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▪ RPC processing time has decreased down to microsecond scale

▪ Therefore, bottleneck has shifted to scheduling

▪ Prior RPC schedulers react to imbalance ineffectively, causing

▪ High tail latency at medium load

▪ Low CPU utilization while satisfying strict tail latency deadline

▪ Altocumulus: Proactively rebalances RPC loads using HW/SW co-design

▪ Achieves up to 24x throughput improvement under microsecond scale tail 

latency deadline over state-of-the art 
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Executive Summary



RPCs become ubiquitous in datacenters

▪ Productivity improvement

▪ As a common communication API

▪ Harmonizing distributed services developed by different programming languages

▪ Vast deployment

▪ As the backbone of many latency-critical applications (KVS, SMR, RDMA, etc.)

▪Massive amount 

▪ Each request involving 10s - 1,000s RPCs
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RPC Handling – Perf. Critical !



RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load
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Why on-CPU RPC 

handling counts ?

Taking up to ~90% of 

end-to-end time



RPC Performance is Critical

▪Many datacenter applications today are interactive

▪ Strict performance requirements as SLO: Low tail latency at high load

▪ “Tail-at-scale” problem [Dean et al., CACM’13]

▪ “Killer microsecond” problem [Barroso et al., CACM’17]

▪ Existing systems not able to handle microsecond-scale RPCs efficiently
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On-CPU RPC handling SLO 

~= 10s microsecond µ
µ

µ

µ

µ
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Application

RPC layer

Transport

DC Network

User scheduler

Kernel scheduler

NIC scheduler

Now, Nanosecond scale

Now, impact on SLO ?



RPC Lifetime on a CPU: New Trends

▪With prior work reducing the processing latency of RPCs … 
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Latency (microsecond)0 25

TCP/IP [IX, OSDI’14]

eRPC [NSDI’19]

nanoRPC 

[nanoPU, OSDI’21] 

[Cerebros, MICRO’21]

~2x scheduling overhead

~10x scheduling overhead

Processing Scheduling (Work Stealing)

Performance bottleneck shifted from RPC processing to RPC scheduling



Key Questions

How fast should RPC scheduling be?
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Minimize SLO violations

How many RPCs a server can sustain w/o violating SLO ?

Maximize RPC throughput@SLO

How well cores can be utilized ?

Be scalable to manycore CPUs (16 – 256 cores)



Design Goals
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Strict SLO     
(99th% latency@μs) 

High CPU efficiency 
(16-256 cores)

Reconcile the trade-off among

High volume of requests 
(400+ Gbps)

Technical design goal: <50ns scheduling overhead --- near-ideal !



Abstracting RPC Scheduling Sub-System
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Policy

Runtime

Mechanism

When, What, Where to schedule

How to schedule

Schedule scalably and adaptively



Bottlenecks in Prior RPC Schedulers
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IX                             
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Kernel-native

Shared mem.

d-FCFS runtime

▪Decentralized First Come First Serve (D-FCFS)

Receive Side Scaling 
(RSS)
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Cores
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• SLO: Not Met

• Throughput: Low

• Core Utilization: Bad
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ZygOS
[Prekas et al., SOSP’17]

Work stealing

Shared mem.

d-FCFS runtime

▪D-FCFS + work stealing

Receive Side Scaling 
(RSS)

Queues

Cores

Work stealingReactive – too late

• Core Utilization: Good

• SLO: Not Met

• Throughput: Medium

SLO unaware Slow steal
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Shinjuku                        
[Kaffes et al., NSDI’19]

Preemption

Shared mem.

c-FCFS runtime

▪Centralized First Come First Serve (C-FCFS)
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Mechanism

Scheduling Sub-system 
Abstraction

Challenge 1: SLO-unaware, reactive or not adaptive 

Challenge 2: far from 50ns (s/w) or not scalable (h/w)

Challenge 3: Centralized  runtime not scalable 

Challenge 4: Hardware runtime not adaptive
Runtime

Policy
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SLO prediction + 
proactive migration

H/W primitives

Global d-FCFS     
Local c-FCFS

Altocumulus

S/W

H/W



Altocumulus Architecture

62

Cores

Group 0 Group N

Per-Group 
Manager Cores

Per-Group 
Centralized 
Queues

Server

▪Multi-tiered global D-FCFS local C-FCFS

▪ Each group: 1 queue + 1 manager (purple) + 

several workers (green)
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▪Multi-tiered global D-FCFS local C-FCFS

▪ Each group: 1 queue + 1 manager (purple) + 

several workers (green)

▪ Proactive & hardware-assisted work 

stealing across manager cores

▪Compatible with commodity multi-queue 

NIC with RSS support
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Altocumulus Architecture

Migrations
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2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)
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1. Periodically synchronize system states

2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)

5. Pass decisions to h/w primitives and trigger migration h/w messages

6. Repeat Step 1 (Period as short as 50ns due to messaging offloaded to h/w)

Heuristics: multi-queue load pattern classification

How we offload messaging to h/w ?

How we train SLO violation prediction model?
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▪ Remain RPC message payload in LLC/memory -- Only move RPC descriptor

▪ Reduce latency overhead and traffic per migration (up to 140x)

▪ Each request being migrated at most once

▪ Avoid livelock and unnecessary scheduling traffic

▪ Batch multiple descriptors per message

▪ Improve hardware efficiency
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Migration Prediction
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1. Periodically synchronize system states

2. Pick appropriate threshold trained offline

3. Poll queues to check if threshold is met

4. Decide how many RPCs to migrate to which queue(s)

5. Pass decisions to h/w primitives and trigger migration h/w messages

6. Repeat Step 1 (Period as short as 50ns due to messaging offloaded to h/w)

Heuristics: multi-queue load pattern classification

How we offload messaging to h/w ?

How we train SLO violation prediction model?



Offline Model Training
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▪Determine a vector of SLO violation thresholds

▪ Use queuing theory assisted w/ simulation

▪Different threshold per:

▪ Load status

▪ Service time distribution

▪ Arrival pattern

▪ Number of cores

Per-Group Centralized Queues

Q0 Q1 Q2

Header

Tail

Predicted SLO 
Violation Threshold

Q0 Q1 Q2
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▪ Trade-off: Prediction accuracy V.S. migration effectiveness  

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores
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▪ Trade-off: Prediction accuracy V.S. migration effectiveness  
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A typical SLO value: 

99th% latency <= 10 x average latency

Naive prediction approach: 

Threshold = 10 x number of cores



Offline Model Training

81

▪ Trade-off: Prediction accuracy V.S. migration effectiveness  

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

• Prediction accuracy per migration: 100% 

• Effectiveness (Capture ? % of SLO violation): ~0%

A typical SLO value: 

99th% latency <= 10 x average latency

Naive prediction approach: 

Threshold = 10 x number of cores
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▪ Trade-off: Prediction accuracy V.S. migration effectiveness  

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value: 

99th% latency <= 10 x average latency

Naive prediction approach: 

Threshold = 10 x number of cores

Aggressive prediction approach: 

Threshold = first SLO-violated queue length

A typical SLO value: 

99th% latency <= 10 x average latency

Naive prediction approach: 

Threshold = 10 x number of cores
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▪ Trade-off: Prediction accuracy V.S. migration effectiveness  

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value: 

99th% latency <= 10 x average latency

Naive prediction approach: 

Threshold = 10 x number of cores

Aggressive prediction approach: 

Threshold = first SLO-violated queue length

• Prediction accuracy per migration: ~0%

• Effectiveness (Capture ? % of SLO violation): 100% 
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▪ Trade-off: Prediction accuracy V.S. migration effectiveness  

Uniform, Poisson, 64 cores Bi-modal, Poisson, 64 cores

A typical SLO value: 

99th% latency <= 10 x average latency

Naive prediction approach: 

Threshold = 10 x number of cores

Aggressive prediction approach: 

Threshold = first SLO-violated queue length

We characterize thresholds for all system states offline

& dynamically select threshold online



Methodology

▪ Baselines

▪ D-FCFS + work stealing system

▪ ZygOS [Prekas et al, SOSP’17]

▪ C-FCFS S/W based system

▪ Shinjuku [Kaffes et al, NSDI’19] 

▪ C-FCFS H/W based system

▪ Nebula [Sutherland et al, ISCA’20] 

▪ nanoPU [Ibanez et al, OSDI’21]
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▪Altocumulus configuration (Simulation)

▪ Commodity RSS NIC +                    

S/W based local c-FCFS 

▪ comparable with S/W baselines

▪ Integrated NIC +                            

H/W based local c-FCFS 

▪ comparable with H/W baselines
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Better

▪ Outperform S/W solutions (ZygOS, Shinjuku) by up to 24x under 10 microsecond SLO
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▪ Outperform S/W solutions (ZygOS, Shinjuku) by up to 24x under 10 microsecond SLO

▪ Has comparable throughput to highly-optimized H/W runtimes (Nebula & nanoPU)
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Better

<0.001% SLO violation and achieve 161 MRPS, scalable to 256 cores
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Better

<0.001% SLO violation and achieve 161 MRPS, scalable to 256 cores

<5% SLO violation and achieve 216 MRPS, scalable to 256 cores
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Better Better

Achieve 161 MRPS while 99%th <= 5.57 us
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Better Better

Achieve 161 MRPS while 99%th <= 5.57 us

Achieve 216 MRPS while 99%th <= 15.41 us 
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Strict SLO     
(99th% latency@μs) 

High volume of requests 
(400+ Gbps)

High CPU efficiency 
(64-256 cores)

Altocumulus
Scheduling Sub-system

SLO violation prediction via queueing theory, proactive migrations

Efficient direct register messaging w/ minimal H/W overheads

S/W decentralized runtime with simple H/W primitives

Mechanism

MICRO-55, Altocumulus, https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

Runtime

Policy

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf


Key Take-Aways

▪With RPC stack components getting more optimized, other system-level 
components, e.g., scheduling, would become the future bottleneck

▪ Scheduling at 10s ns level is mandatory for μs-scale SLO, to achieve that

▪ Policy should be proactive and accurate/effective

▪ Mechanism should be fast enough

▪Carefully re-partitioning system stack between software or hardware can 
open opportunities for scalability that existing systems 

▪ Decentralized runtime preserves scalability

▪ Software runtime offers adaptivity to various load patterns

▪ Decentralized software runtime with minimal hardware overhead can reconcile design 
trade-offs across low tail latency, high through and high utilization (scalability) 
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MICRO-55, Altocumulus, https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

Policy

Runtime

Mechanism

Altocumulus Stack

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf


Thank you for your attention

Jiechen Zhao, Iris Uwizeyimana, Karthik Ganesan

Mark C. Jeffrey, Natalie Enright Jerger

10555th IEEE/ACM International Symposium on Microarchitecture (MICRO), Chicago, Oct. 2022 
https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf

https://www.eecg.utoronto.ca/~mcj/papers/2022.altocumulus.micro.pdf
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