
Altocumulus:
Scalable Scheduling for
Nanosecond-Scale
Remote Procedure Calls

Jiechen Zhao, Iris Uwizeyimana, Karthik Ganesan,

Mark C. Jeffrey, Natalie Enright Jerger

1
55th IEEE/ACM International Symposium on Microarchitecture (MICRO), Chicago, Oct. 2022

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

▪ RPC processing time has decreased down to microsecond scale

▪ Therefore, bottleneck has shifted to scheduling

▪ Prior RPC schedulers react to imbalance ineffectively, causing

▪ High tail latency at medium load

▪ Low CPU utilization while satisfying strict tail latency deadline

▪ Altocumulus: Proactively rebalances RPC loads using HW/SW co-design

▪ Achieves up to 24x throughput improvement under microsecond scale tail

latency deadline over state-of-the art

2

Executive Summary

RPCs become ubiquitous in datacenters

▪ Productivity improvement

▪ As a common communication API

▪ Harmonizing distributed services developed by different programming languages

▪ Vast deployment

▪ As the backbone of many latency-critical applications (KVS, SMR, RDMA, etc.)

▪Massive amount

▪ Each request involving 10s - 1,000s RPCs

3

RPC Handling – Perf. Critical !

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

4

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

▪ User-perceived latency determined by slowest back-end server node

5Fig. from [Kaffes et al., NSDI’19]

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

▪ User-perceived latency determined by slowest back-end server node

6Fig. from [Kaffes et al., NSDI’19]

Why on-CPU RPC

handling counts ?

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

7Fig. from [Lazarev et al., ASPLOS’21]

Why on-CPU RPC

handling counts ?

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

8Fig. from [Lazarev et al., ASPLOS’21]

Why on-CPU RPC

handling counts ?

Taking up to ~90% of

end-to-end time

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

▪ “Killer microsecond” problem [Barroso et al., CACM’17]

▪ Existing systems not able to handle microsecond-scale RPCs efficiently

9

What’s worse …

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

▪ “Killer microsecond” problem [Barroso et al., CACM’17]

▪Microservice queuing propagation

▪ Each server receiving/sending RPCs whose delay varies

10

What’s even worse …
µ

µ

µ

µ

µ

µ

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

▪ “Killer microsecond” problem [Barroso et al., CACM’17]

▪Microservice queuing propagation

▪ Each server receiving/sending RPCs whose delay varies

11

What’s even worse …
µ

µ

µ

µ

µ

µ

RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

▪ “Killer microsecond” problem [Barroso et al., CACM’17]

▪Microservice queuing propagation

▪ Each server receiving/sending RPCs whose delay varies

12

On-CPU RPC handling SLO

~= 10s microsecond µ
µ

µ

µ

µ

µ

RPC Lifetime on a CPU

▪ Processing

13

Application

RPC layer

Transport

DC Network

RPC Lifetime on a CPU

▪ Processing

14

Application

RPC layer

Transport

DC Network

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

15

Application

RPC layer

Transport

DC Network

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

▪ RPC layer

▪ Software hardware (10s ns)

16

Application

RPC layer

Transport

DC Network

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

▪ RPC layer

▪ Software hardware (10s ns)

17

Application

RPC layer

Transport

DC Network

Payload
Deserialization

Dispatch

Header parsing

Payload
Serialization

Header
creation

Application

Transport

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

▪ RPC layer

▪ Software hardware (10s ns)

18

Application

RPC layer

Transport

DC Network

Payload
Deserialization

Dispatch

Header parsing

Payload
Serialization

Header
creation

Application

Transport

Prior art on accelerating RPC layer

[Pourhabibi et al., ASPLOS’20]

[Pourhabibi et al., MICRO’21]

[Karandikar et al., MICRO’21]

[Lazarev et al., ASPLOS’21]

[Wolnikowski et al., HotOS’21]

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

▪ RPC layer

▪ Software hardware (10s ns)

▪ Transport

▪ TCP/IP optimization (100s ns)

19

Application

RPC layer

Transport

DC Network

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

▪ RPC layer

▪ Software hardware (10s ns)

▪ Transport

▪ TCP/IP optimization (100s ns)

▪ Scheduling ?

20

Application

RPC layer

Transport

DC Network

User scheduler

Kernel scheduler

NIC scheduler

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

▪ RPC layer

▪ Software hardware (10s ns)

▪ Transport

▪ TCP/IP optimization (100s ns)

▪ Scheduling ?

21

Application

RPC layer

Transport

DC Network

User scheduler

Kernel scheduler

NIC scheduler

Nanosecond scale

RPC Lifetime on a CPU

▪ Processing

▪ Application

▪ monolithic microservices (10s ns – 10s µs)

▪ RPC layer

▪ Software hardware (10s ns)

▪ Transport

▪ TCP/IP optimization (100s ns)

▪ Scheduling ?

22

Application

RPC layer

Transport

DC Network

User scheduler

Kernel scheduler

NIC scheduler

Now, Nanosecond scale

Now, impact on SLO ?

RPC Lifetime on a CPU: New Trends

▪With prior work reducing the processing latency of RPCs …

23

Latency (microsecond)0 25

TCP/IP [IX, OSDI’14]

eRPC [NSDI’19]

nanoRPC

[nanoPU, OSDI’21]

[Cerebros, MICRO’21]

~2x scheduling overhead

~10x scheduling overhead

Processing Scheduling (Work Stealing)

RPC Lifetime on a CPU: New Trends

▪With prior work reducing the processing latency of RPCs …

24

Latency (microsecond)0 25

TCP/IP [IX, OSDI’14]

eRPC [NSDI’19]

nanoRPC

[nanoPU, OSDI’21]

[Cerebros, MICRO’21]

~2x scheduling overhead

~10x scheduling overhead

Processing Scheduling (Work Stealing)

RPC Lifetime on a CPU: New Trends

▪With prior work reducing the processing latency of RPCs …

25

Latency (microsecond)0 25

TCP/IP [IX, OSDI’14]

eRPC [NSDI’19]

nanoRPC

[nanoPU, OSDI’21]

[Cerebros, MICRO’21]

~2x scheduling overhead

~10x scheduling overhead

Processing Scheduling (Work Stealing)

RPC Lifetime on a CPU: New Trends

▪With prior work reducing the processing latency of RPCs …

26

Latency (microsecond)0 25

TCP/IP [IX, OSDI’14]

eRPC [NSDI’19]

nanoRPC

[nanoPU, OSDI’21]

[Cerebros, MICRO’21]

~2x scheduling overhead

~10x scheduling overhead

Processing Scheduling (Work Stealing)

RPC Lifetime on a CPU: New Trends

▪With prior work reducing the processing latency of RPCs …

27

Latency (microsecond)0 25

TCP/IP [IX, OSDI’14]

eRPC [NSDI’19]

nanoRPC

[nanoPU, OSDI’21]

[Cerebros, MICRO’21]

~2x scheduling overhead

~10x scheduling overhead

Processing Scheduling (Work Stealing)

RPC Lifetime on a CPU: New Trends

▪With prior work reducing the processing latency of RPCs …

28

Latency (microsecond)0 25

TCP/IP [IX, OSDI’14]

eRPC [NSDI’19]

nanoRPC

[nanoPU, OSDI’21]

[Cerebros, MICRO’21]

~2x scheduling overhead

~10x scheduling overhead

Processing Scheduling (Work Stealing)

Performance bottleneck shifted from RPC processing to RPC scheduling

Key Questions

How fast should RPC scheduling be?

29

Minimize SLO violations

How many RPCs a server can sustain w/o violating SLO ?

Maximize RPC throughput@SLO

How well cores can be utilized ?

Be scalable to manycore CPUs (16 – 256 cores)

Design Goals

30

Strict SLO
(99th% latency@μs)

High CPU efficiency
(16-256 cores)

Reconcile the trade-off among

High volume of requests
(400+ Gbps)

Technical design goal: <50ns scheduling overhead --- near-ideal !

Abstracting RPC Scheduling Sub-System

31

Policy

Runtime

Mechanism

When, What, Where to schedule

How to schedule

Schedule scalably and adaptively

Bottlenecks in Prior RPC Schedulers

32

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Bottlenecks in Prior RPC Schedulers

33

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Bottlenecks in Prior RPC Schedulers

34

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Bottlenecks in Prior RPC Schedulers

35

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Bottlenecks in Prior RPC Schedulers

36

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Bottlenecks in Prior RPC Schedulers

37

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Bottlenecks in Prior RPC Schedulers

38

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Bottlenecks in Prior RPC Schedulers

39

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Load Imbalance

Bottlenecks in Prior RPC Schedulers

40

IX
[Belay et al., OSDI’14]

Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling
(RSS)

Queues

Cores

Load Imbalance

• SLO: Not Met

• Throughput: Low

• Core Utilization: Bad

Bottlenecks in Prior RPC Schedulers

41

ZygOS
[Prekas et al., SOSP’17]

Work stealing

Shared mem.

d-FCFS runtime

▪D-FCFS + work stealing

Receive Side Scaling
(RSS)

Queues

Cores

Work stealing

Bottlenecks in Prior RPC Schedulers

42

ZygOS
[Prekas et al., SOSP’17]

Work stealing

Shared mem.

d-FCFS runtime

▪D-FCFS + work stealing

Receive Side Scaling
(RSS)

Queues

Cores

Work stealing

Bottlenecks in Prior RPC Schedulers

43

ZygOS
[Prekas et al., SOSP’17]

Work stealing

Shared mem.

d-FCFS runtime

▪D-FCFS + work stealing

Receive Side Scaling
(RSS)

Queues

Cores

Work stealingReactive – too late

• Core Utilization: Good

• SLO: Not Met

SLO unaware

Bottlenecks in Prior RPC Schedulers

44

ZygOS
[Prekas et al., SOSP’17]

Work stealing

Shared mem.

d-FCFS runtime

▪D-FCFS + work stealing

Receive Side Scaling
(RSS)

Queues

Cores

Work stealingReactive – too late

• Core Utilization: Good

• SLO: Not Met

• Throughput: Medium

SLO unaware Slow steal

Bottlenecks in Prior RPC Schedulers

45

Shinjuku
[Kaffes et al., NSDI’19]

Preemption

Shared mem.

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

Bottlenecks in Prior RPC Schedulers

46

Shinjuku
[Kaffes et al., NSDI’19]

Preemption

Shared mem.

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

• SLO: Met

• Throughput: High

• Core Utilization: Good

Bottlenecks in Prior RPC Schedulers

47

Shinjuku
[Kaffes et al., NSDI’19]

Preemption

Shared mem.

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

Scheduling core - Bottleneck

• SLO: Met

• Throughput: High

• Core Utilization: Good

Bottlenecks in Prior RPC Schedulers

48

Shinjuku
[Kaffes et al., NSDI’19]

Preemption

Shared mem.

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

Scheduling core - Bottleneck

• SLO: Not Met

• Throughput: Low

• Core Utilization: Bad

Bottlenecks in Prior RPC Schedulers

49

Shinjuku
[Kaffes et al., NSDI’19]

Preemption

Shared mem.

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

• SLO: Not Met

• Throughput: Low

• Core Utilization: Bad

Hard to scale

Scheduling core - Bottleneck

Bottlenecks in Prior RPC Schedulers

50

Nebula
[Sutherland et al., ISCA’20]

JBSQ algorithm

Cache coherence

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

Bottlenecks in Prior RPC Schedulers

51

Nebula
[Sutherland et al., ISCA’20]

JBSQ algorithm

Cache coherence

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

• SLO: Met

• Throughput: High

• Core Utilization: Good

Bottlenecks in Prior RPC Schedulers

52

Nebula
[Sutherland et al., ISCA’20]

JBSQ algorithm

Cache coherence

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

Coherence inscalability

Fixed scheduling algorithm

Bottlenecks in Prior RPC Schedulers

53

Nebula
[Sutherland et al., ISCA’20]

JBSQ algorithm

Cache coherence

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

• SLO: Not Met

• Throughput: Low

• Core Utilization: Bad

Coherence inscalability

Fixed scheduling algorithm

Bottlenecks in Prior RPC Schedulers

54

Nebula
[Sutherland et al., ISCA’20]

JBSQ algorithm

Cache coherence

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

• SLO: Not Met

• Throughput: Low

• Core Utilization: Bad

Coherence inscalability

Fixed scheduling algorithm Hard to scale

Design Challenges: Summary

55

Mechanism

Scheduling Sub-system
Abstraction

Challenge 1: SLO-unaware, reactive or not adaptive

Runtime

Policy

Design Challenges: Summary

56

Mechanism

Scheduling Sub-system
Abstraction

Challenge 1: SLO-unaware, reactive or not adaptive

Challenge 2: far from 50ns (s/w) or not scalable (h/w)

Runtime

Policy

Design Challenges: Summary

57

Mechanism

Scheduling Sub-system
Abstraction

Challenge 1: SLO-unaware, reactive or not adaptive

Challenge 2: far from 50ns (s/w) or not scalable (h/w)

Challenge 3: Centralized runtime not scalable
Runtime

Policy

Design Challenges: Summary

58

Mechanism

Scheduling Sub-system
Abstraction

Challenge 1: SLO-unaware, reactive or not adaptive

Challenge 2: far from 50ns (s/w) or not scalable (h/w)

Challenge 3: Centralized runtime not scalable

Challenge 4: Hardware runtime not adaptive
Runtime

Policy

Altocumulus: High-Level Perspective

59

Kernel-native

Shared mem.

IX
[Belay et al., OSDI’14]

d-FCFS runtime

Work stealing

Shared mem.

ZygOS
[Prekas et al., SOSP’17]

d-FCFS runtime

Preemption

Shared mem.

Shinjuku
[Kaffes et al., NSDI’19]

c-FCFS runtime

JBSQ algorithm

Cache coherence

Nebula
[Sutherland et al., ISCA’20]

c-FCFS runtime

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

Altocumulus: High-Level Perspective

60

Kernel-native

Shared mem.

IX
[Belay et al., OSDI’14]

d-FCFS runtime

Work stealing

Shared mem.

ZygOS
[Prekas et al., SOSP’17]

d-FCFS runtime

Preemption

Shared mem.

Shinjuku
[Kaffes et al., NSDI’19]

c-FCFS runtime

JBSQ algorithm

Cache coherence

Nebula
[Sutherland et al., ISCA’20]

c-FCFS runtime

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

S/W

H/W

S/W

H/W

S/W

H/W

S/W

H/W

S/W

H/W

Altocumulus: High-Level Perspective

61

Kernel-native

Shared mem.

IX
[Belay et al., OSDI’14]

d-FCFS runtime

Work stealing

Shared mem.

ZygOS
[Prekas et al., SOSP’17]

d-FCFS runtime

Preemption

Shared mem.

Shinjuku
[Kaffes et al., NSDI’19]

c-FCFS runtime

JBSQ algorithm

Cache coherence

Nebula
[Sutherland et al., ISCA’20]

c-FCFS runtime

JBSQ algorithm

Direct register

c-FCFS runtime

nanoPU
[Ibanez et al., OSDI’21]

S/W

H/W

S/W

H/W

S/W

H/W

S/W

H/W

S/W

H/W

SLO prediction +
proactive migration

H/W primitives

Global d-FCFS
Local c-FCFS

Altocumulus

S/W

H/W

Altocumulus Architecture

62

Cores

Group 0 Group N

Per-Group
Manager Cores

Per-Group
Centralized
Queues

Server

▪Multi-tiered global D-FCFS local C-FCFS

▪ Each group: 1 queue + 1 manager (purple) +

several workers (green)

▪Multi-tiered global D-FCFS local C-FCFS

▪ Each group: 1 queue + 1 manager (purple) +

several workers (green)

▪ Proactive & hardware-assisted work

stealing across manager cores

63

Server

Altocumulus Architecture

Migrations

▪Multi-tiered global D-FCFS local C-FCFS

▪ Each group: 1 queue + 1 manager (purple) +

several workers (green)

▪ Proactive & hardware-assisted work

stealing across manager cores

▪Compatible with commodity multi-queue

NIC with RSS support

64

Server

Altocumulus Architecture

Migrations

Altocumulus System

65

Offline Model

Training

Migration

Prediction

Hardware

Primitives

Software

Hardware

OnlineOffline

Altocumulus System

66

Offline Model

Training

Migration

Prediction

Hardware

Primitives

Software

Hardware

OnlineOffline

Altocumulus System

67

Offline Model

Training

Migration

Prediction

Hardware

Primitives

Software

Hardware

OnlineOffline

Migration Prediction

68

1. Periodically synchronize system states across manager cores

2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)

Migration Prediction

69

1. Periodically synchronize system states

2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)

Heuristics: multi-queue load pattern classification

Migration Prediction

70

1. Periodically synchronize system states

2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)

5. Pass decisions to h/w primitives and trigger migration h/w messages

6. Repeat Step 1 (Period as short as 50ns due to messaging offloaded to h/w)

Heuristics: multi-queue load pattern classification

Migration Prediction

71

1. Periodically synchronize system states

2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)

5. Pass decisions to h/w primitives and trigger migration h/w messages

6. Repeat Step 1 (Period as short as 50ns due to messaging offloaded to h/w)

Heuristics: multi-queue load pattern classification

How we offload messaging to h/w ?

How we train SLO violation prediction model?

Hardware Primitives: Direct Register Messaging

72

▪ Register-to-register migration messaging, bypassing cache coherence protocol

▪ Inspired by [Sanchez et al., ASPLOS’10] & [Ibanez et al., OSDI’21] w/ several opt.

▪ Remain RPC message payload in LLC/memory -- Only move RPC descriptor

▪ Reduce latency overhead and traffic per migration (up to 140x)

▪ Each request being migrated at most once

▪ Avoid livelock and unnecessary scheduling traffic

▪ Batch multiple descriptors per message

▪ Improve hardware efficiency

Hardware Primitives: Direct Register Messaging

73

▪ Register-to-register migration messaging, bypassing cache coherence protocol

▪ Inspired by [Sanchez et al., ASPLOS’10] & [Ibanez et al., OSDI’21] w/ several opt.

▪ Remain RPC message payload in LLC/memory -- Only move RPC descriptor

▪ Reduce latency overhead and traffic per migration (up to 140x)

▪ Each request being migrated at most once

▪ Avoid livelock and unnecessary scheduling traffic

▪ Batch multiple descriptors per message

▪ Improve hardware efficiency

Hardware Primitives: Direct Register Messaging

74

▪ Register-to-register migration messaging, bypassing cache coherence protocol

▪ Inspired by [Sanchez et al., ASPLOS’10] & [Ibanez et al., OSDI’21] w/ several opt.

▪ Remain RPC message payload in LLC/memory -- Only move RPC descriptor

▪ Reduce latency overhead and traffic per migration (up to 140x)

▪ Each request being migrated at most once

▪ Avoid livelock and unnecessary scheduling traffic

▪ Batch multiple descriptors per message

▪ Improve hardware efficiency

Hardware Primitives: Direct Register Messaging

75

▪ Register-to-register migration messaging, bypassing cache coherence protocol

▪ Inspired by [Sanchez et al., ASPLOS’10] & [Ibanez et al., OSDI’21] w/ several opt.

▪ Remain RPC message payload in LLC/memory -- Only move RPC descriptor

▪ Reduce latency overhead and traffic per migration (up to 140x)

▪ Each request being migrated at most once

▪ Avoid livelock and unnecessary scheduling traffic

▪ Batch multiple descriptors per message

▪ Improve hardware efficiency

Migration Prediction

76

1. Periodically synchronize system states

2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)

5. Pass decisions to h/w primitives and trigger migration h/w messages

6. Repeat Step 1 (Period as short as 50ns due to messaging offloaded to h/w)

Heuristics: multi-queue load pattern classification

How we offload messaging to h/w ?

How we train SLO violation prediction model?

Offline Model Training

77

▪Determine a vector of SLO violation thresholds

▪ Use queuing theory assisted w/ simulation

▪Different threshold per:

▪ Load status

▪ Service time distribution

▪ Arrival pattern

▪ Number of cores

Per-Group Centralized Queues

Q0 Q1 Q2

Header

Tail

Predicted SLO
Violation Threshold

Q0 Q1 Q2

Offline Model Training

78

▪ Trade-off: Prediction accuracy V.S. migration effectiveness

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

Offline Model Training

79

▪ Trade-off: Prediction accuracy V.S. migration effectiveness

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value:

99th% latency <= 10 x average latency

Offline Model Training

80

▪ Trade-off: Prediction accuracy V.S. migration effectiveness

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value:

99th% latency <= 10 x average latency

Naive prediction approach:

Threshold = 10 x number of cores

Offline Model Training

81

▪ Trade-off: Prediction accuracy V.S. migration effectiveness

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

• Prediction accuracy per migration: 100%

• Effectiveness (Capture ? % of SLO violation): ~0%

A typical SLO value:

99th% latency <= 10 x average latency

Naive prediction approach:

Threshold = 10 x number of cores

Offline Model Training

82

▪ Trade-off: Prediction accuracy V.S. migration effectiveness

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value:

99th% latency <= 10 x average latency

Naive prediction approach:

Threshold = 10 x number of cores

Aggressive prediction approach:

Threshold = first SLO-violated queue length

A typical SLO value:

99th% latency <= 10 x average latency

Naive prediction approach:

Threshold = 10 x number of cores

Offline Model Training

83

▪ Trade-off: Prediction accuracy V.S. migration effectiveness

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value:

99th% latency <= 10 x average latency

Naive prediction approach:

Threshold = 10 x number of cores

Aggressive prediction approach:

Threshold = first SLO-violated queue length

• Prediction accuracy per migration: ~0%

• Effectiveness (Capture ? % of SLO violation): 100%

Offline Model Training

84

▪ Trade-off: Prediction accuracy V.S. migration effectiveness

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value:

99th% latency <= 10 x average latency

Naive prediction approach:

Threshold = 10 x number of cores

Aggressive prediction approach:

Threshold = first SLO-violated queue length

We characterize thresholds for all system states offline

& dynamically select threshold online

Methodology

▪ Baselines

▪ D-FCFS + work stealing system

▪ ZygOS [Prekas et al, SOSP’17]

▪ C-FCFS S/W based system

▪ Shinjuku [Kaffes et al, NSDI’19]

▪ C-FCFS H/W based system

▪ Nebula [Sutherland et al, ISCA’20]

▪ nanoPU [Ibanez et al, OSDI’21]

85

▪Altocumulus configuration (Simulation)

▪ Commodity RSS NIC +

S/W based local c-FCFS

▪ comparable with S/W baselines

▪ Integrated NIC +

H/W based local c-FCFS

▪ comparable with H/W baselines

Key Evaluation: Throughput @ SLO

86

Better

Key Evaluation: Throughput @ SLO

87

Better

Key Evaluation: Throughput @ SLO

88

Better

Key Evaluation: Throughput @ SLO

89

Better

Key Evaluation: Throughput @ SLO

90

Better

Key Evaluation: Throughput @ SLO

91

Better

▪ Outperform S/W solutions (ZygOS, Shinjuku) by up to 24x under 10 microsecond SLO

Key Evaluation: Throughput @ SLO

92

▪ Outperform S/W solutions (ZygOS, Shinjuku) by up to 24x under 10 microsecond SLO

Key Evaluation: Throughput @ SLO

93

▪ Outperform S/W solutions (ZygOS, Shinjuku) by up to 24x under 10 microsecond SLO

▪ Has comparable throughput to highly-optimized H/W runtimes (Nebula & nanoPU)

Key Evaluation: Scalability

94

Better

Key Evaluation: Scalability

95

BetterBetter

Key Evaluation: Scalability

96

Better

Key Evaluation: Scalability

97

Better

Key Evaluation: Scalability

98

Better

<0.001% SLO violation and achieve 161 MRPS, scalable to 256 cores

Key Evaluation: Scalability

99

Better

<0.001% SLO violation and achieve 161 MRPS, scalable to 256 cores

<5% SLO violation and achieve 216 MRPS, scalable to 256 cores

Key Evaluation: Scalability

100

Better Better

Key Evaluation: Scalability

101

Better Better

Achieve 161 MRPS while 99%th <= 5.57 us

Key Evaluation: Scalability

102

Better Better

Achieve 161 MRPS while 99%th <= 5.57 us

Achieve 216 MRPS while 99%th <= 15.41 us

Conclusions

103

Strict SLO
(99th% latency@μs)

High volume of requests
(400+ Gbps)

High CPU efficiency
(64-256 cores)

Altocumulus
Scheduling Sub-system

SLO violation prediction via queueing theory, proactive migrations

Efficient direct register messaging w/ minimal H/W overheads

S/W decentralized runtime with simple H/W primitives

Mechanism

MICRO-55, Altocumulus, https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

Runtime

Policy

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

Key Take-Aways

▪With RPC stack components getting more optimized, other system-level
components, e.g., scheduling, would become the future bottleneck

▪ Scheduling at 10s ns level is mandatory for μs-scale SLO, to achieve that

▪ Policy should be proactive and accurate/effective

▪ Mechanism should be fast enough

▪Carefully re-partitioning system stack between software or hardware can
open opportunities for scalability that existing systems

▪ Decentralized runtime preserves scalability

▪ Software runtime offers adaptivity to various load patterns

▪ Decentralized software runtime with minimal hardware overhead can reconcile design
trade-offs across low tail latency, high through and high utilization (scalability)

104
MICRO-55, Altocumulus, https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

Policy

Runtime

Mechanism

Altocumulus Stack

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

Thank you for your attention

Jiechen Zhao, Iris Uwizeyimana, Karthik Ganesan

Mark C. Jeffrey, Natalie Enright Jerger

10555th IEEE/ACM International Symposium on Microarchitecture (MICRO), Chicago, Oct. 2022
https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

	Slide 1: Altocumulus: Scalable Scheduling for Nanosecond-Scale Remote Procedure Calls
	Slide 2
	Slide 3: RPCs become ubiquitous in datacenters
	Slide 4: RPC Performance is Critical
	Slide 5: RPC Performance is Critical
	Slide 6: RPC Performance is Critical
	Slide 7: RPC Performance is Critical
	Slide 8: RPC Performance is Critical
	Slide 9: RPC Performance is Critical
	Slide 10: RPC Performance is Critical
	Slide 11: RPC Performance is Critical
	Slide 12: RPC Performance is Critical
	Slide 13: RPC Lifetime on a CPU
	Slide 14: RPC Lifetime on a CPU
	Slide 15: RPC Lifetime on a CPU
	Slide 16: RPC Lifetime on a CPU
	Slide 17: RPC Lifetime on a CPU
	Slide 18: RPC Lifetime on a CPU
	Slide 19: RPC Lifetime on a CPU
	Slide 20: RPC Lifetime on a CPU
	Slide 21: RPC Lifetime on a CPU
	Slide 22: RPC Lifetime on a CPU
	Slide 23: RPC Lifetime on a CPU: New Trends
	Slide 24: RPC Lifetime on a CPU: New Trends
	Slide 25: RPC Lifetime on a CPU: New Trends
	Slide 26: RPC Lifetime on a CPU: New Trends
	Slide 27: RPC Lifetime on a CPU: New Trends
	Slide 28: RPC Lifetime on a CPU: New Trends
	Slide 29: Key Questions
	Slide 30: Design Goals
	Slide 31: Abstracting RPC Scheduling Sub-System
	Slide 32: Bottlenecks in Prior RPC Schedulers
	Slide 33: Bottlenecks in Prior RPC Schedulers
	Slide 34: Bottlenecks in Prior RPC Schedulers
	Slide 35: Bottlenecks in Prior RPC Schedulers
	Slide 36: Bottlenecks in Prior RPC Schedulers
	Slide 37: Bottlenecks in Prior RPC Schedulers
	Slide 38: Bottlenecks in Prior RPC Schedulers
	Slide 39: Bottlenecks in Prior RPC Schedulers
	Slide 40: Bottlenecks in Prior RPC Schedulers
	Slide 41: Bottlenecks in Prior RPC Schedulers
	Slide 42: Bottlenecks in Prior RPC Schedulers
	Slide 43: Bottlenecks in Prior RPC Schedulers
	Slide 44: Bottlenecks in Prior RPC Schedulers
	Slide 45: Bottlenecks in Prior RPC Schedulers
	Slide 46: Bottlenecks in Prior RPC Schedulers
	Slide 47: Bottlenecks in Prior RPC Schedulers
	Slide 48: Bottlenecks in Prior RPC Schedulers
	Slide 49: Bottlenecks in Prior RPC Schedulers
	Slide 50: Bottlenecks in Prior RPC Schedulers
	Slide 51: Bottlenecks in Prior RPC Schedulers
	Slide 52: Bottlenecks in Prior RPC Schedulers
	Slide 53: Bottlenecks in Prior RPC Schedulers
	Slide 54: Bottlenecks in Prior RPC Schedulers
	Slide 55: Design Challenges: Summary
	Slide 56: Design Challenges: Summary
	Slide 57: Design Challenges: Summary
	Slide 58: Design Challenges: Summary
	Slide 59: Altocumulus: High-Level Perspective
	Slide 60: Altocumulus: High-Level Perspective
	Slide 61: Altocumulus: High-Level Perspective
	Slide 62: Altocumulus Architecture
	Slide 63: Altocumulus Architecture
	Slide 64: Altocumulus Architecture
	Slide 65: Altocumulus System
	Slide 66: Altocumulus System
	Slide 67: Altocumulus System
	Slide 68: Migration Prediction
	Slide 69: Migration Prediction
	Slide 70: Migration Prediction
	Slide 71: Migration Prediction
	Slide 72: Hardware Primitives: Direct Register Messaging
	Slide 73: Hardware Primitives: Direct Register Messaging
	Slide 74: Hardware Primitives: Direct Register Messaging
	Slide 75: Hardware Primitives: Direct Register Messaging
	Slide 76: Migration Prediction
	Slide 77: Offline Model Training
	Slide 78: Offline Model Training
	Slide 79: Offline Model Training
	Slide 80: Offline Model Training
	Slide 81: Offline Model Training
	Slide 82: Offline Model Training
	Slide 83: Offline Model Training
	Slide 84: Offline Model Training
	Slide 85: Methodology
	Slide 86: Key Evaluation: Throughput @ SLO
	Slide 87: Key Evaluation: Throughput @ SLO
	Slide 88: Key Evaluation: Throughput @ SLO
	Slide 89: Key Evaluation: Throughput @ SLO
	Slide 90: Key Evaluation: Throughput @ SLO
	Slide 91: Key Evaluation: Throughput @ SLO
	Slide 92: Key Evaluation: Throughput @ SLO
	Slide 93: Key Evaluation: Throughput @ SLO
	Slide 94: Key Evaluation: Scalability
	Slide 95: Key Evaluation: Scalability
	Slide 96: Key Evaluation: Scalability
	Slide 97: Key Evaluation: Scalability
	Slide 98: Key Evaluation: Scalability
	Slide 99: Key Evaluation: Scalability
	Slide 100: Key Evaluation: Scalability
	Slide 101: Key Evaluation: Scalability
	Slide 102: Key Evaluation: Scalability
	Slide 103: Conclusions
	Slide 104: Key Take-Aways
	Slide 105: Thank you for your attention

