
SmartNIC-Enabled Live Migration for
Storage-Optimized VMs

Jiechen Zhao
r♣
, Ran Shu

♣
, Lei Qu

♣
, Ziyue Yang

♣
,

Natalie Enright Jerger
r
, Derek Chiou

♠♦
, Peng Cheng

♣
, Yongqiang Xiong

♣
r
University of Toronto,

♣
Microsoft Research,

♠
University of Texas at Austin,

♦
Microsoft

Abstract
Cloud providers offer storage-optimized VMs equipped with

locally attached storage to meet the high performance re-

quirements of cloud users. However, current cloud providers

cannot enable live migration for storage-optimized VMs due

to the high resource overheads. Moreover, resources should

be permanently provisioned for live migration as on-demand

provisioning needs to de-allocate resources from either VMs

or the hypervisor, thus violating SLA. We propose a storage

live migration acceleration system on SmartNICs. Our design

achieves minimal resource overhead and SLA violations by

proposing (1) a SmartNIC-managed live migration architec-

ture and (2) an efficient consistency algorithm.We implement

a basic prototype on an FPGA-based SmartNIC. Preliminary

results show that we can migrate storage-optimized VMs

with no host resource usage and minimal performance inter-

ference to RocksDB running inside the VM. This project is

part of the Terminus Project [28].

CCS Concepts
• Computer systems organization → Cloud comput-
ing;Maintainability and maintenance; • Networks→
Programmable networks; • Hardware→ Networking
hardware; • Software and its engineering → Virtual
machines; Operating systems.

Keywords
live migration, NVMe storage, cloud computing, hypervisors,

virtual machines, SmartNICs, FPGAs

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

APSys ’24, September 4–5, 2024, Kyoto, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-1105-3/24/09

https://doi.org/10.1145/3678015.3680487

ACM Reference Format:
Jiechen Zhao, Ran Shu, Lei Qu, Ziyue Yang, Natalie Enright Jerger,

Derek Chiou, PengCheng, YongqiangXiong. 2024. SmartNIC-Enabled

Live Migration for Storage-Optimized VMs. In ACM SIGOPS Asia-
Pacific Workshop on Systems (APSys ’24), September 4–5, 2024, Kyoto,
Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/

3678015.3680487

1 Introduction
Large-scale online services are usually deployed in clouds [31].

Many of these services rely highly on the performance of

backend storage [13, 32]. Service owners usually have spe-

cific performance requirements when building their own

storage applications. To meet those requirements, cloud

providers offer storage-optimized VMs [21, 22]. These VMs

have directly mapped local NVMe storage whose overall per-

formance can be up to several millions of IOPS on a single

VM. Such local storage is ephemeral (i.e., not persistent);

data does not survive a VM stop or termination.

Meanwhile, live migration is a key technique for cloud

providers to offer minimal service interruptions during man-

agement tasks including planned maintenance, system up-

dates, configuration changes, hardware failure handling, and

allocation optimizations [16, 17]. Although the total live mi-

gration time can be up to hours, tenant VMs only get paused

temporarily at second or sub-second levels [49]. This benefit

significantly alleviates minute-level service interruptions,

compared to cases without live migration.

However, live migration is currently not available for

storage-optimized instances in clouds [16, 22]. The main rea-

son is the unaffordably high overhead alongside co-running

tenant VMs. To provide live migration capability, the VM

hypervisor has to track every disk access to guarantee consis-

tency between the migration source and destination. There-

fore, a virtualization layer is mandatory because it mediates

local NVMe I/O and consistency tracking operations on both

sides of a migration process. Unfortunately, bringing in such

an additional layer is against the design principle of storage-

optimized VMs that have directly mapped local NVMe stor-

age. Worse, achieving such virtualization would take too

much host CPU computation power [37]. While statically

reserving CPU resources for live migration is not efficient,

there is no on-demand way for providers to initialize and

https://doi.org/10.1145/3678015.3680487
https://doi.org/10.1145/3678015.3680487
https://doi.org/10.1145/3678015.3680487

APSys ’24, September 4–5, 2024, Kyoto, Japan Zhao et al.

manage live migration processes. In the worst case, if all

cores are sold to tenant VMs, there are no compute resources

left on the CPU for the provider to conduct live migration.

Finally, the live migration will contend for host resources

such as LLC, memory bandwidth, and PCIe bandwidth with

tenant VMs. Due to the extremely high bandwidth of modern

NVMe SSD cloud used, such contention has a high potential

to degrade tenants’ performance stability.

To this end, we propose to use FPGA-based SmartNICs
1

to accelerate the live migration of local storage for storage-

optimized VMs. There are two reasons for doing so. (1) The

SmartNIC is the perfect location to remove host involvement

during live migration. This eliminates host-related perfor-

mance interference e.g., LLC and memory bandwidth. It also

reduces PCIe transactions needed in the existing approach

due to host involvement. (2) Merely transferring live migra-

tion from the host CPU to SoC-based SmartNICs has per-

formance limitations due to the wimpy SoC cores [1, 9, 18].

ASIC-based SmartNICs can only support limited states, mak-

ing it hard to support storage migration with rich states [12,

30]. In contrast, FPGA-based SmartNICs can be tailored for

live migration with greater cost efficiency and scalability.

Similar to host-managed live migration, there should be

compute and memory resources on the SmartNIC provi-

sioned for live migration. The key challenges to realizing

our idea of SmartNIC-enabled live migration are (1) how

to minimize SmartNIC resource overheads and (2) how to

guarantee data consistency with high efficiency.

In this paper, we present an efficient local storage live

migration acceleration system for storage-optimized VMs.

We adopt the following key design principles to solve the

above challenges. First, during live migration, we enable a

hardware module that interposes all commands from the

tenant VM and handles the data movement. We employ a

one-to-one queue mapping scheme for both VM→SmartNIC

and SmartNIC→disk communications. Second, we propose

an efficient data consistency algorithm.We use double writes

to both the migration source and destination to keep copied

data up to date on both the migration source and the des-

tination. For write commands targeting the in-flight copy

range, our approach employs a low-overhead back-pressure

scheme. This reduces performance interference on tenant

VMs and SmartNIC resource overheads allocated for live

migration.

We implement our prototype on an FPGA-based SmartNIC.

Preliminary results show that we can migrate a VM running

RocksDB on high-speed local SSDswithout any host resource

overhead and with only 12% extra latency to RocksDB.

1
Data Processing Units (DPUs) and Infrastructure Processing Units (IPUs)

are terms describing SmartNICs with more offloading features. Here we use

SmartNICs as a general term including SmartNICs, DPUs, and IPUs.

2 Background and Motivation
This section gives the basics of block storage in the cloud

and storage live migration (Sec. 2.1), and our motivation for

using an FPGA-based SmartNIC to enable live migration of

storage-optimized VMs (Sec. 2.2).

2.1 Block Storage in the Cloud and Storage
Live Migration

There are three main types of block storage available for

VMs in the cloud. We introduce their concepts according to

Fig. 1. Note that live migration resides in the hypervisor in

Fig. 1(a) and Fig. 1(c), but does not exist in Fig. 1(b) due to

the direct mapping.

Persistent block storage. Persistent storage systems store

data in remote storage clusters and emulate a block inter-

face at the host side for VMs. Its system architecture is

shown in Fig. 1(a). It provides high durability and availabil-

ity for customers. Examples of persistent storage are AWS

EBS [15], Azure Managed Disks [14], and Google Persistent

Disk [20]. Live migration of VMs with persistent storage just

needs to move memory states and reconnect the destination

node with the remote storage, which is relatively simple and

fast [49]. Although persistent storage provides many bene-

fits, it cannot achieve high performance due to complicated

software protocols (e.g., replication, data consistency, net-

work congestion). Thus, cloud providers also offer two local
storage options, which are introduced next.

Directly mapped local storage. Cloud providers also offer

directly mapped NVMe disks (both SSDs and HDDs) to VMs

to provide TB-scale capacity and several millions of IOPS on

a single VM. This type of VM is called a storage-optimized

VM [21, 22]. Fig. 1(b) illustrates its system architecture. These

local disks are not managed by providers’ hypervisor, but by

users themselves, and the entire disk(s) is directly mapped to

those VMs and not shareable with other tenants.
2
In current

cloud systems, there is no support for live migration on

directly mapped local disks from the cloud provider side.

Moreover, cloud providers are unaware of tenants’ accesses

to the directlymapped local storage, thus unable to guarantee

data consistency on their side. Such limitations can only be

eliminated if the disk supports features required for live

migration including an additional interface and user access

tracking. However, none of the existing disks on the market

support such features.

Hypervisor managed local storage. To acquire controla-

bility of local storage, providers use hypervisors to manage

local storage, as Fig. 1(c) shows. Architecturally, the hyper-

visor’s management can run on the host CPU [3–5, 25], or

2
The “entire disk” can be a logical one. Multiple logical disks can be located

on the same physical device, but their access channels are isolated.

SmartNIC-Enabled Live Migration for Storage-Optimized VMs APSys ’24, September 4–5, 2024, Kyoto, Japan

Hypervisor Host
Software

Device

NVMe
SSD

NVMe
SSD

(c) Hypervisor-managed local storage

...

VM 0 VM N
Server
node X

Hypervisor

Device
NVMe
SSD

NVMe
SSD

(b) Directly mapped local storage

...

VM 0 VM N Server
node X

NVMe
SSD

Host
Software

Hypervisor

(a) Persistent block storage

VM 0 VM N
Server
node X
Host

Software

NVMe
SSD

NVMe
SSD

... NVMe
SSD

Remote storage server

Network

Figure 1: Different storage systems in the cloud.

be offloaded onto the SmartNIC [1, 37, 38]. Live migration

is supported in the hypervisor software [3–5, 7, 25]. The

hypervisor-level management usually introduces a certain

amount of overhead, which scales as overall I/O activity

increases.

A walk-through example on storage live migration.
Since data is non-persistent and temporary in local disks, mi-

grating data is necessary when migrating storage-optimized

VMs. We walk through the live migration process for the

local virtual disk of a VM. Initially, the hypervisor starts

a background data copy from the migration source to the

destination. This phase is called the pre-copy phase. As data

on the source disk can be modified by the VM, consistency

tracking methods like dirty block tracking or IO mirroring

should be adopted [44]. At a point when the source and des-

tination are nearly converged or as per the cloud provider’s

decisions, the second phase starts, where the VM is stopped,

copied, and restored to the new location. This stage is called

stop-and-copy. To reduce the stop-and-copy time, post-copy

is an optimization which does not finalize the source and

destination convergence, but letting the VM keep fetching

updated data from the source after moving to the destina-

tion [23]. The post-copy approach is usually complex and

costly [44], e.g., resources on the source cannot be released

until the two sides fully converged. Major local storage live

migration systems use pre-copy plus stop-and-copy [52].

2.2 Motivation
To enable live migration (LM) for storage-optimized VMs,

the naive solution is for cloud providers to change the local

storage type from directly mapped to hypervisor managed.

Although this solution brings LM manageability for storage-

optimized VMs, it is so costly that cloud providers cannot

afford it. Next, we describe several drawbacks of the current

LM approach and summarize the reasons for its inefficacy in

managing storage-optimized VMs.

Extra software overheads. Efficiency-wise, there are three

sources of overheads that commonly exist across current

hypervisors [3–5, 7, 25] that employ software-based LM.

First, between 22% and 39% of active CPU cycles are used to

poll and trigger guest interrupts [37]. Second, long latency

nested page walks in the host memory significantly affect

performance [43]. Third, events such as hypervisor trapping

incur CPU mode switches and cache pollution [24, 36]. With

the above software overheads accumulated, the resultant

host overhead of copying data between two virtual NVMe

SSDs at line rate is almost 6 Xeon cores [37].

For single-disk VMs, these observed software overheads

make migration efficiency scale poorly with increasing disk

speeds, either at the cost of more host cores or suffering

from slower LM. Largest storaged optimized VMs can hold

up to 10 high-speed SSDs [22]. LM should migrate TB-scale

disk data in one process. Such software overheads will slow

the LM performance to a crawl, e.g., tens of hours. Concur-

rently paralleling the LM of different disks can accelerate

this process [50], but it linearly increases the demand for

CPU resources. Besides high CPU overheads, higher CPU

occupancy also potentially leads to more host resource con-

tention, which we discuss next.

Resource contention. Existing software approaches de-

grade the application’s performance predictability. Our ex-

periment migrates 64 GB data between two SSDs using a

host-based KVM/QEMU implementation. We co-locate the

LM process with a CPU-intensive, latency-critical key-value

store application, MICA [40]. We initialize a MICA instance

with 28 threads, 50%/50% GET/SET, and leave the remain-

ing 4 threads for KVM (hyperthreading is off). The speed

of LM itself fluctuates by 37-80% of the line rate and ulti-

mately slows down by 40%. The tenant VM suffers up to 13×
SET latency increase. In this case, the LM contends for host

memory with MICA due to its data copies and NVMe I/O

queue operations, which takes 33 GB/s memory bandwidth

for 120 MOPs throughput. In addition, the miss rate of LLC

increases due to co-located LM.

FPGA-based SmartNIC enabled storage live migration.
In this work, we choose to offload the LM feature to Smart-

NICs widely deployed in a variety of public clouds [1, 11,

APSys ’24, September 4–5, 2024, Kyoto, Japan Zhao et al.

19, 33, 45]. Because storage LM, by its nature, is moving

data between disks through network, we have new oppor-

tunities to take advantage of the efficiency benefits from

SmartNICs [33, 42, 46].

SoC-based SmartNICs have limited computational capabil-

ity with wimpy cores, thus they cannot feasibly handle the

offloading of storage live migration for storage-optimized

VMs [37]. Therefore, we choose to use FPGA-based Smart-

NICs. We believe this is a viable and practical design choice,

taking into account (1) high software overheads, (2) resource

contention, and (3) the high I/O speeds of storage-optimized

VMs. FPGA-based SmartNICs have been successfully de-

ployed to accelerate data plane operations for virtual net-

works [33]. The solution significantly saves CPU cycles, im-

proves efficiency, and offers near-native stable performance.

3 System Design
As an FPGA-based SmartNIC is customizable by the provider

for critical features such as live migration (LM), it gives us

a new design space to make effective use of SmartNICs by

leveraging the following two design principles.

Efficient live migration architecture. We adopt a similar

access flow like that in FVM [37], i.e., only interposing the

command path while keeping the direct data path between

disk and VMmemory. For command path, we use one-to-one

mappings between VM-SmartNIC I/O queues and SmartNIC-

disk I/O queues. This design not only eliminates the need

of queue multiplexing/demultiplexing on the SmartNIC, but

also it keeps users’ multi-queue scheduling unchanged.

On-SmartNIC consistency management between VM
and LM access. Although the SmartNIC is the right loca-

tion to remove host resource contention caused by LM pro-

cesses (Sec. 2.2), synchronization mechanism is needed on

the FPGA-based SmartNIC. We propose efficient lock-based

synchronization mechanisms purely running on the FPGA.

A double write algorithm preserves atomicity and reduces

the hardware complexity of managing concurrent in-flight

commands from the LM process and the VM being migrated.

3.1 Efficient Live Migration Architecture
The SmartNIC and NVMe disks are both connected to the

PCIe bus. Fig. 2 provides a system overview of our on-SmartNIC

LM approach. The LM module on the SmartNIC is responsi-

ble for triggering, monitoring, and managing an LM process

on behalf of the software hypervisor running on the host.

There are four possible paths handled by the LM module.

For VM access path, we adopt the access flow introduced by

FVM [37] between VMs and NVMe disks, where each NVMe

command goes through the SmartNIC. Such design elimi-

nates host involvements and unnecessary PCIe transactions.

The SmartNIC on the migration source node should handle

LM Module
n Emulated Host Queues

...

... n-1 VM Queues 1 LM Queue

LM Controller

Network
Stack

n Disk Queues... Local Disk

SmartNIC

VM LM double write LM recv (dst)

LM send (source)VM access

PCIe

PCIe

Figure 2: Overview of the proposed system with
SmartNIC-enabled live migration (LM), with four pos-
sible paths supported by our SmartNIC.

two LM-related path, i.e., LM double write and LM send. The

SmartNIC on the destination should handle LM receive. We

clarify that the four paths in Fig. 2 separately exist in either

the source SmartNIC or the destination SmartNIC, but they

do not simultaneously exist in one SmartNIC.

SmartNIC-disk direct access. The NVMe protocol relies

on I/O queues to submit/complete commands to/from disk

controllers. Our SmartNIC functions as an NVMe I/O hyper-

visor with such I/O queues, thus acquiring direct access from

the SmartNIC to disks. Based on such direct accessibility, this

hypervisor can talk to its local disks with two types of paths:

an LM path and a user access path. The former is the path

between LM NVMe I/O queues and the network stack. The

latter is the path between user NVMe I/O queues and the

host NVMe queues. Only one I/O queue is required by the

LM path as the FPGA is able to achieve peak read/write per-

formance thanks to its internal parallelism and specialized

circuits. Other NVMe I/O queues are mapped to user paths in

an one-to-one fashion. In other words, if a device supports 𝑛

disk queues, the SmartNIC provisions one NVMe I/O queue

dedicated to the LM, and other 𝑛−1 queues on the SmartNIC

are mapped as users’ NVMe queues. The queue mapping as

described is shown in Fig. 2. All queues are stored in the

on-SmartNIC SRAM. As a result, the disk controller reads

or writes NVMe commands stored in the on-NIC memory

instead of the host DRAM, reducing PCIe transactions and

potential contention on the PCIe or memory bus.

Host-SmartNIC interface.Another𝑛−1 host NVMe queues

are used to emulate the NVMe frontend to VMs in a one-to-

one mapping fashion. This eliminates the queue multiplexing

and demultiplexing overhead in the FPGA logics. Such de-

sign also keeps the user I/O scheduling unchanged. Thus

we avoid unexpected performance loss which affects user

SmartNIC-Enabled Live Migration for Storage-Optimized VMs APSys ’24, September 4–5, 2024, Kyoto, Japan

satisfaction. The addresses of those I/O queues are mapped

to the MMIO address space allocated by the NVMe driver on

the host. The mappings are managed by the provider.

Live migration controller. The controller proactively gen-

erates LM-related send/recv commands and talks to its local

disks through the direct access interface introduced above.

During an LM process, the LM controller has full interposi-

tion over commands on both the LM path and user access

path(s). Thus, the controller has full visibility to handle data

consistency among all paths, as well as that between migra-

tion source and destination nodes. The detailed consistency

algorithm in the controller is introduced in Sec. 3.2.

Network stack. On each SmartNIC, we use a network stack

provide reliable communication with other SmartNICs on

other hosts. There are multiple design options. Providers can

choose to implement an I/O stack on the FPGA to drive the

NIC using RDMA or TCP engines [26, 41, 54]. The NIC can

be a stand-alone one or an FPGA-integrated one. Another

choice is to adopt a pure FPGA-based network stack like

LTL [27]. We choose LTL as a reliable network transport in

our prototype.

Scalability.Our LM design is lightweight to be implemented.

Our prototype for single disk LM only consumes ∼3% of the

FPGA logic on an FPGA-based SmartNIC using Intel Arria

10 [6]. One easy approach to migrate VM with multiple disks

mapped is duplicating the LM module. There is plenty of

room left to support the largest number of disks of a VM

which is 24 [21]. Please note that Arria 10 is an old FPGA

released in 2013, we believe the LM resource overhead should

be much lower on the latest SmartNIC like latest version

of Azure Boost [19]. Such overhead will not become the

resource bottleneck of SmartNIC.

3.2 Live Migration Controller
The algorithm we use, “double writes”, is one seen elsewhere

in industry and academia [44, 49]. The algorithm locks a

part of the physical address region that involves in-flight

migration commands. If user write I/Os fall in the locked

region, they are double written to both the source disk and

the destination disk, until the writes are properly merged.

Additionally, we add new design considerations to the double

writes to fit our scenario and system.

Consistency algorithm with low hardware overhead.
Since the consistency algorithm is executed by our LM con-

troller instead of by host software, the complexity of the

algorithm is resource-constrained and should be hardware-

friendly. To achieve this goal, this work partitions the phys-

ical address space of the disk that is being migrated into

three logical regions: the region that has finished being

copied (Migrated), the region with in-flight copy requests

Algorithm 1 Proposed consistency algorithm working with

SmartNIC-enabled storage live migration.

1: ⊲ At source node (all functions run on SmartNIC): ⊳

2: procedure SmartNIC-triggered Migrate

3: ResetPointers()

4: while 𝐿𝑀𝑇𝑎𝑖𝑙 < 𝐿𝐸𝑁 do
5: if 𝐿𝑀𝐻𝑒𝑎𝑑 - 𝐿𝑀𝑇𝑎𝑖𝑙 + 𝐼𝑛𝑓 𝑙𝑖𝑔ℎ𝑡𝑈𝑠𝑒𝑟 < 𝑇𝐻 then
6: data = ReadDisk(𝐿𝑀𝐻𝑒𝑎𝑑)

7: SendCopyData(𝐿𝑀𝐻𝑒𝑎𝑑 , data, FLAG_COPY)

8: 𝐿𝑀𝐻𝑒𝑎𝑑++
9: function OnTenantWrite(address, data)

10: if 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝐿𝑀𝐻𝑒𝑎𝑑 then
11: SendUserData(address, data, FLAG_USER)

12: function OnRecvAck(address, isCopy)

13: if isCopy then
14: 𝐿𝑀𝑇𝑎𝑖𝑙++
15: else
16: Wait for ACKs from local writes for completion

17: ⊲ At destination node: ⊳

18: function OnRecvData(address, data, isCopy)

19: WriteDisk(address, data)

20: SendAck(address, isCopy)

(i.e., InFlightMigrating), and the region to be copied (i.e.,

ToBeMigrated). The regions are shown in Fig. 3. There are 4

hardware pointers to track the progress of the LM. LM_RD_head
and LM_WR_head indicate the progress of LM (local) read

and (remote) write commands submitted, while LM_RD_tail
and LM_WR_tail indicate the progress of those commands

committed. The consistency algorithm is described in Algo-

rithm 1. We simplify the algorithm’s presentation with only

LM_head and LM_tail, while using the whole 4 pointers are

good for better pipeline parallelism on the FPGA. All VM

user I/Os to the local disk are omitted in the algorithm.

The LM controller would not give acknowledgement to

the tenant until double writes are both committed. User

commands do not need to be stored in the LM controller but

stored in the VM queues. In the worst case, if users want

to keep writing the address region being migrated, the host

queues will become full, which in return back-pressures the

VM to stop sending new user commands. This design results

in a small buffer requirement on the FPGA to store in-flight

commands.

Mitigate user performance interference. On the migra-

tion source, LM traffic may contend disk bandwidth with

traffic from VMs. We use a simple design to mitigate user per-

formance interference. The LM queue can only issue reads

from the source disk if the number of users’ in-flight requests

InflightUser is bellow a threshold (line5 in Algorithm 1).

The threshold TH is chosen to be the number of in-flight

APSys ’24, September 4–5, 2024, Kyoto, Japan Zhao et al.

SRC_BASE SRC_BASE + LEN

LM_WR_tail LM_RD_head

LM_WR_head

LM_RD_tail

to be migratedmigrated in-flight migrating

Figure 3: Snapshot of the address regions being mi-
grated. LEN is the length of data region to be migrated.

NVMe commands that populates a disk at its peak through-

put. Cloud providers can easily get the right TH by profiling

their disks. In essence, such design approximates a strict

priority that favors VM traffic over LM traffic. On the desti-

nation node, the LM has no interference with other VMs as

storage-optimized VMs typically use disk exclusively. The

target disk is only provisioned for the VM being migrated.

4 Preliminary Evaluation
We implement a prototype on an FPGA-based SmartNIC us-

ing ∼6,000 lines of System Verilog code. The implementation

uses ∼9,000 adaptive logic modules (ALMs) which takes less

than 2% of our Intel Arria 10 FPGA logic resources.

Our prototype can achieve 2.25 GB/s LM performance –

the peak performance of our SSDs if no other application is

running. The SSD we use is a 280 GB Intel Optane 900P [2].

Furthermore, we conduct an experiment that showcases

our prototype which migrates a VM running RocksDB [10]

to another SSD. We use the RocksDB official benchmarking

tool [8] to generate test traffic. We set the RocksDB key

size to 30 bytes and the value size to 30,720 bytes. Such a

large value size makes the disk load extremely heavy, acting

as a worst-case evaluation. The RocksDB file size is 4.319

GiB. For simplicity, we only migrate 8 GiB of disk space,

which contains the RocksDB file.We use readwhilewriting
pattern and set the number of read commands to 1 million.

Compression is disabled to push high disk workload and

exhaustively compete for bandwidth with the LM job.

We find the LM lasts for 78.749 seconds with an average

throughput of 109.8 MB/s. RocksDB uses the rest of the avail-

able disk bandwidth (about 2.1 GB/s). Fig. 4 shows the read

latency distribution during the whole running time without

or with the LM job co-located. The average latency increases

from 83.57 𝜇s to 93.55 𝜇s. The 90 percentile latency increases

from 171.71 𝜇s to 200.99 𝜇s. Therefore, our solution achieves

efficient LM with only 12% average latency and 17% 90th

percentile latency for this RocksDB setting.

0.7252
0.7605
0.7685
0.7723
0.7747
0.7767
0.7787
0.7805
0.7823
0.7838
0.7866
0.7890
0.7912
0.7934
0.7958
0.8019
0.8083
0.8146
0.8198
0.8244
0.8288
0.8363
0.8425
0.8482
0.8535
0.8585
0.8678
0.8765
0.8850
0.8926
0.8997
0.9153 200.9923
0.9298
0.9381
0.9421
0.9451
0.9467
0.9485
0.9505 676.3819
0.9532
0.9570
0.9634
0.9783
0.9867
0.9901
0.9911
0.9921
0.9955
0.9993

0.70
0.75
0.80
0.85
0.90
0.95
1.00

1 10 100 1000 10000

C
D

F

Latency (us)

w/o LM
w/ LM

Classified as Microsoft Confidential

Figure 4: RocksDB latency CDF running with/without
live migration (LM) on our prototype.

5 Open Questions
Handling performance issues.Doublewrites performance

depends on network status. Network congestion, as an ex-

ample, can degrade user experience as users need to wait

for acknowledgment from migration destination. Designing

schemes that offer better user experience while keeping the

LM module simple and effective is one of our future work.

Failure handling. As we introduce new components into

the system, several potential failure cases need to be ad-

dressed. The network failures between migration source and

destination is easy to handle as we can cancel the migration.

The SmartNICs themselves can also fail. On one hand, the

potential failures on the SmartNIC on the migration destina-

tion node can be solved in the same way as how we handle

network failures. On the other hand, the potential Smart-

NIC failures on migration source node is trickier to handle.

They can happen even if the LM is disabled and the SmartNIC

only intercept user commands. A fallback mechanism to host

software [33] is one promising approach and the detailed

solution will be one of our future work.

Use SmartNIC to accelerate other resources’ live migra-
tion. There are proposals to migrate other resources lively,

such as migrations of memory [34, 35, 49], network states [29,

39, 47–49, 51, 53], and local storage [44, 49]. Most of them

use the hypervisor or leverage the network switches to man-

age and redirect migrated resources. Besides, providers can-

not migrate other types of resource lively, e.g., GPUs and

TPUs instances [16]. It is possible to extend our agenda of

SmartNIC-enabled live migration to these types of resources.

Acknowledgments
We would like to thank our anonymous reviewers for their

valuable feedback. This work was supported in part by a

Canada Research Chair and the University of TorontoMcLean

Award.

SmartNIC-Enabled Live Migration for Storage-Optimized VMs APSys ’24, September 4–5, 2024, Kyoto, Japan

References
[1] [n. d.]. AWS Nitro System. https://aws.amazon.com/ec2/nitro/. Ac-

cessed: 2024-7-8.

[2] [n. d.]. Intel® Optane SSD 900P Series 280GB 12 Height PCIe x4 20nm

3D XPoint Product Specifications. https://ark.intel.com/content/www/

us/en/ark/products/123628/intel-optane-ssd-900p-series-280gb-12-

height-pcie-x4-20nm-3d-xpoint.html. Accessed: 2024-7-8.

[3] [n. d.]. Kernel-based Virtual Machine (KVM). http://www.linux-kvm.

org. Accessed: 2024-7-8.

[4] [n. d.]. Microsoft Hyper-V. http://www.microsoft.com/en-us/server-

cloud/solutions/virtualization.aspx. Accessed: 2024-7-8.

[5] [n. d.]. VMware. http://www.vmware.com. Accessed: 2024-7-8.

[6] 2013. Intel®FPGAs - Intel®Arria®10 GX FPGA. https://www.intel.

com/content/www/us/en/products/details/fpga/arria/10/gx.html. Ac-

cessed: 2024-7-8.

[7] 2018. QEMU: the FAST! processor emulator. https://www.qemu.org/.

Accessed: 2024-7-8.

[8] 2022. Benchmarking tools · facebook/rocksdb Wiki · GitHub. https:

//github.com/facebook/rocksdb/wiki/Benchmarking-tools. Accessed:

2024-7-8.

[9] 2022. Broadcom Stingray PS1100R. https://docs.broadcom.com/doc/

PS1100R-PB. Accessed: 2022-1-1.

[10] 2022. RocksDB: A Persistent Key-Value Store for Fast Storage Envi-

ronments. https://rocksdb.org/. Accessed: 2024-7-8.

[11] 2023. Alibaba CIPU. https://www.alibabacloud.com/blog/a-detailed-

explanation-about-alibaba-cloud-cipu_599183. Accessed: 2024-7-8.

[12] 2024. Agilio CX SmartNICs. https://www.netronome.com/products/

agilio-cx/. Accessed: 2024-7-8.

[13] 2024. Amazon DynamoDB. https://aws.amazon.com/dynamodb/. Ac-

cessed: 2024-7-8.

[14] 2024. Azure Disk Storage Overview - Azure Virtual Machines |

Microsoft Learn. https://learn.microsoft.com/en-us/azure/virtual-

machines/managed-disks-overview. Accessed: 2024-7-8.

[15] 2024. Cloud Block Storage - Amazon EBS - AWS. https://aws.amazon.

com/ebs/. Accessed: 2024-7-8.

[16] 2024. Google Cloud - Live Migration Process during Mainte-

nance Events. https://cloud.google.com/compute/docs/instances/live-

migration-process. Accessed: 2024-7-8.

[17] 2024. Maintenance and Updates - Azure Virtual Ma-

chines. https://learn.microsoft.com/en-us/azure/virtual-

machines/maintenance-and-updates#live-migration. Accessed:

2024-7-8.

[18] 2024. Marvell OCTEON 10 DPU. https://www.marvell.com/products/

data-processing-units.html. Accessed: 2024-7-8.

[19] 2024. Overview of Azure Boost. https://learn.microsoft.com/en-us/

azure/azure-boost/overview. Accessed: 2024-7-8.

[20] 2024. Persistent Disk: Durable Block Storage | Google Cloud. https:

//cloud.google.com/persistent-disk. Accessed: 2024-7-8.

[21] 2024. Storage Optimized Instances - Amazon EC2. https://docs.aws.

amazon.com/ec2/latest/instancetypes/so.html. Accessed: 2024-7-8.

[22] 2024. Storage Optimized Virtual Machine Sizes - Azure Virtual Ma-

chines. https://learn.microsoft.com/en-us/azure/virtual-machines/

sizes-storage. Accessed: 2024-7-8.

[23] Samer Al-Kiswany, Dinesh Subhraveti, Prasenjit Sarkar, and Matei

Ripeanu. 2011. Vmflock: Virtual Machine Co-migration for the Cloud.

In Proceedings of the 20th International Symposium on High Performance
Distributed Computing. 159–170.

[24] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. 2011.

vIOMMU: Efficient IOMMU Emulation. In Proceedings of the 2011
USENIX Annual Technical Conference (ATC). 73–88.

[25] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,

Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen

and theArt of Virtualization. In Proceedings of the 19th ACMSymposium
on Operating Systems Principles (SOSP). 164–177.

[26] Junehyuk Boo, Yujin Chung, Eunjin Baek, Seongmin Na, Changsu

Kim, and Jangwoo Kim. 2023. F4T: A Fast and Flexible FPGA-based

Full-stack TCP Acceleration Framework. In Proceedings of the 50th
ACM/IEEE International Symposium on Computer Architecture (ISCA).
1–13.

[27] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,

Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,

Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin

Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek

Chiou, and Doug Burger. 2016. A Cloud-scale Acceleration Architec-

ture. In 2016 49th IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 1–13.

[28] Derek Chiou, Ran Shu, Lei Qu, Peng Cheng, Yongqiang Xiong, Ram

Huggahalli, Arun Kishan,MarkD. Hill, and Steve Scott. 2024. Terminus:

Moving the Center of Cloud Servers from Cores to SmartNICs and

Beyond. HPCA 2024 Keynote.

[29] Inho Choi, Nimish Wadekar, Raj Joshi, Joshua Fried, Dan R.K. Ports,

Irene Zhang, and Jialin Li. 2023. Capybara: 𝜇Second-Scale Live TCPMi-

gration. In Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop
on Systems (APSys). 30–36.

[30] Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosen-

blum. 2019. 𝜆-NIC: Interactive Serverless Compute on Programmable

SmartNICs. arXiv preprint arXiv:1909.11958 (2019).
[31] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun.

ACM 56, 2 (2013), 74–80.

[32] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. 2021.

RocksDB: Evolution of Development Priorities in a Key-value Store

Serving Large-scale Applications. ACM Transactions on Storage (TOS)
17, 4 (2021), 1–32.

[33] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,

Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh

Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,

Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth

Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.

Azure Accelerated Networking: SmartNICs in the Public Cloud. In Pro-
ceedings of the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 51–66.

[34] Michael R Hines and Kartik Gopalan. 2009. Post-copy based live

virtual machine migration using adaptive pre-paging and dynamic

self-ballooning. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution environments. 51–60.

[35] Chinmay Kulkarni, Aniraj Kesavan, Tian Zhang, Robert Ricci, and

Ryan Stutsman. 2017. Rocksteady: Fast Migration for Low-latency

In-memory Storage. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP). 390–405.

[36] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladelsky, Abel

Gordon, and Dan Tsafrir. 2016. Paravirtual Remote I/O. In Proceedings
of the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 49–65.

[37] Dongup Kwon, Junehyuk Boo, Dongryeong Kim, and Jangwoo Kim.

2020. FVM: FPGA-assisted Virtual Device Emulation for Fast, Scalable,

and Flexible Storage Virtualization. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).
955–971.

https://aws.amazon.com/ec2/nitro/
https://ark.intel.com/content/www/us/en/ark/products/123628/intel-optane-ssd-900p-series-280gb-12-height-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123628/intel-optane-ssd-900p-series-280gb-12-height-pcie-x4-20nm-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/123628/intel-optane-ssd-900p-series-280gb-12-height-pcie-x4-20nm-3d-xpoint.html
http://www.linux-kvm.org
http://www.linux-kvm.org
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.microsoft.com/en-us/server-cloud/solutions/virtualization.aspx
http://www.vmware.com
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10/gx.html
https://www.intel.com/content/www/us/en/products/details/fpga/arria/10/gx.html
https: //www.qemu.org/
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://docs.broadcom.com/doc/PS1100R-PB
https://docs.broadcom.com/doc/PS1100R-PB
https://rocksdb.org/
https://www.alibabacloud.com/blog/a-detailed-explanation-about-alibaba-cloud-cipu_599183
https://www.alibabacloud.com/blog/a-detailed-explanation-about-alibaba-cloud-cipu_599183
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://aws.amazon.com/dynamodb/
https://learn.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://learn.microsoft.com/en-us/azure/virtual-machines/managed-disks-overview
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://cloud.google.com/compute/docs/instances/live-migration-process
https://cloud.google.com/compute/docs/instances/live-migration-process
https://learn.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates#live-migration
https://learn.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates#live-migration
https://www.marvell.com/products/data-processing-units.html
https://www.marvell.com/products/data-processing-units.html
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://learn.microsoft.com/en-us/azure/azure-boost/overview
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
https://docs.aws.amazon.com/ec2/latest/instancetypes/so.html
https://docs.aws.amazon.com/ec2/latest/instancetypes/so.html
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-storage
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-storage

APSys ’24, September 4–5, 2024, Kyoto, Japan Zhao et al.

[38] Huaicheng Li, Mingzhe Hao, Stanko Novakovic, Vaibhav Gogte, Sriram

Govindan, Dan R.K. Ports, Irene Zhang, Ricardo Bianchini, Haryadi S.

Gunawi, and Anirudh Badam. 2020. Leapio: Efficient and Portable

Virtual NVMe Storage on ARM SoCs. In Proceedings of the 25th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 591–605.

[39] Xiaoyu Li, Ran Shu, Yongqiang Xiong, and Fengyuan Ren. 2024.

Software-based Live Migration for Containerized RDMA. In Proceed-
ings of the 8th ACM SIGCOMM Asia-Pacific Workshop on Networking
(APNet). 52–58.

[40] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-

sky. 2014. MICA: A Holistic Approach to Fast In-Memory Key-Value

Storage. In Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 429–444.

[41] Katie Lim, Matthew Giordano, Theano Stavrinos, Baris Kasikci, and

Thomas Anderson. 2024. Beehive: A Flexible Network Stack for Direct-

Attached Accelerators. arXiv preprint arXiv:2403.14770 (2024).
[42] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo

Phothilimthana. 2019. E3: Energy-efficient Microservices on SmartNIC-

accelerated Servers. In Proceedings of the 2019 USENIX Annual Technical
Conference (ATC). 363–378.

[43] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris

Grot. 2019. Prefetched Address Translation. In Proceedings of the
52nd IEEE/ACM International Symposium onMicroarchitecture (MICRO).
1023–1036.

[44] Ali José Mashtizadeh, Emré Celebi, Tal Garfinkel, and Min Cai. 2011.

The Design and Evolution of Live Storage Migration in VMware ESX.

In Proceedings of the 2011 USENIX Annual Technical Conference (ATC).
187–200.

[45] Nirav Mehta. 2022. Introducing C3 machines with Google’s custom

Intel IPU | Google Cloud Blog. https://cloud.google.com/blog/products/

compute/introducing-c3-machines-with-googles-custom-intel-ipu.

Accessed: 2024-7-8.

[46] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, Andrew

Wei, In Hwan Doh, and Arvind Krishnamurthy. 2021. Gimbal: En-

abling Multi-tenant Storage Disaggregation on SmartNIC JBOFs. In

Proceedings of the 2021 ACM SIGCOMM Conference. 106–122.
[47] Maksym Planeta, Jan Bierbaum, Leo Sahaya Daphne Antony, Torsten

Hoefler, and Hermann Härtig. 2021. MigrOS: Transparent Live-

Migration Support for Containerised RDMA Applications. In Proceed-
ings of the 2021 USENIX Annual Technical Conference (ATC). 47–63.

[48] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. Zygos:

Achieving low tail latency for microsecond-scale networked tasks. In

Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP). 325–341.

[49] Adam Ruprecht, Danny Jones, Dmitry Shiraev, Greg Harmon, Maya

Spivak, Michael Krebs, Miche Baker-Harvey, and Tyler Sanderson.

2018. VM Live Migration At Scale. In Proceedings of the 14th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE). 45–56.

[50] Xiang Song, Jicheng Shi, Ran Liu, Jian Yang, and Haibo Chen. 2013.

Parallelizing Live Migration of Virtual Machines. In Proceedings of
the 9th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE). 85–96.

[51] Xin Xu and Bhavesh Davda. 2016. SRVM: Hypervisor Support for Live

Migration with Passthrough SR-IOV Network Devices. ACM SIGPLAN
Notices 51, 7 (2016), 65–77.

[52] Fei Zhang, Guangming Liu, Xiaoming Fu, and Ramin Yahyapour. 2018.

A Survey on Virtual Machine Migration: Challenges, Techniques, and

Open Issues. IEEE Communications Surveys & Tutorials 20, 2 (2018),
1206–1243.

[53] Jiechen Zhao, Iris Uwizeyimana, Karthik Ganesan, Mark C. Jeffrey,

and Natalie Enright Jerger. 2022. Altocumulus: Scalable Scheduling

for Nanosecond-scale Remote Procedure Calls. In Proceedings of the
55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
423–440.

[54] Guanwen Zhong, Aditya Kolekar, Burin Amornpaisannon, Inho

Choi, Haris Javaid, and Mario Baldi. 2023. A Primer on RecoNIC:

RDMA-enabled Compute Offloading on SmartNIC. arXiv preprint
arXiv:2312.06207 (2023).

Received 2nd May 2024; accepted 1st July 2024

https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu
https://cloud.google.com/blog/products/compute/introducing-c3-machines-with-googles-custom-intel-ipu

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Block Storage in the Cloud and Storage Live Migration
	2.2 Motivation

	3 System Design
	3.1 Efficient Live Migration Architecture
	3.2 Live Migration Controller

	4 Preliminary Evaluation
	5 Open Questions
	Acknowledgments
	References

