory, interconnect in server designs

Isolation/security management in system designs

Why Chiplets for the Cloud?

Silicon out of steam

Smaller dies -> lower manufacturing cost

Challenges in heterogeneous SoCs

Chip disaggregation -> lower design cost

Memories closer to compute -> Better use of DRAM -> higher cost/energy efficiency

High-speed and flexible interconnects -> Lower communication cost

Oulti-tenancy challenges workload isolation and security issues

Chiplets provide natural and physical isolation

Chiplets as A New Dimension of Isolation

First-class constraints in multi-tenancy

Workload isolationSecurity guarantees

ONE OCCUPANT

MULTIPLE OCCUPANTS

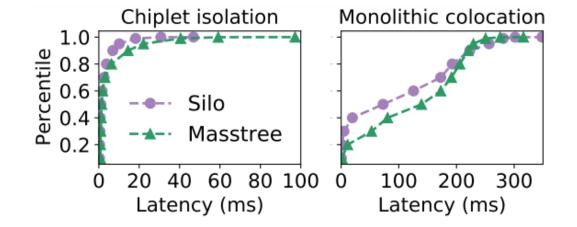
Tenant1 Tenant2 Tenant1 Tenant2 Tenant1 Tenant2 App App App App OS OS OS OS VM VМ VM VM Hardware Hardware Chiplet2 Chiplet1 **Chiplet-aware** Multi-tenant model Single-tenant model Multi-tenant model Isolation Elasticity Elasticity AA Transparency Elasticity Transparency Isolation Transparency Isolation

Chiplets as A New Dimension of Isolation

Experiment settings
Workloads: Silo, Masstree
Baseline configuration

Silo + Masstree co-location
40-core, 28MB LLC

Chiplet-based configuration


Silo on chiplet1, Masstree on chiplet2
Each chiplet: 20-core, 14MB LLC

Benefits result from

Interference removed b

>Cache less overprovisioned

Faster instruction supp

Simple chiplet-workload mapping can compromise management complexities

Blindly increasing one type of resource does not help if interference still exists

Chiplets as A New Dimension of Isolation

To isolate resources for security

- ➢OS- and hardware level mechanisms not sufficient for security [Bolt, IEEE Micro'18]
- >Chiplets can isolate previously shared microarchitecture states

Conclusion: Chiplets for the Cloud?

Silicon out of steam

Smaller dies -> lower manufacturing cost

Challenges in heterogeneous SoCs

Chip disaggregation -> lower design cost

Memories closer to compute -> Better use of DRAM -> higher cost/energy efficiency

High-speed and flexible interconnects -> Lower communication cost

Oulti-tenancy challenges workload isolation and security issues

Chiplets provide natural and physical isolation

Thank you!

Jiechen Zhao

Natalie Enright Jerger

Mingyu Gao

